用户名: 密码: 验证码:
吸水链霉菌10-22中硫肽类抗生素cyclothiazomycin生物合成机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫肽类抗生素是一类由微生物生产的重要天然产物,对很多高抗药病原菌都有很强的抑制作用。它们共享一些典型的结构特征,包括含多个半胱氨酸衍生的两个氨基酸残基间的异源环(包括噻唑和噻唑啉)、分子结构中心位置的6元含氮杂环(吡啶或者脱水哌啶环)。多年来,这些不同寻常的氨基酸衍生结构一直吸引着有机化学家们在实验室中尝试通过有机合成的手段来实现,但是生物体本身究竟是如何合成这类产物,却很少有实验数据来描述其生物合成过程。
     环噻唑霉素(cyclothiazomycin,CLT)是一种新近分离且已经有立体化学结构鉴定报道的硫肽类抗生素,有肾素抑制剂的应用潜力。它是一种比较特别的硫肽类抗生素,除了具备硫肽类的共有特征外,自身有多处结构较为罕见,包括非2, 3-位噻唑取代的中心吡啶环,噻唑啉和噻唑的数目平分秋色以及一个叔碳上的硫醚键。
     本实验室保存的吸水链霉菌应城变种10-22由我国科学家分离得到,能够产生三种农用抗生素的,其中一种多肽类抗生素5102-II的生物合成机制多年来困扰着我们。NRPS思路的失败令我们转而考虑核糖体合成的途径。基于此猜想,利用一对基于核糖体合成途径中特有的环化脱水酶的保守序列设计的兼并引物,我们从10-22的基因组中克隆到了一个0.7kb的目标片段。基于该片段设计的特异引物在10-22基因组文库中钓到了两个阳性柯丝质粒(cosmid)。限制性内切酶消化后的片段序列测序结果证实,其中包含有一小段DNA序列,编码60aa的一个多肽,其中C端18aa的序列和CLT的结构氨基酸序列顺序完全一致。后续的生测实验、QTOF分子量检测分析以及二级质谱碎片分析都证明10-22所产的多肽类抗生素就是CLT。
     柯丝质粒测序结果显示整个35kb左右的插入片段中包含了27个ORF。根据ORF的分布情况,我们构建了多个异源表达载体,首次在链霉菌的模式菌株变铅青链霉菌Streptomyces lividans 1326中实现硫肽类抗生素的异源表达,并通过不同ORF的组合定位出了一个完整的环噻唑霉素合成基因簇。这是一个包含了15个ORFs、长度为22.7kb的核苷酸序列,生物信息学分析表明其中唯一一个结构基因cltA编码产生环噻唑霉素前体,前体多肽再经由基因簇中的其他蛋白进行翻译后修饰,最终成熟并释放至胞外。
     我们推测整个过程中有9个蛋白参与,其中6个基因,cltBCDEFG,围绕在前体肽基因cltA周围可能成一个大的操纵子,他们负责环噻唑霉素主体结构的合成,包括:CltB负责对半胱氨酸(Cys)残基和其临近的残基之间脱水环化形成分子间的异源噻唑啉;CltC则选择性识别成双的噻唑啉结构而只催化脱氢N端的一个从而形成CLT分子中噻唑啉和噻唑啉平分秋色的局面;2,3位非噻唑环取代的中心吡啶区域的形成则可能包括环化脱水、前导链切除和脱氨基三个过程,CltD由于拥有环化脱水酶和肽酶两个结构域,被认为是负责催化吡啶形成的主力军,并由此推测吡啶形成和前导肽的切除是同时进行的;CltG则很可能是一个脱氨基酶;脱水氨基酸的形成和lantibiotic的情形类似,由两个脱水酶CltE和CltF负责催化形成的。还有两个基因cltM/N,我们认为其编码的产物负责环噻唑霉素最后成环的一个叔碳硫醚键的形成;该硫肽分子完成所有翻译后修饰后,由转运蛋白CltO识别结合成熟产物并将之转运至胞外。
     就在2009年初,3个不同的硫肽类抗生素的合成基因簇序列几乎同时在三个不同的实验室得到突破,分析结果相当一致,认为硫肽类抗生素就是一类基因组编码、核糖体合成后经由一系列的后修饰成熟释放的一类抑菌多肽。本研究为这个结论提供了一个新的证据,并首次通过异源表达的手段给出了一个相对简单明晰的完整硫肽合成基因簇,同时也揭示了几个特有的后修饰酶,使得在未来的硫肽合成机制的深入研究以及“非天然”硫肽类化合物的实验室合成上都有一个便利的研究对象和工具。
Thiopeptide antibiotics are an important class of natural products. Although their biosynthesis, especially construction of unusual amino acid residues, attracted organic chemists for many years, few experimental data on the enzymatic polypeptide formation has been obtained.
     Cyclothiazomycin (CLT), isolated as a novel and selective inhibitor of human plasma rennin, is a unique bridged macrocyclic thiopeptide, whose stereo structure was recently revealed as containing a dehydroserine, two dehydrothreonine residues, three thiazolines, three thiazoles, and a tri-substituted pyridine. Compared with common thiopeptides, it lacks the characteristic 2- and 3-azole substituent on the central pyridine domain, but instead, possesses an alanine-derived heterocyclic residue with (R)-configuration and a quaternary sulfide to exhibits two macro-cyclic peptide loops.
     Streptomyceshygroscopicus var. yingchengensis 10-22 (10-22), isolated by Zhou et al in 1980s’, can produce three antifungal antibiotics, 5102-I, 5102-II and 5102-III. Known as a polypeptide containing Thr, Ser and Cysantibiotic, antibiotic 5102-II can protect against leaf spot of corn (disease caused by Cochliobolus heterostrophus). However, the lack of detailed structural information and the unsuccessful cloning strategy based on non-ribosomal peptide hypothesis have hampered the cloning of its biosynthesis gene cluster for years.
     Previously failures raised the possibility that the polypeptide antibiotic 5102-II is synthesized by ribosomal pathway followed by posttranslational modifications. A pair of degenerated primers, designed based on the conserved cyclodehydratase, was used to clone a 700 bp fragment from the genomic DNA of S. hygroscopicus 10-22. Based on this nucleotide sequence, a pair of specific nestle primers was designed to screen the S. hygroscopicus 10-22 genomic library. One of the positive cosmids, 14E6, with a 35 kb insertion, was sequenced (Accession number:FJ472825) and 27 ORFs were predicted in this sequence. Significantly, a 180-nt orf, named as cltA, in the sequence was found to encode a 60-amino acid precursor peptide, of which the C terminal sequence is perfectly consistent with the structural peptide of cyclothiazomycin. Moreover, both the bioassay and Q-TOF analysis idenfied that the polypeptide antiobiotic produced by 10-22 was indeed CLT.
     According to the organization of ORFs, a profile of heterologous expression was successfully taken in S. lividans 1326, which is the first time for thiopeptides. Therefore, a minimized gene cluster responsible for the production of CLT has been confirmed to contain 15 ORFs and 9 of them are suggested to be directly involved into the biosynthesis.
     Based on the heterologous expression study and the bioinformatic analysis on the minimized intact gene cluster, we proposed an eight-enzyme involved biosynthetic scheme for the posttranslational modifications of cyclothiazomycin. In this scheme, three proteins, CltC, CltD and CltN were suggested to be responsible for the characteristic structural elements: the selectively dehydrogenated thiazolines, tri-substituted central pyridine and tertiary thioether. Importantly, the LP cleavage was deduced to be catalyzed by the C-terminal domain of CltD during the pyridine formation. The other two enzymes encoded by a putative operon, cltMN, were supposed to participate in tailoring step to generate the tertiary thioether, leading to the final cyclization of the bridged macrocyclic structure.
     Until early in this year, three groups cloned three different thiopeptides biosynthetases almost at the same time. Here we reported the first cloning and heterlogous expression of the biosynthetic gene cluster of CLT. Remarkably, this rigorous bioinformatic analysis based on the heterologous expression results presented a precise biosynthetic scheme for cyclothiazomycin, which may offer a short-cut access to the biosynthesis of other 'unnatural' products generated by posttranslational modification.
引文
1. Bagley, M.C., J.W. Dale, E.A. Merritt, and X. Xiong. 2005. Thiopeptide antibiotics. Chem Rev 105:685-714.
    2. Porse, B.T., I. Leviev, A.S. Mankin, and R.A. Garrett. 1998. The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre. J Mol Biol 276:391-404.
    3. Murakami, T., T.G. Holt, and C.J. Thompson. 1989. Thiostrepton-induced gene expression in Streptomyces lividans. J Bacteriol 171:1459-66.
    4. Aoki, M., T. Ohtsuka, M. Yamada, Y. Ohba, H. Yoshizaki, H. Yasuno, T. Sano, J. Watanabe, K. Yokose, and H. Seto. 1991. Cyclothiazomycin, a novel polythiazole-containing peptide with renin inhibitory activity. Taxonomy, fermentation, isolation and physico-chemical characterization. J Antibiot (Tokyo) 44:582-8.
    5. Hashimoto, M., T. Murakami, K. Funahashi, T. Tokunaga, K. Nihei, T. Okuno, T. Kimura, H. Naoki, and H. Himeno. 2006. An RNA polymerase inhibitor, cyclothiazomycin B1, and its isomer. Bioorg Med Chem 14:8259-70.
    6. Liao, R., L. Duan, C. Lei, H. Pan, Y. Ding, Q. Zhang, D. Chen, B. Shen, Y. Yu, and W. Liu. 2009. Thiopeptide biosynthesis featuring ribosomally synthesized precursor peptides and conserved posttranslational modifications. Chem Biol 16:141-7.
    7. Hughes, R.A., and C.J. Moody. 2007. From amino acids to heteroaromatics--thiopeptide antibiotics, nature's heterocyclic peptides. Angew Chem Int Ed Engl 46:7930-54.
    8. Priestley, N.D., T.M. Smith, P.R. Shipley, and H.G. Floss. 1996. Studies on the biosynthesis of thiostrepton: 4-(1-hydroxyethyl)quinoline-2-carboxylate as a free intermediate on the pathway to the quinaldic acid moiety. Bioorg Med Chem 4:1135-47.
    9. Fate, G.D., C.P. Benner, S.H. Grode, and T.J. Gilbertson. 1996. The Biosynthesis of Sulfomycin Elucidated by Isotopic Labeling Studies. J. Am. Chem. Soc. 118: 11363-11368.
    10. Ursula Mocek, Z.Z., David O'Hagan, Pei Zhou, Lai Duen G. Fan, John M. Beale, Heinz G. Floss. 1993. Biosynthesis of the modified peptide antibiotic thiostrepton in Streptomyces azureus and Streptomyces laurentii. J. Am. Chem. Soc. 115:7992-8001.
    11. Pavlov, E., S.M. Grigoriev, L.M. Dejean, C.L. Zweihorn, C.A. Mannella, and K.W. Kinnally. 2005. The mitochondrial channel VDAC has a cation-selective open state Biochim Biophys Acta 1710:96-102.
    12. Su, T.L. 1948. Micrococcin, an antibacterial substance formed by a strain of Micrococcus. Br J Exp Pathol 29:473-81.
    13. Pestka, S., and N. Brot. 1971. Studies on the formation of transfer ribonucleic acid-ribosome complexes. IV. Effect of antibiotics on steps of bacterial protein synthesis: some new ribosomal inhibitors of translocation. J Biol Chem 246:7715-22.
    14. Wieland Brown, L.C., M.G. Acker, J. Clardy, C.T. Walsh, and M.A. Fischbach. 2009. Thirteen posttranslational modifications convert a 14-residue peptide into the antibiotic thiocillin. Proc Natl Acad Sci U S A 106:2549-53.
    15. Shoji, J., H. Hinoo, Y. Wakisaka, K. Koizumi, and M. Mayama. 1976. Isolation of three new antibiotics, thiocillins I, II and III, related to micrococcin P. Studies on antibiotics fromthe genus Bacillus. VIII. J Antibiot (Tokyo) 29:366-74.
    16. Baldwin, J.E., and E. Abraham. 1988. The biosynthesis of penicillins and cephalosporins. Nat Prod Rep 5:129-45.
    17. Donadio, S., M. Sosio, E. Stegmann, T. Weber, and W. Wohlleben. 2005. Comparative analysis and insights into the evolution of gene clusters for glycopeptide antibiotic biosynthesis. Mol Genet Genomics 274:40-50.
    18. Baltz, R.H. 2008. Biosynthesis and genetic engineering of lipopeptide antibiotics related to daptomycin. Curr Top Med Chem 8:618-38.
    19. Willey, J.M., and W.A. van der Donk. 2007. Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61:477-501.
    20. Donia, M.S., J. Ravel, and E.W. Schmidt. 2008. A global assembly line for cyanobactins. Nat Chem Biol 4:341-3.
    21. Donia, M.S., B.J. Hathaway, S. Sudek, M.G. Haygood, M.J. Rosovitz, J. Ravel, and E.W. Schmidt. 2006. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat Chem Biol 2:729-35.
    22. Li, Y.M., J.C. Milne, L.L. Madison, R. Kolter, and C.T. Walsh. 1996. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science 274:1188-93.
    23. Schmidt, E.W., J.T. Nelson, D.A. Rasko, S. Sudek, J.A. Eisen, M.G. Haygood, and J. Ravel. 2005. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci U S A 102:7315-20.
    24. San Millan, J.L., R. Kolter, and F. Moreno. 1985. Plasmid genes required for microcin B17 production. J Bacteriol 163:1016-20.
    25. Chatterjee, C., L.M. Miller, Y.L. Leung, L. Xie, M. Yi, N.L. Kelleher, and W.A. van der Donk. 2005. Lacticin 481 synthetase phosphorylates its substrate during lantibiotic production. J Am Chem Soc 127:15332-3.
    26. Scholz-Schroeder, B.K., J.D. Soule, S.E. Lu, I. Grgurina, and D.C. Gross. 2001. A physical map of the syringomycin and syringopeptin gene clusters localized to an approximately 145-kb DNA region of Pseudomonas syringae pv. syringae strain B301D. Mol Plant Microbe Interact 14:1426-35.
    27. Moffitt, M.C., and B.A. Neilan. 2004. Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol 70:6353-62.
    28. Marchler-Bauer, A., J.B. Anderson, M.K. Derbyshire, C. DeWeese-Scott, N.R. Gonzales, M. Gwadz, L. Hao, S. He, D.I. Hurwitz, J.D. Jackson, Z. Ke, D. Krylov, C.J. Lanczycki, C.A. Liebert, C. Liu, F. Lu, S. Lu, G.H. Marchler, M. Mullokandov, J.S. Song, N. Thanki, R.A. Yamashita, J.J. Yin, D. Zhang, and S.H. Bryant. 2007. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35:D237-40.
    29. Smith, T.M.P., N. D.; Knaggs, A. R.; Nguyen, T.; Floss, H. G. 1993. 3,4-Dimethylindole-2-carboxylate and 4-(1-hydroxyethyl)quinoline-2-carboxylate activating enzymes from the nosiheptide and thiostrepton producers, Streptomyces actuosus and Streptomyces laurentii.1612.
    30. Heinz G. Floss, S.L. 1993. Chiral methyl groups: small is beautiful. Acc. Chem. Res., .
    31. Frenzel, T., P. Zhou, and H.G. Floss. 1990. Formation of 2-methyltryptophan in the biosynthesis of thiostrepton: isolation of S-adenosylmethionine:tryptophan 2-methyltransferase. Arch Biochem Biophys 278:35-40.
    32. Kelly, W.L., L. Pan, and C. Li. 2009. Thiostrepton Biosynthesis: Prototype for a New Family of Bacteriocins. J Am Chem Soc.
    33. Xie, L., C. Chatterjee, R. Balsara, N.M. Okeley, and W.A. van der Donk. 2002. Heterologous expression and purification of SpaB involved in subtilin biosynthesis. Biochem Biophys Res Commun 295:952-7.
    34. Bagley, M.C., and X. Xiong. 2004. Stereoselective synthesis of the gamma-lactam hydrolysate of the thiopeptide cyclothiazomycin. Org Lett 6:3401-4.
    35. Cooper, R., I. Truumees, T. Barrett, M. Patel, J. Schwartz, M. Puar, P. Das, and B. Pramanik. 1990. Saramycetin, a thiazolyl peptide from a Streptomyces sp.: chemical characterization and molecular weight determination. J Antibiot (Tokyo) 43:897-900.
    36.张声华等. 1982.农用抗生素5102的研究II:5102-II号抗生素的分离和鉴别.微生物学报22(2):145-150.
    37. Nagao, J., Y. Aso, K. Shioya, J. Nakayama, and K. Sonomoto. 2007. Lantibiotic engineering: molecular characterization and exploitation of lantibiotic-synthesizing enzymes for peptide engineering. J Mol Microbiol Biotechnol 13:235-42.
    38. Cotter, P.D., C. Hill, and R.P. Ross. 2005. Bacterial lantibiotics: strategies to improve therapeutic potential. Curr Protein Pept Sci 6:61-75.
    39. Chatterjee, C., M. Paul, L. Xie, and W.A. van der Donk. 2005. Biosynthesis and mode of action of lantibiotics. Chem Rev 105:633-84.
    40. Ingram, L.C. 1969. Synthesis of the antibiotic nisin: formation of lanthionine and beta-methyl-lanthionine. Biochim Biophys Acta 184:216-9.
    41. Bierbaum, G., and H.G. Sahl. 2009. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol 10:2-18.
    42. McAuliffe, O., R.P. Ross, and C. Hill. 2001. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 25:285-308.
    43. van der Meer, J.R., H.S. Rollema, R.J. Siezen, M.M. Beerthuyzen, O.P. Kuipers, and W.M. de Vos. 1994. Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Lactococcus lactis. J Biol Chem 269:3555-62.
    44. Engelke, G., Z. Gutowski-Eckel, P. Kiesau, K. Siegers, M. Hammelmann, and K.D. Entian. 1994. Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl Environ Microbiol 60:814-25.
    45. Kuipers, O.P., H.S. Rollema, W.M. de Vos, and R.J. Siezen. 1993. Biosynthesis and secretion of a precursor of nisin Z by Lactococcus lactis, directed by the leader peptide of the homologous lantibiotic subtilin from Bacillus subtilis. FEBS Lett 330:23-7.
    46. van der Meer, J.R., J. Polman, M.M. Beerthuyzen, R.J. Siezen, O.P. Kuipers, and W.M. De Vos. 1993. Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol 175:2578-88.
    47. Klein, C., C. Kaletta, N. Schnell, and K.D. Entian. 1992. Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl Environ Microbiol 58:132-42.
    48. Engelke, G., Z. Gutowski-Eckel, M. Hammelmann, and K.D. Entian. 1992. Biosynthesisof the lantibiotic nisin: genomic organization and membrane localization of the NisB protein. Appl Environ Microbiol 58:3730-43.
    49. Fischer, K., A. Weber, S. Brink, B. Arbinger, D. Schunemann, S. Borchert, H.W. Heldt, B. Popp, R. Benz, T.A. Link, and et al. 1994. Porins from plants. Molecular cloning and functional characterization of two new members of the porin family. J Biol Chem 269:25754-25760.
    50. Karakas Sen, A., A. Narbad, N. Horn, H.M. Dodd, A.J. Parr, I. Colquhoun, and M.J. Gasson. 1999. Post-translational modification of nisin. The involvement of NisB in the dehydration process. Eur J Biochem 261:524-32.
    51. Helfrich, M., K.D. Entian, and T. Stein. 2007. Structure-function relationships of the lanthionine cyclase SpaC involved in biosynthesis of the Bacillus subtilis peptide antibiotic subtilin. Biochemistry 46:3224-33.
    52. Furgerson Ihnken, L.A., C. Chatterjee, and W.A. van der Donk. 2008. In vitro reconstitution and substrate specificity of a lantibiotic protease. Biochemistry 47:7352-63.
    53. Baquero, F., D. Bouanchaud, M.C. Martinez-Perez, and C. Fernandez. 1978. Microcin plasmids: a group of extrachromosomal elements coding for low-molecular-weight antibiotics inh. J Bacteriol 135:342-7.
    54. Severinov, K., E. Semenova, A. Kazakov, T. Kazakov, and M.S. Gelfand. 2007. Low-molecular-weight post-translationally modified microcins. Mol Microbiol 65:1380-94.
    55. Zamble, D.B., C.P. McClure, J.E. Penner-Hahn, and C.T. Walsh. 2000. The McbB component of microcin B17 synthetase is a zinc metalloprotein. Biochemistry 39:16190-9.
    56. Schneider, T.L., B. Shen, and C.T. Walsh. 2003. Oxidase domains in epothilone and bleomycin biosynthesis: thiazoline to thiazole oxidation during chain elongation. Biochemistry 42:9722-30.
    57. Liu, F., S. Garneau, and C.T. Walsh. 2004. Hybrid nonribosomal peptide-polyketide interfaces in epothilone biosynthesis: minimal requirements at N and C termini of EpoB for elongation. Chem Biol 11:1533-42.
    58. Chen, S., X. Huang, X. Zhou, L. Bai, J. He, K.J. Jeong, S.Y. Lee, and Z. Deng. 2003. Organizational and mutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally related polyene complex. Chem Biol 10:1065-76.
    59. Sandmann, A., F. Sasse, and R. Muller. 2004. Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. Chem Biol 11:1071-9.
    60. Silakowski, B., H.U. Schairer, H. Ehret, B. Kunze, S. Weinig, G. Nordsiek, P. Brandt, H. Blocker, G. Hofle, S. Beyer, and R. Muller. 1999. New lessons for combinatorial biosynthesis from myxobacteria. The myxothiazol biosynthetic gene cluster of Stigmatella aurantiaca DW4/3-1. J Biol Chem 274:37391-9.
    61. Reverchon, S., C. Rouanet, D. Expert, and W. Nasser. 2002. Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity. J Bacteriol 184:654-65.
    62. Kent, A.D., M.L. Wojtasiak, E.A. Robleto, and E.W. Triplett. 1998. A transposable partitioning locus used to stabilize plasmid-borne hydrogen oxidation and trifolitoxin production genes in a Sinorhizobium strain. Appl Environ Microbiol 64:1657-62.
    63. Milne, J.C., R.S. Roy, A.C. Eliot, N.L. Kelleher, A. Wokhlu, B. Nickels, and C.T. Walsh.1999. Cofactor requirements and reconstitution of microcin B17 synthetase: a multienzyme complex that catalyzes the formation of oxazoles and thiazoles in the antibiotic microcin B17. Biochemistry 38:4768-81.
    64. Milne, J.C., A.C. Eliot, N.L. Kelleher, and C.T. Walsh. 1998. ATP/GTP hydrolysis is required for oxazole and thiazole biosynthesis in the peptide antibiotic microcin B17. Biochemistry 37:13250-61.
    65. Madison, L.L., E.I. Vivas, Y.M. Li, C.T. Walsh, and R. Kolter. 1997. The leader peptide is essential for the post-translational modification of the DNA-gyrase inhibitor microcin B17. Mol Microbiol 23:161-8.
    66. Sinha Roy, R., P.J. Belshaw, and C.T. Walsh. 1998. Mutational analysis of posttranslational heterocycle biosynthesis in the gyrase inhibitor microcin B17: distance dependence from propeptide and tolerance for substitution in a GSCG cyclizable sequence. Biochemistry 37:4125-36.
    67. Cummings, B.S., R. Angeles, R.B. McCauley, and L.H. Lash. 2000. Role of Voltage-Dependent Anion Channels in Glutathione Transport into Yeast Mitochondria. Biochem Biophys Res Comm 276:940-944.
    68. Belshaw, P.J., R.S. Roy, N.L. Kelleher, and C.T. Walsh. 1998. Kinetics and regioselectivity of peptide-to-heterocycle conversions by microcin B17 synthetase. Chem Biol 5:373-84.
    69. Kelleher, N.L., C.L. Hendrickson, and C.T. Walsh. 1999. Posttranslational heterocyclization of cysteine and serine residues in the antibiotic microcin B17: distributivity and directionality. Biochemistry 38:15623-30.
    70. Vizan, J.L., C. Hernandez-Chico, I. del Castillo, and F. Moreno. 1991. The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase. Embo J 10:467-76.
    71. Yorgey, P., J. Lee, J. Kordel, E. Vivas, P. Warner, D. Jebaratnam, and R. Kolter. 1994. Posttranslational modifications in microcin B17 define an additional class of DNA gyrase inhibitor. Proc Natl Acad Sci U S A 91:4519-23.
    72. Allali, N., H. Afif, M. Couturier, and L. Van Melderen. 2002. The highly conserved TldD and TldE proteins of Escherichia coli are involved in microcin B17 processing and in CcdA degradation. J Bacteriol 184:3224-31.
    73.张声华等. 1981.农用抗生素5102的研究III:5102-I号抗生素第III组分的分离及鉴别.华中农学院学报3.
    74.周启,刘. 1981.农用抗生素5102抗真菌性能的研究.抗生素6(1):1-6.
    75.覃重军,邓子新,周启,陈华葵. 1995.吸水链霉菌应城变种的四个内源质粒及其逐个消除的研究.微生物学报35:14-20.
    76.邓子新. 1992.以吸水链霉菌应城变种为宿主的一系列基因克隆体系的发展.生物工程学报12:24-30.
    77. Dutko, L., Y. Rebets, B. Ostash, A. Luzhetskyy, A. Bechthold, T. Nakamura, and V. Fedorenko. 2006. A putative proteinase gene is involved in regulation of landomycin E biosynthesis in Streptomyces globisporus 1912. FEMS Microbiol Lett 255:280-5.
    78. Sun, Y.L., Y. Zhao, X. Hong, and Z.H. Zhai. 1999. Cytochrome c release and caspase activation during menadione-induced apoptosis in plants. FEBS Lett 462:317-321.
    79. Wilkinson, C.J., Z.A. Hughes-Thomas, C.J. Martin, I. Bohm, T. Mironenko, M. Deacon, M. Wheatcroft, G. Wirtz, J. Staunton, and P.F. Leadlay. 2002. Increasing the efficiency ofheterologous promoters in actinomycetes. J Mol Microbiol Biotechnol 4:417-26.
    80. Rink, R., M. Fennema, M. Smids, U. Dehmel, and D.B. Janssen. 1997. Primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1. J Biol Chem 272:14650-7.
    81. Gust, B., G.L. Challis, K. Fowler, T. Kieser, and K.F. Chater. 2003. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541-6.
    82. J. Sambrook, E.F.F., T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. . Cold Spring Harbor Laboratory Press, New York.
    83.张银志,孙秀兰. 2008.灰霉菌多克隆抗体的制备与鉴定.食品与生物技术学报27:82-85.
    84. T. Kieser, M.J.B., K. F. Chater, M. J. Butter, D. A. Hopwood. 2000. Practical Streptomyces Genetics. A Laboratory Manual. John Innes Foundation, Norwich.
    85. Masahiro Aoki, T.O., Yoshiko Itezono and Kazuteru Yokose, K. Furihata, and H. Seto. 1991. Structure of cyclothiazomycin, a unique polythiazole-containing peptide with renin inhibitory activity. Part 1. Chemistry and partial structures of cyclothiazomycin Tetrahedron Letters 32:217-220
    86. Masahiro Aoki, T.O., Yoshiko Itezono and Kazuteru Yokose, K. Furihata, and H. Seto. 1991. Structure of cyclothiazomycin, a unique polythiazole-containing peptide with renin inhibitory activity. Part 2. Total structure. Tetrahedron Letters 32:221-224
    87. Chauvaux, S., F. Chevalier, C. Le Dantec, F. Fayolle, I. Miras, F. Kunst, and P. Beguin. 2001. Cloning of a genetically unstable cytochrome P-450 gene cluster involved in degradation of the pollutant ethyl tert-butyl ether by Rhodococcus ruber. J Bacteriol 183:6551-7.
    88. Sekurova, O.N., T. Brautaset, H. Sletta, S.E. Borgos, M.O. Jakobsen, T.E. Ellingsen, A.R. Strom, S. Valla, and S.B. Zotchev. 2004. In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. J Bacteriol 186:1345-54.
    89. Aparicio, J.F., M.V. Mendes, N. Anton, E. Recio, and J.F. Martin. 2004. Polyene macrolide antibiotic biosynthesis. Curr Med Chem 11:1645-56.
    90. Aparicio, J.F., A.J. Colina, E. Ceballos, and J.F. Martin. 1999. The biosynthetic gene cluster for the 26-membered ring polyene macrolide pimaricin. A new polyketide synthase organization encoded by two subclusters separated by functionalization genes. J Biol Chem 274:10133-9.
    91. Fjaervik, E., and S.B. Zotchev. 2005. Biosynthesis of the polyene macrolide antibiotic nystatin in Streptomyces noursei. Appl Microbiol Biotechnol 67:436-43.
    92. Carmody, M., B. Byrne, B. Murphy, C. Breen, S. Lynch, E. Flood, S. Finnan, and P. Caffrey. 2004. Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques. Gene 343:107-15.
    93. Campelo, A.B., and J.A. Gil. 2002. The candicidin gene cluster from Streptomyces griseus IMRU 3570. Microbiology 148:51-9.
    94. Gonzalez-Lergier, J., L.J. Broadbelt, and V. Hatzimanikatis. 2005. Theoretical considerations and computational analysis of the complexity in polyketide synthesis pathways. J Am Chem Soc 127:9930-8.
    95. Menzella, H.G., R. Reid, J.R. Carney, S.S. Chandran, S.J. Reisinger, K.G. Patel, D.A. Hopwood, and D.V. Santi. 2005. Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171-6.
    96. Jiang Wang, L.-D.Z., Kai-Jing Zuo, Hong-Mei Qian, You-Fang Cao, and a.K.-X. Tang. 2006. Cloning and Expressional Studies of the Voltage-dependent Anion Channel Gene from Brassica rapa L. Journal of Integrative Plant Biology 48:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700