用户名: 密码: 验证码:
融合热运动机制的粒子群优化算法研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能是生命世界中最古老、最复杂和最奇妙的话题。古今中外,无数学者都曾对它进行过深入的思考和大胆的探索。半个世纪前,十多位数学、心理学和信息论方面的优秀学者为了利用计算机模拟自然智能尤其是人类智能而提出了“人工智能”这一崭新的学科,在随后几十年的发展过程中,人工智能得到了长足发展并形成了不同学术流派,然而制约人工智能发展的瓶颈也愈发突出。作为传统人工智能的延伸和扩展,计算智能与人工智能技术相互交叉和取长补短,在模拟非线性推理、模糊概念、记忆等方面表现优异。作为一种新的关于智能的描述方法,群智能已逐渐成为计算智能中新的研究热点。
     粒子群优化算法(PSO)是两种典型的群智能优化算法之一,由于其原理简单,既有传统演化计算技术深刻的背景又有自身独特的优化性能,自从提出以来,一直受到计算智能领域众多学者的广泛关注。鉴于此,计算智能领域的顶级期刊之一《IEEE Transactions on Evolutionary Computation》在2004年刊出了PSO的专刊,Eberhart和Shi在卷首语中指出了PSO今后五个研究热点和方向:算法理论、种群拓扑结构、参数选择与优化、与其他思想融合的混合算法和应用。根据这一指导思想,本文借鉴统计物理和热力学中的机制来设计和改进PSO算法,包括分子力、伊藤过程、扩散现象三个方面,然后把提出的改进PSO算法应用于非线性模型的参数估计,并设计和实现了PSO算法平台。全文主要内容和创新点如下:
     1.保持粒子的多样性是提高PSO算法性能的关键,受分子运动论思想的启发,提出了基于分子力的粒子群优化算法(MPSO)。类比热力学分子系统,在MPSO中引入了粒子间的分子力、群质心和粒子加速度共三个概念并对粒子的速度更新公式进行了改造。根据粒子与群质心距离的远近,分子力在斥力和引力之间转换并控制粒子的飞行方向以决定粒子是朝着群质心飞行还是远离它,从而有效地协调种群的多样性,使算法能够有效地平衡全局和局部搜索。此外,采用正交试验设计的方法对MPSO额外引进的两个参数进行了选择与优化。
     2.为了改善PSO的收敛速度,在布朗运动、伊藤过程和伊藤算法的启示下,提出了一类伊藤算法和PSO算法的混合算法。首先提出漂移算子和PSO的混合算法(IPSO1), IPSO1中粒子没有速度属性,引入了吸引子的概念,实验证明IPSO1相对于标准PSO收敛速度有较大提高但稳定性不足。为了解决此问题,在IPSO1基础上采取了两种策略,一是继续引入伊藤算法中的波动算子并利用差分变异算子来设计波动算子,另一是引入热力学选择机制,其中给出了粒子的相对能量、等级熵、自由能分量等定义,进一步的实验结果表明后两种算法在保留了IPSO1收敛速度快特点的同时,并具有良好的健壮性和稳定性。
     3.鉴于多种群的思想可以有效地提升PSO算法的性能,受自然界扩散和迁徙现象的启发,提出了基于物理学中热扩散机制的双种群粒子群优化算法(DPSO), DPSO中定义了粒子的扩散能、种群温度、粒子的扩散概率共三个概念。两个种群中的粒子根据各自的扩散概率被选入各种群的扩散池中,通过扩散池来实现种群之间信息的共享和扩散,从实验结果可以推断DPSO算法比PSO算法在中后期具有更好的进化能力。
     4.参数估计是系统辨识和回归分析中非常关键的环节,它关系到非线性模型的应用和推广。把非线性模型的参数估计问题转化成一个无约束的多维函数优化问题,以自然科学和社会科学中广泛使用的渐近回归模型和逻辑斯蒂模型为例,利用前述提出的四种改进PSO算法对两模型进行参数估计。实验中采用了真实数据、无噪声的随机采样数据以及添加了高斯噪声的采样数据,并利用后两类数据分析了参数估计的维数、采样区间和噪声强度对算法性能的影响,研究结果表明PSO算法是一种行之有效的非线性模型的参数估计方法。
     5.算法平台对于保证算法研究的连续性、成果保存、对比分析等方面起着举足轻重的作用,在分析了设计模式中各模式的适用范围和优缺点的基础上,利用策略模式对PSO算法平台进行设计,采用一系列策略类对不同的PSO算法进行封装,考虑程序的执行效率与方便于图形展示,最后采取了VC与MATLAB混合编程的措施对平台进行实现。
Intelligence is the oldest, most complex and most wonderful topic of the living world. At all times and in all countries, numerous scholars have conducted a panoramic and profound study of it. Half a century ago, a dozen excellent scholars of math, psychology and information theory, to simulate natural intelligence, especially human intelligence with computer, proposed the new subject - "Artificial Intelligence". In the subsequent decades of the development process, this new subject has achieved a considerable progress and formed different academic schools; however, the bottleneck restricting the development of artificial intelligence has also become more and more prominent. As an extension and expansion of traditional artificial intelligence, Computational Intelligence and Artificial Intelligence technology intersect and complement each other, showing an outstanding performance in simulating non-linear reasoning, fuzzy concept, memory, and so on. As a new description method on Intelligence, Swarm Intelligence has gradually become the new hotspot of Computational Intelligence.
     Particle swarm optimization (PSO) is one of the two typical swarm intelligence optimization algorithms. Because of its simple in principle, both the profound background of the traditional evolutionary computation technology and its own unique optimization performance, it has attracted a wide attention from many scholars in the field of Computational Intelligence even since first proposed. Due to this, "IEEE Transactions on Evolutionary Computation", one of the top journals of computational intelligence, published the PSO's special issue in 2004. Eberhart and Shi in the preface put forward five directions and focuses for future PSO research: algorithm theory, population topology structure, parameter selection and optimization, hybrid algorithms with the other evolutionary computation techniques and applications. Based on this guideline, the mechanism of statistical physics and thermodynamics, which consists of the molecular force, ITO process, and diffusion phenomenon, is utilized to design and modify the PSO algorithm in this paper. And then the improved PSO algorithms are applied to non-linear model parameters estimation, and lastly the PSO algorithm platform is designed and implemented. The main content and innovation points of the dissertation are as follows:
     Firstly, to maintain the diversity of particles is crucial to improve the performance of PSO algorithm. Enlightened by molecular kinetic theory, the particle swarm optimization algorithm based on the molecular force (MPSO) is put forward. To make an analogy to thermodynamic molecular system, in the MPSO, molecular force between particles, swarm centroid and particle acceleration are introduced and thus particle's velocity updating formula is modified. The molecular force between itself and swarm centroid is presented as an attractive or repulsive force determined by the distance of them, and decides the particle to move towards the swarm centroid or to keep away from it for maintenance of diversity, hence the MPSO could effectively balance the global and local search. In addition, orthogonal test design method is applied to select and optimize the two additional parameters introduced in MPSO.
     Secondly, in order to improve the convergence rate of PSO, with the inspiration of the Brownian motion, ITO process, and ITO algorithm, a series of hybrid algorithms which mix ITO algorithm and PSO algorithm are proposed. In the first place, the PSO mixed with drift operator (ISPO1) is proposed. There is no speed attribute for particle of IPSO1, and the attractor concept is also introduced. It is proved that IPSO1 is much improved in convergence rate but is still short of sufficient stability comparing to the standard PSO. To solve this problem, the two strategies are taken on the basis of IPSO1. On the one hand, the fluctuation operator of ITO algorithm is introduced constantly and differential mutation operator is used to design the fluctuation operator. On the other hand, thermodynamic selection mechanism, which gives the particle relative energy, level entropy, free energy component, is introduced as well. And further experimental results show that the latter two algorithms retain the fast convergence characteristics of IPSO1, at the same time, possessing better robustness and stability.
     Thirdly, in view of that the thought of multi-populations can effectively improve the performance of PSO algorithm. Inspired by the phenomenon of the diffusion and migration, the double-swarms particle swarm optimization algorithm (DPSO) is proposed based on the heat diffusion mechanism. Particle diffusion energy, population temperature, and particle diffusion probability are defined in DPSO algorithm. During the evolution of DPSO, the particle of each swarm is chosen into the diffusion pool of each swarm. The diffusion pool of both swarms exchanged and shared information. It can be inferred from the experimental results that the DPSO algorithm has a better evolutionary capability than PSO in the later period.
     Fourthly, parameter estimation is the critical part of system identification and regression analysis and it relates to the application and promotion of nonlinear model. The parameter estimation problem of nonlinear model is transformed into an unconstrained multi-dimensional function optimization problem, and the four proposed PSO algorithms mentioned above are used to solve this problem, just taking the asymptotic regression model and the logistic model for example which are widespread in natural sciences and social sciences. There are real data, random sample data without noise, and sample data with Gaussian noise in the experiments. The latter two kinds of data are applied to analyze the impact of dimensions of parameter estimation, sampling interval and noise intensity on the algorithm performance, and experimental results show that PSO algorithm is an effective nonlinear model parameter estimation method.
     Finally, algorithm platform plays a decisive role in ensuring the continuity of algorithms research, saving the research results and conducting comparative analysis, etc. Based on the analysis of both the scope of application and advantages, disadvantages of all design patterns, the strategy pattern is used to design the PSO algorithm platform. A set of strategies classes is applied to package different PSO algorithms. Considering the implementation efficiency of programs and convenience in the graphical display, the mixed programming technology with VC and MATLAB is utilized to implement the platform.
引文
[1]史忠植.智能科学[M].北京:清华大学出版社,2006.
    [2]冯天瑾.智能学简史[M].北京:科学出版社,2007.
    [3]郭军.智能信息技术[M].北京:北京邮电出版社,1999.
    [4]王士同主编,陈慧萍,赵跃华,钱旭编著.人工智能教程[M].北京:电子工业出版社,2001.
    [5]李国勇,李维民.人工智能及其应用[M].北京:电子工业出版社,2009.
    [6]蔡自兴,徐光祜.人工智能及其应用第三版[M].北京:清华大学出版社,2003.
    [7]Andries P. Engelbrecht. Computational Intelligence:An Introduction [M]. New York:Wiley, 2002.
    [8]褚蕾蕾,陈绥阳,周梦.计算智能的数学基础[M].北京:科学出版社,2002.
    [9]徐宗本,张讲社,郑亚林.计算智能中的仿生学:理论与算法[M].北京:科学出版社,2003.
    [10]Yuhui Shi.计算智能:从概念到实现(英文版)[M].北京:人民邮电出版社,2009.
    [11]王光远,吕大刚.结构智能选型:理论、方法与应用[M].北京:中国建筑工业出版社,2006.
    [12]丁永生.计算智能——理论、技术与应用[M].北京:科学出版社,2004.
    [13]潘正君.康立山,等.演化计算[M].北京:清华大学出版社,1998.
    [14]康立山,谢云,尤矢勇,罗祖华.非数值并行算法(第一册)模拟退火算法[M].北京:科学出版社,1994.
    [15][美]Zbigniew Michalewicz and David B.Fogel.曹宏庆,李艳,董红斌,吴志健译.康立山审校.如何求解问题——现代启发式方法[M].北京:中国水利水电出版社,2003.
    [16]F. Glover, Future Paths for Integer Programming and Links to Artificial Intelligence [J]. Computers and Operations Research,1986,13(5):533-549.
    [17]贺一.禁忌搜索及其并行化研究[D].重庆:西南大学博士学位论文,2006.
    [18]刘韬,赵志强,陈杰,谢储晖.免疫算法研究评述[J].苏州市职业大学学报,2009:20(2),6-10.
    [19]王磊,潘进,焦李成.免疫算法[J].电子学报,2000:28(7),74-78.
    [20]E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm Intelligence:From Natural to Artificial Systems [M]. New York:Oxford University Press,1999.
    [21]James Kennedy, Russell C Eberhart, Yuhui Shi.群体智能(英文版)[M].北京:人民邮电出版社,2009.
    [22]冯静,舒宁.群智能理论及应用研究[J].计算机工程与应用,2006,42(17):31-34.
    [23]王芳,邱玉辉.一种引入单纯形法算子的新颖粒子群算法.信息与控制[J].2005,34(5):517-522.
    [24]陈红安,张英杰,吴建辉.基于非线性共轭梯度法的混沌微粒群优化算法[J].计算机应
    用.2009,29(12):3273-3276.
    [25]姚旭,曹祥玉,陈沫.一种新混合粒子群算法及其在阵列天线方向图综合中的应用.现代电子技术[J].2008,31(8):84-87.
    [26]张长胜,孙吉贵,欧阳丹彤,张永刚.求解车间调度问题的自适应混合粒子群算法[J].计算机学报.2009,,32(11):2137-2146.
    [27]黄冀卓,王湛.结合梯度法的混合微粒群优化算法.计算机工程与应用[J].2008,44(35):40-42.
    [28]KATARE Santhoji, KALOS Alex, WEST David. A Hybrid Swarm Optimizer for Efficient Parameter Estimation[C]. Proceedings of the Congress on Evolutionary Computation. 2004:309-315.
    [29]Angeline P J. Using Selection to Improve Particle Swarm Optimization[C]. Proceedings of the IEEE International Conference on Evolutionary Computation. Anchorage, Alaska:IEEE Press,1998.84-89.
    [30]Lovbjerg, M., Rasmussen, T. K., and Krink, T. Hybrid particle swarm optimiser with breeding and subpopulations. Proceedings of the Genetic and Evolutionary Computation Conference 2001 (GECCO 2001),2001.
    [31]Millie Pant, Radha Thangaraj and Ajith Abraham. Particle Swarm Optimization Using Adaptive Mutation [C]. Proceedings of the 19th International Conference on Database and Expert Systems Application.519-523,2008.
    [32]Stacey A, Jancic M, Grundy I. Particle swarm optimization with mutation[C]. Proceedings of IEEE Congress on Evolutionary Computation. Canbella, Australia:IEEE Press,2003. 1425-1430.
    [33]Natsuki Higashi, Hitoshi Iba. Particle Swarm Optimization with Gaussian Mutation [C]. Proceedings of the IEEE Swarm Intelligence Symposium.72-79,2003.
    [34]王丽芳,曾建潮.基于微粒群算法与模拟退火算法的协同进化方法[J].自动化学报,2006,32(4):630-635.
    [35]Y.X.Wang, Z.D.Zhao, R.Ren. Hybrid Particle swarm optimizer with tabu strategy [C]. IEEE Congress on Evolutionary Computation,2007:2310-2316.
    [36]赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044.
    [37]胡建秀,曾建潮.二阶振荡微粒群算法[J].系统仿真学报,2007,19(5):997-999.
    [38]Ben Niu, Yun-Long Zhu, Xiao-Xian He, Xiang-Ping Zeng. An Improved Particle Swarm Optimization Based on Bacterial Chemotaxis[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China:IEEE Press,2006.3193-3197.
    [39]Jason Tillett, T. M. Rao, Ferat Sahin, Raghuveer Rao, Suny Brockport. Darwinian Particle Swarm Optimization. Proceedings of the 2nd Indian International Conference on Artificial Intelligence,2005:1474-1487.
    [40]章军.小生境粒子群优化算法及其在多分类器集成中的应用研究[D].合肥:中国科学技术大学博士学位论文,2007.
    [41]应伟勤,李元香,SHEU Phillip C-Y.热力学遗传算法计算效率的改进[J].软件学报,2008,19(7):1613-1622.
    [42]李康顺,李元香,康立山,吴志健.一种基于输运理论的多目标演化算法[J].计算机学报,2007.30(5):798-805.
    [43]Wenyong Dong, Yuanming Hu. Time Series Modeling Based on ITO Algorithm [C]. Third International Conference on Natural Computation (ICNC 2007).2007:671-678.
    [44]Xiao-feng Xie, Wen-jun Zhang, Zhi-lian Yang. A Dissipative Particle Swarm Optimization. Proceedings of the Congress on Evolutionary Computation (CEC2002). Honolulu, HI, USA, 2002:1456-1461.
    [45]Lovbjerg M, Krink T. Extending Particle Swarm Optimisers with Self-organized Criticality[C]. Proceedings of the IEEE International Conference on Evolutionary Computation. Hawaii,USA:IEEE Press,2002.1588-1593.
    [46]Marco Dorigo, Luca Maria Gambardella. Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,1997,1(1):53-66.
    [47]李晓磊.一种新型的智能优化方法—人工鱼群算法[D].杭州:浙江大学博士学位论文,2003.
    [48]de Meyer K, Nasuto S J, Bishop J M. Stochastic Diffusion Search:Partial Function Evaluation in Swarm Intelligence Dynamic Optimistion.//Abraham A, Gmsam C, Ramos V, eds. Stigmergic Optimization, Studies in Computational Intelligence Series. Cambridge, USA:Springer-Verlag,2006,31:185-207.
    [49]王丽芳,曾建潮.随机扩散搜索法综述[J].模式识别与人工智能.2008,21(3):351-356.
    [50]张玲,程军盛.松散的脑袋——群体智能的数学模型[J].模式识别与人工智能.2003:16(1):1-5.
    [51]Eusuff M M, Lansey K E. Optimization of Water Distribution Network Design Using Shuffled Frog Leaping Algorithm [J]. Journal of WaterResourees Planning and Management, 2003,129(3):210-225.
    [52]D. Karaboga, An Idea Based On Honey Bee Swarm for Numerical Optimization, Technical Report-TR06,Erciyes University, Engineering Faculty, Computer Engineering Department 2005.
    [53]Russell C. Eberhart, Yuhui Shi. Guest Editorial Special Issue on Particle Swarm Optimization. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,2004, VOL.8, NO.3: 201-203.
    [54][美]米歇尔·沃尔德罗.复杂——诞生于秩序与混沌边缘的科学[M].北京:三联书店,1997.
    [55]李宁.粒子群优化算法的理论分析与应用研究.武汉:华中科技大学博士学位论文,2006.
    [56]Reynolds C.W. Flocks, Herds and Schools:A Distributed Behavioral Model [J].Computer Graphics,1987,21(4):25-34.
    [57]Langton C.G. Artificial Life:an overview. MIT Press,1995.
    [58]高冲.粒子群算法研究及其在微分方程反问题中的应用.武汉:武汉大学硕士学位论文,2008.
    [59]Shi, Y. and Eberhart, R. C. A modified particle swarm optimizer. Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1998), Piscataway, NJ. pp.69-73,1998.
    [60]CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in multidimensional complex space [J]. IEEE Transaction on Evolutionary Computation, 2002,6(1):58-73.
    [61]R. Eberhart, Y. Shi. Comparing inertia weights and constriction factors in particle swarm optimization. In:Proceedings of the 2000 IEEE Congress on Evolutionary Computation, Piscataway, NJ, IEEE Press,84-88,2000.
    [62]Kennedy J, Eberhart R. A discrete binary version of the particle swarm optimization algorithm [C].Proceedings of The IEEE International Conference on Systems, Man and Cybernetics (SMC97). Piscataway:IEEE Press,4104-4109,1997.
    [63]纪震,廖惠连,吴青华.粒子群算法及应用[M].北京:科学出版社.2009.
    [64]Ozcan E, Mohan C. K. Analysis of a simple particle swarm optimization system [C]. Intelligent Engineering Systems through Artificial Neural Networks.1998:253-258.
    [65]Ozcan, E. and Mohan, C. K. Particle swarm optimization:surfing the waves [C]. Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1999), Washington, DC, USA. 1999:1939-1944.
    [66]李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2061.
    [67]熊勇.粒子群优化算法的行为分析与应用实例.杭州:浙江大学博士学位论文,2005.
    [68]金欣磊,马龙华,吴铁军,钱积新.基于随机过程的PSO收敛性分析[J].自动化学报,2007,33(12):1263-1268.
    [69]Trelea I C. The particle swarm optimization algorithm:convergence analysis and parameter selection.Information Processing Letters,2003,85(6):317-325.
    [70]Bergh F van den, Engelbrecht A P. A study of particle swarm optimization particle trajectories. Information Sciences,2006,176(8):937-971.
    [71]Emara H M, Fattah A H A. Continuous swarm optimization technique with stability analysis. In:Proceedings of American Control Conference. Cairo, Egypt,2004,2811-2817.
    [72]曾建潮,崔志华.微粒群算法的统一模型及分析[J].计算机研究与发展,2006,43(1):96-100.
    [73]Kennedy J, Mendes R. Population structure and particle swarm performance. In:Proc. of the Congress on Computational Intelligence. Honolul:IEEE Press,2002.1671-1676.
    [74]Kennedy J. Small worlds and mega-minds:Effects of neighborhood topology on particle swarm performance [C]. In:Proc. of the IEEE Congress on Evolutionary Computation. Washington:IEEE,1999.1931-1938.
    [75]Mendes R. Population topologies and their influence in particle swarm performance [Ph.D. Thesis]. Portugal:Escola de Engenharia:Universidade do Minho,2004.
    [76]Kennedy J, Mendes R. Neighborhood topologies in fully informed and best-of-neighborhood particle swarms [J]. IEEE Trans. on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2006,36(4):515-519.
    [77]Suganthan PN. Particle swarm optimiser with neighbourhood operator [C]. In:Proc. of the Congress on Evolutionary Computation. Washington:IEEE Press,1999.1958-1962.
    [78]王雪飞,王芳,邱玉辉.一种具有动态拓扑结构的粒子群算法研究.计算机科学.2007,34(3):205-207.
    [79]翁雯,郝志峰.一种基于动态拓扑结构的PSO改进算法.计算机工程与应用.2005,41(34):82-85.
    [80]倪庆剑,张志政,王蓁蓁,邢汉承.一种基于可变多簇结构的动态概率粒子群优化算法.软件学报[J],2009,20(02):339-349.
    [81]Akat, S.B. Gazi, V. Particle swarm optimization with dynamic neighborhood topology: Three neighborhood strategies and preliminary results [C]. IEEE Swarm Intelligence Symposium,2008.1-8.
    [82]Vladimiro, Hrvoje, Jaramillo. Stochastic star communication topology in Evolutionary Particle Swarms [J]. International Journal of Computational Intelligence Research.2008, Volume:4, Issue:2, pp:105-116.
    [83]Shi, Y. and Eberhart, R. C. Fuzzy adaptive particle swarm optimization [C]. Proceedings of the IEEE Congress on Evolutionary Computation.2001:101-106.
    [84]王凌刘波.粒子群优化与调度算法[M].北京:清华大学出版社.2008.
    [85]A. El-Gallad, M. El-Hawary, A. Sallam, A. Kalas. Enhancing the Particle Swarm Optimizer via Proper Parameters Selection [C]. Proc. of Canadian Conference on Electrical and Computer Engineering.2002:792-797.
    [86]Bo Liu, Ling Wang, Yi-Hui Jin, Fang Tang, De-Xian Huang. Improved Particle Swarm Optimization combined with Chaos [J]. Chaos, Solitons and Fractals(0960-0779),2005, 25(5):1261-1271.
    [87]Yu Wu. Yuanxiang Li. Xing Xu, Sheng Peng. Hybrid Particle Swarm Optimization Based on Thermodynamic Mechanism [C]. Proceedings of the 7th International Conference on Simulated Evolution and Learning, Lecture Notes in Computer Science,2008:279-288.
    [88]Yang S Y, Wang M, Jiao L C. A quantum particle swarm optimization [C]. Proceeding of the 2004 IEEE Congress on Evolutionary Computation. IEEE 2004,1:320-324.
    [89]李士勇.李盼池.求解连续空间优化问题的量子粒子群算法[J].量子电子学报,2007,
    24(5):569-574.
    [90]高飞,童恒庆.基于改进粒子群优化算法的混沌系统参数估计方法[J].物理学报,2006,55(2):577-582.
    [91]石志广,周剑雄,等.基于协同粒子群优化的GTD模型参数估计方法[J].电子学报,2007,35(6):1102-1107.
    [92]SCHWAAB M, BISCAIA E, et al. Nonlinear parameter estimation through particle swarm optimization [J]. Chemical Engineering Science,2008,63(6):1542-1552.
    [93]PAGANO R L, CALADO V, et al. Cure kinetic parameter estimation of thermosetting resins with isothermal data by using particle swarm optimization [J]. European Polymer Journal,2008,44(8):2678-2686.
    [94]胡家声,郭创新,曹一家.基于扩展粒子群优化算法的同步发电机参数辨识[J].电力系统自动化,2004,28(6):32-35.
    [95]M. Gill, Y. Kaheil, A. Khalil, M. McKee, and L. Bastidas. Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resources Research, 42(7):W07417, July 2006.
    [96]Shen Q, Jiang J H, et al. Modified Particle Swarm Optimization Algorithm for Variable Selection in MLR and PLS modeling:QSAR studies of antagonism of angiotensin Ⅱ antagonists [J]. European J of Pharmaceutical Sciences,2004,22:145-152.
    [97]Rasmussen, T. K. and Krink, T., Improved Hidden Markov Model training for multiple sequence alignment by a particle swarm optimization-evolutionary algorithm hybrid [J]. Biosystems,2003, vol.72, no.1-2, pp.5-17.
    [98]Xiang Xiao, E. R. Dow, R. Eberhart, Z. B. Miled, R. J. Oppelt-A hybrid self-organizing maps and particle swarm optimization approach[J]. Concurrency and Computation-Practice & Experience.2004; 16(9):895-915.
    [99]王岩,周春光,黄艳新.基于最小不确定性神经网络的茶味觉信号识别[J].计算机研究与发展,2005,42(1):66-71.
    [100]Messerschmidt, L. Engelbrecht, A.P. Learning to play games using a PSO-based competitive learning approach [J]. IEEE Transactions on Evolutionary Computation, 2004,8(3):280-288.
    [101]Yoshida, H., Kawata, K., Fukuyama, Y, Takayama, S., and Nakanishi, Y A particle swarm optimization for reactive power and voltage control considering voltage security assessment [J]. IEEE Transactions on Power Systems,2000, vol.15, no.4, pp.1232-1239.
    [102]余欣梅,李妍,熊信艮,吴耀武.基于PSO考虑谐波影响的补偿电容器优化配置[J].中国电机工程学报,2003,23(2):26-31.
    [103]Jovita Nenortaite, Rimvydas Simutis. Stocks'Trading System Based on the Particle Swarm Optimization Algorithm [C]. International Conference on Computational Science. 2004:843-850.
    [104]肖冬荣,杨子天.基于粒子群训练的神经网络股票预测模型[J].统计与决策.2009,12:20-22.
    [105]奚茂龙,须文波,孙俊.基于PSO的证券市场ARCH模型实证研究[J].计算机工程,2006,32(7):204-206.
    [106]韦苗苗,江铭炎.基于粒子群优化算法的多阈值图像分割[J].山东大学学报(工学版),2005,35(6):118-121.
    [107]冯林,张名举,贺明峰等.基于粒子群优化算法的多峰态医学图像刚性配准[J].大连理工大学学报,2004,44(5):695-699.
    [108]K. E. Parsopoulos, E. Papageorgiou, P. P. Groumpos, M. N. Vrahatis. Evolutionary Computation Techniques for Optimizing Fuzzy Cognitive Maps in Radiation Therapy Systems [C]. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO),2004,402-413.
    [109]Caorsi, S., M. Donelli, A. Lommi, and A. Massa. Location and imaging of two-dimensional scatterers by using a particle swarm algorithm [J]. Journal of Electromagnetic Waves & Applications,2004,18(4),481-494.
    [110]李智,姚驻斌.粒子群算法在烧结矿配料优化中的应用[J].有色金属,2005,57(3):51-54.
    [111]张勤.粒子群算法在机械优化设计中的应用[J].煤炭机械,2005,5:26-27.
    [112]E.F. Costa, P.L.C. Lage and E.C. Biscaia. On the numerical solution and optimization of styrene polymerization in tubular reactors[J]. Computers and Chemical Engineering,2003, 27(11):1591-1604.
    [113]虞科,林中营,程翼宇.粒子群算法优化中药化学成分的毛细管电泳分离条件[J].分析化学,2006,34(7):963-966.
    [114]王楷,肖诗松,赵锦元Ad Hoc网络中基于粒子群优化的QoS多播路由研究[J].微电子学与计算机,2006,23(9):41-43.
    [115]原萍,王光兴,张洋洋.求解通信优化问题的一种微粒群优化方法[J].东北大学学报自然科学版,2004,25(10):934-937.
    [116]J.H. Park, K.Y. Choi and D.J. Allstot. Parasitic-aware RF circuit design and optimization[J]. IEEE Trans. on Circuits and Systems I:Fundamental Theory and Applications.2004,51 (10):1953-1966.
    [117]刘钊,陈建勋.基于粒子群算法的足球机器人动作选择研究[J].武汉科技大学学报,2006,29(1):83-85.
    [118]秦元庆,孙德宝,李宁等.基于粒子群算法的移动机器人路径规划[J].机器人,2004,26(3):222-225.
    [119]李宁,邹彤,孙德宝.车辆路径问题的粒子群算法研究[J].系统工程学报,2004,41(23):43-46.
    [120]董超俊,刘智勇,邱祖廉.灾变粒子群优化算法及其在交通控制中的应用[J].计算
    机工程与应用,2005,41(29):19-23.
    []21] 分子运动论:http://zh.wikipedia.org/wiki/分子运动论.
    [122]吴大猷.热力学,气体运动论及统计力学[M].北京:科学出版社,1983.
    [123]Yuan-Xiang Li, Xiu-Fen Zou, Li-Shan Kang, Michalewicz Z.A New Dynamical Evolutionary Algorithm Based on Statistical Mechanics[J]. Journal of Computer Science and Technology,2003,18(3):361-368.
    [124]Riget J, Vesterstrom J S. A diversity-guided Particle Swarm Optimizer-the arPSO[R]. Department of Computer Science,University of Aarhus, Denmark,2002.
    [125]黄昆鸟,陈森发,周振国.基于正交试验法的小生境混合遗传算法[J].控制理论与应用,2004,21(6):1007-1010.
    [126]高国军,陈康宁,张申生.用于局部检测路径优化的遗传算法及其控制参数优化[J].计算机学报,1999,22(9):981-987.
    [127]正交试验设计:http://wiki. mbalib.com/wiki/正交试验设计.
    [128]赵选民.试验设计方法[M].北京:科学出版社,2006.
    [129]杨静,王丽霞.爱因斯坦与布朗运动的数学理论[J].西北大学学报(自然科学版),2006,36(1):169-172.
    [130]伊藤清著,刘璋温译.随机过程.上海:上海科学技术出版社,1961.
    [131]言经柳.布朗粒子的运动及其应用[J].广西师范大学学报(自然科学版)1999,17(3):18-22.
    [132]Wenyong Dong, Dengyi Zhang. Simulation Optimization Based on the Hypothesis Testing and ITO process. [C]. Third International Conference on Natural Computation (ICNC 2007).2007:660-665.
    [133]Wenyong Dong, Dengyi Zhang, Zhong Weicheng and Jun Leng. The Simulation Optimization Algorithm Based on the ITO process [C]. Third International Conference on Intelligent Computing, ICIC 2007, Qingdao, China,2007:115-124.
    [134]Wenyong Dong, Dengyi Zhang and Yuanxiang Li. The Multi-Objective ITO Algorithms [C].2nd International Symposium on Intelligence Computation and Application. Wuhan, China:Springer-Verlag,2007:21-23.
    [135]余莉.基于伊藤算法的仿真优化理论及应用研究.武汉:武汉大学博士学位论文,2009.
    [136]胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868.
    [137]T. Hendtlass. A Combined Swarm Differential Evolution Algorithm for Optimization Problems [C]. Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg,2001, 11-18.
    [138]W. J. Zhang and X. F. Xie. DEPSO:Hybrid Particle Swarm with Differential Evolution Operator [C]. Proc. IEEE International Conference on Systems, Man and Cybernetics,2003, 3816-3821.
    [139]S. Das, A. Konar and U. K. Chakraborty. Improving Particle Swarm Optimization with Differentially Perturbed Velocity [C]. Proc. Genetic and Evolutionary Computation Conference,2005, pp.177-184.
    [140]Z. F. Hao, G. H. Guo and H. Huang. A Particle Swarm Optimization Algorithm with Differential Evolution [C]. Proc. the Sixth International Conference on Machine Learning and Cybernetics,2007,1031-1035.
    [141]T. Back and F. Hoffmeister. Extended selection mechanisms in genetic algorithms[C]. Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, CA,1991,92-99.
    [142]James E. Baker. Adaptive Selection Methods for Genetic Algorithms[C]. Proceedings of the 1st International Conference on Genetic Algorithms,1985,101-111.
    [143]Michael de la Maza, Bruce Tidor. An Analysis of Selection Procedures with Particular Attention Paid to Proportional and Boltzmann Selection[C]. Proceedings of the 5th International Conference on Genetic Algorithms,1993,124-131.
    [144]Goldberg D E. A note on Boltzmann tournament selection for genetic algorithms and population-oriented simulated annealing[J]. Complex System.1990,4(4):445-460.
    [145]Yu Wu, Yuanxiang Li, Xing Xu, Sheng Peng. Hybrid Particle Swarm Optimization Based on Thermodynamic Mechanism[C]. Proceedings of the 7th International Conference on Simulated Evolution and Learning,2008,279-288.
    [146]程守洙,江之永等.普通物理学第一册(第五版)[M].北京:高等教育出版社2001.
    [147]宋晓岚,黄学辉.无机材料科学基础[M].北京:化学工业出版社,2006.
    [148]胡志强.无机材料科学基础教程[M].北京:化学工业出版社,2004.
    [149]周遗品,赵永金.张延金Arrhenius公式与活化能[J].石河子大学学报(自然科学版),1995,04:76-80.
    [150]王铁奇,邱德华,胡桂武.基于迁徙策略的PSO集成及其在序列模体识别中的应用[J].衡阳师范学院学报,2008:29(3),21-25.
    [151]马海平,陈子栋,潘张鑫.一类基于物种迁移优化的进化算法[J].控制与决策,2009,24(11):1620-1624.
    [152]Engelbrecht. A Cooperative approach to particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation,2004,8(3):225-239.
    [153]王元元.曾建潮,谭瑛.多种群协同进化的微粒群算法[J].计算机工程与设计,2007,28(15):3661-3664.
    [154]陶新民,徐晶,杨立标,刘玉.改进的多种群协同进化微粒群优化算法[J].控制与决策,2009,24(9):1406-1411.
    [155]黄芳,樊晓平.基于岛屿群体模型的并行粒子群优化算法[J].控制与决策,2006,21(2):175-179.
    [156]刘卓倩,顾幸生,陈国初.三群协同粒子群优化算法[J].华东理工大学学报(自然科学版),2006,32(7):754-757.
    [157]夏桂梅,曾建潮.双群体随机微粒群算法[J].计算机工程与应用,2006,24:46-48.
    [158]李鹏波.系统辨识基础[M].北京:中国水利水电出版社,2006.
    [159]何晓群,刘文卿.应用回归分析[M].北京:中国人民大学出版社,2001.
    [160]NASH J C,WALKER-SMITH M. Nonlinear Parameter Estimation [M]. New York: Marcel Dekker,1987.1-32.
    [161]王新洲.非线性模型参数估计理论与利用[M].武汉:武汉大学出版社,2002.
    [162]姜波,汪秉文.基于遗传算法的非线性系统模型参数估计[J].控制理论与应用,2000,17(1):150-152.
    [163]RATKOWSKY著,洪再吉,韦博成,吴诚鸥等译.非线性回归模型:统一的实用方法[M].南京:南京大学出版社,1986.
    [164]余爱华.Logistic模型的研究[D].南京:南京林业大学,2003.
    [165]余嘉元.运用规则空间模型识别解题中的认知错误[J].心理学报,1995,27(2):196-203.
    [166]Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software [M]. Boston:Addison Wesley/Pearson, 2004.
    [167]刘国静,余青松,郑骏.物流信息系统中设计模式的应用[J].计算机技术与发展,2006,16(5):211-213.
    [168]王力生,郑飞.设计模式在中国移动巡检平台中的应用[J].计算机应用,2006,26:250-252.
    [169]Erich Gamma等,译者:李英军,马晓星,蔡敏,刘建中.设计模式:可复用面向对象软件的基础[M].北京:机械工业出版社,2000.
    [170]李丽娟,何克清.基于strategy模式的图像处理软构件[J].计算机应用,2005,25(5):1099-1101.
    [171]飞思科技产品研发中心MATLAB 6.5应用接口编程[M].北京:电子工业出版社,2003.
    [172]许雪开.VC++与MATLAB混合编程[J].机电工程,2007,24(2):26-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700