用户名: 密码: 验证码:
多粘类芽孢杆菌胞外多糖的发酵条件、结构、化学修饰及其抗氧化活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种特殊的生物资源,植物内生菌存活于健康植物组织内部,而不使宿主植物表现出明显感染症状。近年来的研究表明,植物内生菌可产生具有抗肿瘤、抗菌、抗炎症、抗病毒、免疫调节、降血糖和抗氧化等多种生物活性的次生代谢产物。由植物内生菌产生的胞外多糖在内生菌与植物的相互作用方面起着重要的作用:胞外多糖可以保护内生菌免受环境脱水,并在内生菌入侵植物时起着信号分子的功能。尽管目前对胞外多糖在内生菌与植物相互作用方面的认识在不断深入,但关于植物内生菌胞外多糖发酵条件、结构和生物活性的报道还很少。多粘类芽孢杆菌(Paenibacillus polymyxa EJS-3)是从药用植物蔓生百部的根部组织中分离得到的植物内生细菌,本文系统研究了P.polymyxa EJS-3胞外多糖的发酵条件、结构特征、化学修饰及其抗氧化活性,主要研究结果如下:
     1.首先,利用单因素方法研究了影响P.polymyxa EJS-3胞外多糖的产量的诸多因素(如初始pH值、温度、碳源、氮源、无机盐等),结果表明,胞外多糖合成的最佳初始pH值和温度分别为8.0和24℃;产胞外多糖的最适碳源、氮源和无机盐分别是蔗糖、酵母膏、KH2PO4和CaCl2;值得注意的是,蔗糖浓度是影响胞外多糖产量的最重要因素,当蔗糖浓度为160 g/L时,胞外多糖产量最高(22.82 g/L)。随后,利用响应面法对培养基组成进行优化:部分因子设计的实验结果表明,蔗糖、酵母膏和CaCl2是影响胞外多糖产量的显著因子;其中,蔗糖和酵母膏对胞外多糖产量具有正效应,而CaCl2对胞外多糖产量具有负效应;基于部分因子设计和最陡爬坡实验的结果,进行了中心组合设计以得到最优的培养基组成,结果表明,最佳培养基组合为蔗糖188.2g/L、酵母膏25.8 g/L、K2HPO45 g/L和CaCl2 0.34 g/L,相应的最高胞外多糖产量为35.26g/L,是利用单因素优化结果的1..55倍。
     2.通过发酵液稀释、离心、乙醇沉淀和透析等获得胞外多糖的粗提物,然后利用大孔树脂通过静态和动态吸附实验对P.polymyxa EJS-3胞外多糖乙醇初提物进行脱色脱蛋白研究。静态吸附实验的结果表明,在六种大孔树脂中,S-8树脂的脱色率和蛋白去除率最高;在最佳的静态吸附条件下(pH值6.0、温度35℃、吸附时间70 min),S-8树脂对粗多糖溶液的脱色率、蛋白去除率和多糖保留率分别为76.8%、78.9%和69.8%。而动态吸附实验的结果表明,在最佳的动态吸附实验条件下(流速2 BV/h、160ml的2.5 mg/ml的粗多糖溶液),S-8树脂对粗多糖溶液的脱色率、蛋白去除率和多糖保留率分别为84.6%、91.7%和81.3%。经S-8树脂脱色脱蛋白后的粗多糖样品依次使用DEAE-52和Sephadex G-100进行分级纯化后主要得到两个组分(EPS-1和EPS-2),根据Sephadex G-100纯化后的多糖干重和DEAE-Cellulose 52柱层析前的粗多糖干重的比例可知,EPS-1和EPS-2的得率分别为53.6%和4.8%。在高效液相色谱上,EPS-1和EPS-2均显示单一和对称的色谱峰,分子量分别为1.22×106和8.69×105Da。此外,12反应、CTAB反应、α-萘酚反应和蒽酮反应均证明样品中多糖的存在。
     3.通过多种方法对EPS-1和EPS-2的结构特征进行了测定。对多糖的紫外扫描结果表明EPS-1和EPS-2在200-400 nm的波长范围内无最大吸收。单糖组成分析的结果表明EPS-1和EPS-2均是由甘露糖、果糖和葡萄糖组成的,其单糖组成(甘露糖:果糖:葡萄糖)的摩尔比分别为2.59:29.83:1和4.23:36.59:1。红外光谱分析EPS-1和EPS-2的红外光谱图基本相似:3422 cm-1处的峰是多糖O-H键的伸缩振动峰;2936 cm-1处的峰是多糖C-H键的伸缩振动峰,同时,可以看到在2936 cm-1处有两个吸收峰,进一步说明了果糖基的存在;在1500和1200 cm-1之间存在的峰对应于C-H键的变角振动峰;而1128和1014 cm-1之间存在的峰对应多糖骨架C-O-C和C-O-H的伸缩振动峰,同时,在1100和1010 cm-1之间仅有两个吸收峰,进一步证明了EPS-1和EPS-2主要是由呋喃糖组成的;在926 cm-1处的吸收峰是由果糖基的吡喃环的伸缩振动引起的;811 cm-1处的峰是甘露糖残基的特征吸收峰。高碘酸氧化-Smith降解的结果说明EPS-1和EPS-2中的葡萄糖和甘露糖基不含有1→3和1→4连接的糖苷键。甲基化反应和气质联用分析的结果说明,EPS-1和EPS-2均是由(2→6)-连接的β-D-果糖基构成的主链,以及位于支链末端的果糖基和甘露糖基,而少量的葡萄糖基则一般位于主链的末端。而13C核磁共振的结果表明EPS-1和EPS-2均是由(2→6)-连接的β-D-果糖基的主链,和位于果糖基1位的甘露糖和葡萄糖基的支链构成的典型的果聚糖结构,且EPS-1和EPS-2的分支度分别为10%和13%。而刚果红反应的结果表明,两种多糖都不含有三螺旋结构。
     4.外抗氧化实验说明,胞外多糖具有较弱的还原能力和铁离子还原力;中等的H202清除能力、DPPH自由基清除能力和脂质体过氧化抑制效果;较强的超氧自由基清除能力、羟基自由基清除能力和金属离子的螯合能力。多糖样品的体外抗氧化活性的顺序为粗多糖>EPS-2>EPS-1.体内抗氧化实验说明,给由D-半乳糖诱导的衰老小鼠灌胃胞外多糖可以有效地提高小鼠的脾指数和肝脏指数,从而增强小鼠的免疫功能。此外,给衰老小鼠灌胃胞外多糖还能有效地提高体内的抗氧化酶和TAOC的活性,而降低体内的脂质体过氧化的水平。因而,由P. polymyxa EJS-3产生的胞外多糖具有较强的体外和体内抗氧化活性,可以作为天然的抗氧化剂用于食品和医药工业。
     5.通过乙酰化、磷酸化和苯甲酰化制备了不同的胞外多糖的衍生物。与未衍生化的胞外多糖相比,衍生物的总糖含量均降低;此外,衍生物的分子量也均降低。红外光谱和核磁共振谱均证明了胞外多糖的衍生物已被成功制备;且胞外多糖的乙酰化和磷酸化取代度分别为0.53和0.048。体外实验表明,通过化学修饰可显著提高胞外多糖的抗氧化和抗肿瘤活性,且修饰物的体外活性呈现浓度正相关。不同取代物的活性也不相同,其中超氧自由基清除活性的顺序为B-L>Ac-L>P-L>胞外多糖,羟基自由的清除活性顺序为P-L>Ac-L>B-L≈胞外多糖,还原力大小顺序为Ac-L>P-L> B-L>胞外多糖。此外,胞外多糖及其衍生物对肿瘤细胞BGC-823的抑制率顺序为P-L>B-L>Ac-L>胞外多糖。
As a slightly opened reservoir of special bio-resources, endophytes (microorganisms that reside in the internal tissues of living plants without causing any overt negative effects) have been demonstrated to be excellent producers of bioactive and structurally novel metabolites. A lot of novel bioactive products such as antibiotics, antiviral, anticancer, antidiabetic as well as antioxidant agents have been isolated from endophytes. Exopolysaccharides (EPS) produced by endophytes are also important metabolites, which play key roles in plant-endophyte interactions. They provide the endophytes additional protection against desiccation and serve as molecular signals during plant invasion. Despite the growing understanding on the role of EPS in the establishment of interactions, only few reports on the culture conditions, structural characterizations and biological activities of EPS from endophytes are available to date. Paenibacillus polymyxa (previously Bacillus polymyxa) EJS-3 was an endophytic bacterium strain isolated from the root tissue of Stemona japonica (Blume) Miquel, a traditional Chinese medicine. In this paper, the culture conditions, structural characterizations, chemical modification and antioxidant activities of EPS from P. polymyxa EJS-3 were investigated systematically. The main results are as follows:
     1. Effects of various culture conditions (initial pH, temperature, carbon, nitrogen and mineral sources) on EPS production were investigated firstly by single factor method. For EPS production, the preferable culture conditions were 24℃and pH 8 for 60 h with sucrose, yeast extract, KH2PO4 and CaCl2 as the carbon, nitrogen and mineral sources, respectively. Notably, sucrose concentration was the prominent factor, and the maximum yield of EPS (22.82 g/L) was obtained at a sucrose concentration of 160 g/L. Then, response surface methodology (RSM) was applied for the medium optimization of EPS production from P. polymyxa EJS-3. Experimental data of fractional factorial design (FFD) showed that the significant variables affecting EPS production were the levels of sucrose, yeast extract and CaCl2.From the regression analysis of the variables, sucrose and yeast extract were found to display positive effects on EPS production, whereas CaCl2 display a negative effect on EPS production. Based on FFD and steepest ascent experiments, three variables including sucrose, yeast extract and CaCl2 were further investigated for their optimum concentrations by central composite design (CCD). As results, the optimal medium compositions were determined as following (g/L):sucrose 188.2, yeast extract 25.8, K2HPO4 5 and CaCl20.34, with a corresponding yield of 35.26 g/L. The yield of EPS was about 1.55-fold compared with that (22.82 g/L) using the medium optimized by single factor method.
     2. The crude EPS extract was firstly obtained from the fermentation broth of P. polymyxa EJS-3 by properly dilution, centrifugation, ethanol precipitation and dialyzation. Then, a simple method for simultaneous decoloration and deproteinization of crude EPS extract using macroporous resin was developed through statistic and dynamic adsorption tests. As results, S-8 resin was found to have the highest decoloration and deproteinization ratios among various resins tested. Under the optimized statistic adsorption conditions (pH 6.0, 35℃and adsorption time of 70 min), the decoloration, deproteinization and polysaccharide recovery ratios of S-8 resin were 76.8%,78.9% and 69.0%, respectively. Further investigation into the dynamic adsorption experiments showed that under the optimized dynamic adsorption conditions (flow rate of 2 BV/h,160 ml of 2.5 mg/ml crude levan solution), the decoloration, deproteinization and polysaccharide recovery ratios of S-8 resin were 84.6%,91.7% and 81.3%, respectively. The decolorized and deproteinized EPS obtained from S-8 resin was further purified by chromatography of DEAE-52 and Sephadex G-100 to afford two polysaccharide fractions (EPS-1 and EPS-2). The recovery rates of EPS-1 and EPS-2 based on the amount of crude EPS were 53.6% and 4.8%, respectively. EPS-1 and EPS-2 both showed only one symmetrical peak on HPLC with the molecular weights estimated to be 1.22×106 and 8.69×105 Da, respectively. In addition, the results of indine, Fehling's, CTAB,α-Naphthol and Anthrone reactions all indicated the existence of polysaccharides in the samples.
     3. The structural characterizations of EPS-1 and EPS-2 were investigated by various methods. UV-vis spectra showed no absorbance in the range of 200~400 nm. Monosaccharide compositional analysis showed that both EPS-1 and EPS-2 were composed of mannose, fructose and glucose in a molar ratio of 2.59:29.83:1 and 4.23:36.59:1, respectively. The FT-IR spectra of EPS-1 and EPS-2 were similar: the strong band at 3422 cm-1 was assigned to the hydroxyl stretching vibration of the polysaccharide. The band at 2936 cm-1 was due to C-H stretching vibration and the band at 1645 cm-1 was due to the bound water. The bands in the region of 1500 and 1200 cm-1 were assigned to C-H deformation vibration. The bands between 1128 and 1014 cm-1 corresponded to C-O-C and C-O-H stretching vibration. A characteristic absorption at 926 cm-1 was resulted from the stretching vibration of pyran ring. The obvious absorption at 811 cm-1 revealed the existence of mannose residue. And two peaks in the region of 3000 and 2800 cm-1 were observed, indicating the existence of fructose residue. The results of periodte oxidation-Smith degradation indicated that both EPS-1 and EPS-2 did not contain 1→3 or 1→4 linked glycosidic bond. Methylation and GC-MS analysis showed that EPS-1 and EPS-2 were both composed ofβ-(2→>6)-linked backbone of fructose residues, which substituted at C-1 by fructose and mannose residues. In addition,13C NMR spectroscopy confirmed that EPS-1 and EPS-2 were both levan type polysaccharides, which were consisted of (2->6)-linkedβ-D-Fruf residues with (2→1)-linkedβ-D-Fruf andβ-D-Manp branches. The branching degrees of EPS-1 and EPS-2 were 10% and 13%, respectively. However, helix-coil transition assay EPS-1 and EPS-2 did not exist helix conformation in their structures.
     4. The antioxidant activities of EPS from Paenibacillus polymyxa EJS-3 were evaluated by various methods in vitro and in vivo. In antioxidant assays in vitro, both crude EPS and its purified fractions (EPS-1 and EPS-2) were found to have moderate reducing power, DPPH radical scavenging activity, hydrogen peroxide scavenging activity, lipid peroxidation inhibition effect, and strong ferrous ion chelating activity, superoxide radical scavenging activity as well as hydroxyl radical scavenging activity. And the antioxidant activities in vitro of EPS decreased in the order of crude EPS> EPS-2> EPS-1. In antioxidant assays in vivo, mice were subcutaneously injected with D-galactose (D-Gal) for 6 weeks and administered EPS-1 via gavage simultaneously. As results, administration of EPS-1 significantly increased the thymus and spleen indices of D-Gal induced aging mice. Moreover, EPS-1 administration significantly enhanced the activities of antioxidant enzymes (SOD, GSH-Px and CAT) and total antioxidant capacity, whereas decreased the levels of malondialdehyde in both serums and livers of aging mice. These results suggested that EPS had potent antioxidant activities and could be explored as novel natural antioxidant.
     5. The different derivatives of EPS were prepared by means of acetylation, phosphorylation and benzoylation. As compared to native levan, the total sugar contents of all derivatives decreased after modification. In addition, the average molecular weights of all derivatives also decreased compared to native levan. The FT-IR and NMR spectra showed that all the derivatives were successfully prepared. The degree of acetylation and phosphorylation were determined to be 0.53 and 0.048, respectively. Antioxidant and antitumor activity assay in vitro showed that certain derivatives exhibited stronger activities than native EPS. In antioxidant activity in vitro assay, different derivaitves showed different activities. For superoxide radical, the scavenging activity decreased in the order of B-L> Ac-L> P-L> EPS, for hydroxyl radical, the scavenging activity decreased in the order of P-L> Ac-L> B-L≈EPS, and the reducing power decreased in the order of Ac-L> P-L> B-L> EPS. In addition, antitumor activity in vitro on BGC-823 decreased in the order of P-L> B-L> Ac-L> EPS.
引文
[I]Suryanarayanan T S, Thirunavukkarasu N, Govindarajulu M B, et al. Fungal endophytes and bioprospecting [J]. Fungal Biology Reviews,2009,23,9-19.
    [2]Carroll G C. The biology of endophytism in plants with particular reference to woody perennials [M]. In:Fokkema N J, van den Heuvel J (Ed.), Microbiology of the Phyllosphere, Cambridge University Press, Cambridge,1986, pp.205-222.
    [3]Petrini O. Fungal endophytes of tree leaves [M]. In:Andrews J H, Hirano S S (Ed.) Microbial Ecology of Leaves, Springer-Verlag, New York,1991, pp.179-197.
    [4]Hallmann J, Quadt-Hallmann A, Mahaffee W F, et al. Bacterial endophytes in agricultural crops [J]. Canadian Journal of Microbiology,1997,43,895-914.
    [5]Strobel G A. Endophytes as sources of bioactive products [J]. Microbes and Infection,2003,6, 535-544.
    [6]Strobel G, Daisy B, Castillo U. Novel natural products from rainforest endophytes [M]. Natural Products, Humana Press,2005:329-351.
    [7]Mcinroy J A, Kloepper J W. Survey of indigenous bacterial endophytes from cotton and sweet corn [J]. Plant and Soil,1995,173,337-342.
    [8]Quadt-Hallmann A, Kloepper J W. Immunological detection and localization of cotton endophyte Enterobacter asburiae JM22 in different plant species [J]. Canadian Journal of Microbiology,1996, 42,1144-1154.
    [9]Gough C, Galera C, Vasse J, et al. Specific flavonoids promote intercellular root colonization of Arabidopsis thaliana by Azorhizobium caulinodans ORS571 [J]. Molecular Plant-Microbe Interactions,1997,10,560-570.
    [10]Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products [J]. Microbiology and Molecular Biology Reviews,2003,67,491-502.
    [11]Ji Y, Bi J N, Yan B. Taxol-producing Fungi:A New Approach to Industrial Production of Taxol [J]. Chinese Journal of Biotechnology,2006,22,1-6.
    [12]Walker K, Croteau R. Taxol biosynthetic genes [J]. Phytochemistry,2001,58,1-7.
    [13]Huang Y, Wang J, Li G, et al. Antitumor and antifungal activities in endophytic fungi isolated from pharmaceutical plants Taxus mairei, Cephalataxus fortunei and Torreya grandis [J]. FEMS Immunology and Medical Microbiology,2001,31,163-167.
    [14]Strobel G A, Hess W M, Li JY, et al. Pestalotiopsis guepinii, a taxol producing endophyte of the Wollemi Pine, Wollemia nobilis [J]. Australian Journal of Botany,1997,45,1073-1082.
    [15]Strobel G A, Ford E, Li J Y, et al. Seimatoantlerium tepuiense gen. nov. A unique epiphytic fungus producing taxol from the Venezuelan-Guayana System [J]. Applied Microbiology,1999,22, 426-433.
    [16]Gangadevi V, Murugan M, Muthumary J. Taxol determination from Pestalotiopsis pauciseta, a fungal endophyte of a medicinal plant [J]. Chinese Journal of Biotechnology,24,1433-1438.
    [17]Xu L L, Han T, Wu J Z, et al. Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus [J]. Phytomedicine,2009,16,609-616.
    [18]孔庆科,丁爱云.内生细菌作为生防因子的研究进展[J].山东农业大学学报,2001,32,256-26.
    [19]Velazhahan R, Samiyappan R. Relationship between antagonistic activties of Pseudomonas fluorescens isolates against Rhizoctonia solani and their production of lytic enzymes. Journal of Plant Disease and Protection,1999,3,244-250.
    [20]郑爱萍,李平,王世全,等.水稻纹枯病菌拮抗菌分离鉴定及杀菌蛋白的获得[J].中国水稻科学,2002,4,352-360.
    [21]Pleban S, Chernin L, Chet I. Chitinolytic activity of an endophytic strain of Bacillus cereus [J]. Letters in Applied Microbiology,1997,25,284-288.
    [22]周盈,陈琳,柴鑫莉,等.魔芋内生拮抗细菌的分离及其抗菌物质特性研究[J].微生物学报,2007,6,1076-1079.
    [23]Strobel G A, Miller R V, Martinez-Miller C, et al. Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina [J]. Microbiology,1999,145,1919-1926
    [24]Strobel G A, Dirkse E, Sears J, et al. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus [J]. Microbiology,2001,147,2943-2950.
    [25]Uvidelio C, James K H, Gary A S. Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia [J]. FEMS Microbiology Letters,2003,224, 183-190.
    [26]Vande Broek A, Banderleyden J. Genetics of the Azospirillum plant root association [J]. Critical Review in Plant Science,1995,14,445-466.
    [27]Hurek T, Reinhold-Hurek B, Van Montagu M, et al. Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses [J]. Journal of Bacteriology,1994,176,1913-1923.
    [28]Lazarovits G, Norwak J. Rhizobateria for improvement of plant growth and stablishment [J]. Horticultural Science,1997,32,188-192.
    [29]蔡学清,何红,胡方平.内生菌BS22对辣椒苗的促生作用及对内源激素的影响[J].亚热带农 业研究,2005,4,49-52.
    [30]张晓瑞.植物内生菌及其开发应用研究进展[J].现代生物医学进展,2007,11,1747-1750.
    [31]Sutherland I W. Bacterial exopolysaccharides [J]. Advances in Microbial Physiology,1972,8, 143-213.
    [32]Vanhooren P, Vandamme E J. Biosynthesis, physiological role, use and fermentation process characteristics of bacterial exopolysaccharides [J]. Recent research development on fermentation bioengineering,1998,1,253-299.
    [33]Dudman W F. The role of surface polysaccharides in natural environments [M]. In: Surface carbohydrates of the prokaryotic cell. Sutherland I W (Ed.), Academic Press, New York,1977, pp. 357-414.
    [34]Sutherland I W. Polysaccharides from microorganisms, plants and animals [M]. In: Biopolymers, Volume 5, Polysaccharides I:polysaccharides from prokaryotes. Vandamme E, De Baets S, Steinbuchel A (Eds.), Wiley-VCH Publisher, Weinheim,2002, pp.1-19.
    [35]Sutherland I W. Microbial polysaccharides from Gram-negative bacteria [J]. International Dairy Journal,2001,11,663-674.
    [36]崔艳红,黄现青.微生物胞外多糖研究进展[J].生物技术进展,2006,25-28.
    [37]Margaritis A, Pace G W. Microbial polysaccharides [M]. In:The practice of biotechnology: current commodity products, Volume 3. Blanch H W, Drew S, Wang D C (Eds.), Pergamon Press, New York,1985, pp.1005-1045.
    [38]Korakli M, Vogel R F. Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesised glycans [J]. Applied Microbiology and Biotechnology,2006,71,790-803.
    [39]Morin A. Screening of polysaccharide-producing microorganisms, factors influencing the production and recovery of microbial polysaccharides [M]. In: Polysaccharides-structural diversity and functional versatility. Dumitriu S (Ed.), Marcel Dekker Inc. Publication, New York,1998, pp. 275-296.
    [40]Geddie G L, Sutherland I W. The effect of acetylation on cation binding by algal and bacterial alginates [J]. Biotechnology and Applied Biochemistry,1994,20,117-129.
    [41]Grobben G J, Smith M R, Sikkema J, et al. Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactococcus delbruckii subsp. bulgaricus NCFB 2772 [J]. Applied Microbiology and Biotechnology,1996,46,279-284.
    [42]Petry S, Furlan S, Crepeau M J, et al. Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium [J]. Applied and Environmental Microbiology,2000,66,3427-3431.
    [43]Degeest B, De Vuyst L. Correlation of activities of the enzymes α-phosphoglucomutase, UDP-galactose 4-epi-merase, and UDP-glucose pyrophosphorylase with exopolysaccharide biosynthesis by Streptococcus thermophilus LY03 [J]. Applied and Environmental Microbiology, 2000,66,3519-3527.
    [44]Escalante A, Wacher-Rodarte C, Garcia-Garibay M, et al. Enzymes involved in carbohydrate metabolism and their role on exopolysaccharide production in Streptococcus thermophilus [J]. Journal of Applied Microbiology,1998,84,108-114.
    [45]West T P, Strohfus B. Effect of carbon source on exopolysaccharide production by Sphingomonas paucimobilis ATCC 31461 [J]. Research in Microbiology,1998,153,327-329.
    [46]Farres J, Caminal G, Lopez-Santin, J. Influence of phosphate on rhamnose-containing exopolysaccharide rheology and production by Klebsiella I-174 [J]. Applied and Environmental Microbiology,1997,48,522-527.
    [47]De Souza A M, Sutherland I W. Exopolysaccharide and storage polymer production in Enterobacter aerogenes type 8 strains [J]. Journal of Applied Bacteriology,1994,76,463-468.
    [48]Vergas-Garcia, M C, Lopez, M J, Elorrieta, Suarez F, et al. Influence of nutritional and environmental factors on polysaccharide production by Azotobacter vinelandii cultured on 4-hydroxybenzoic acid [J]. Journal of Industrial Microbiology and Biotechnology,2001,27,5-10.
    [49]Vermani M V, Kelkar S M, Kamat Y. Novel exopolysaccharide production by Azotobacter vinelandii MTCC 2459, a plant rhizosphere isolate [J]. Letters in applied microbiology,1997,24, 379-383.
    [50]Gorret N, Maubois J L, Engasser J M, et al. Study of the effects of temperature, pH and yeast extract on growth and exopolysaccharides production by Propionibacterium acidi-propoinici on milk microfiltrate using a response surface methodology [J].Journal of Applied Bacteriology,2001, 90,788-796.
    [51]Clementi F, Fantozzi P, Mancini F, et al. Optimal conditions for alginate production by Azotobacter vinelandii [J]. Enzyme and Microbial Technology,1995,17,983-988.
    [52]Grobben G J, Boels I C, Sikkema J, et al. Influence of ions on growth and production of exopolysaccharides by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 [J]. Journal of Dairy Research.,2000,67,131-135.
    [53]Mozzi F, de Giori G S, Oliver G, et al. Exopolysaccharide production by Lactobacillus casei. I. Influence of salts [J]. Milchwissenschaft,1995,50,186-188.
    [54]Lee H S, Park H S, Lee J H et al. Effect of aeration rates on production of extracellular polysaccharide, EPS-R, by marine bacterium Hahella chejuensis [J]. Biotechnology and Bioprocess Engineering,2001,6,359-362.
    [55]Yang F C, and Liau C B. The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures [J]. Process Biochemistry,1998,33,547-553.
    [56]Dassy B, Stringfellow W T, Lieb M, et al. Production of type 5 capsular polysaccharide by Staphylococcus aureus grown in semi-synthetic medium [J]. Journal of General Microbiology,1991, 137,1155-1162.
    [57]Bayer A S, Eftekhar F, Tu J, et al. Oxygen dependent upregulation of mucoid polysaccharide (alginate) production in Pseudomonas aeruginosa [J]. Infection and Immunity,1990,58, 1344-1349.
    [58]Weckner A, Onken V. Influence of dissolved oxygen concentration and shear rate on the production of Aureobasidium pullulans [J]. Biotechnology Letters,1991,13,155.
    [59]Rau V, Muller R J, Cordes K, et al. Process and molecular data of branched β-D-glucans in comparison with xanthan [J]. Bioprocess Engineering,1989,5,89-93.
    [60]Sutherland I W. Microbial exopolysaccharide synthesis [M]. In:Extracellular Microbial Polysaccharides ACS Symposium Series 45. Sanford P A, Laskin A (Eds.), American Chemical Society, Washington, D.C,1977, pp.40-57.
    [61]Cerning J, Bouillanne C, Desmazeaud M J, et al. Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria [J]. Journal of Dairy Science, 75,692-699.
    [62]Gancel F, Novel G. Exopolysaccharide production by Streptococcus salivarius spp. thermophilus culture 1. Conditions of production [J]. Journal of Dairy Science,1994,77,685-688.
    [63]Sutherland I W. Bacterial exopolysaccharides [M]. In: Advances in Microbial Physiology. Rose A H, Tempest D W (Eds.), Academic Press, London-New York,1972, pp.143-213.
    [64]Van Beek S. Caracterisation des activites metaboliques des ferments utilises en industrie des viandes, Evaluation de la production de polysaccahreides exocellulaires par des souches de pediocoques et de lactobacilles [M]. In: Memoire de fin d'etudes. Institut Superieur Agricole de Beauvias, France, Centre de recherche et de developpment sur les aliments, St. Hyacinthe, Quebec, Canada,1997, pp.70.
    [65]Sutherland I W. Biosynthesis of microbial exopolysaccharides [M]. In:Advances in microbial physiology. Dans A H R, Morris J G (Eds.), Academic Press, New York, USA,1982, pp.80-150.
    [66]Navarini L, Gesaro A, Ross-Murphy S. Exoplysaccharides from Rhizobium meliloti YE-2 grown under different osmolarity conditions: Viscoelastic properties [J]. Carbohydrate Research,1992, 223-227.
    [67]Smith I H, Pace G W. Recovery of microbial polysaccharides [J]. Journal of Chemical Technology and Biotechnology,1982,32,119-129.
    [68]Singh R S, Saini G, Kennedy J F. Pullulan: Microbial sources, production and applications [J]. Carbohydrate Polymers,2008,73,515-531.
    [69]Sutherland I W. Biotechnology of microbial exopolysaccharides [M]. In: Cambridge Studies in Biotechnology 9. Cambridge University Press, Cambridge,1990, pp.1-163.
    [70]Staub A M. Removal of protein-Sevag method [J]. Methods in Carbohydrate Chemistry,1965,5, 5-6.
    [71]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999,1-260.
    [72]Jiang J, Guo Y, Niu A. Extraction, characterization of Angelica sinensis polysaccharides and modulatory effect of the polysaccharides and Tai Chi exercise on oxidative injury in middle-aged women subjects [J]. Carbohydrate Polymers,2009,77,384-388
    [73]夏尔宁.多糖的结构分析[J].中国生化药物杂志,1985,4,28-33.
    [74]Strasser G R, Amado R. Pectic substances from red beet(Beta vulgaris conditiva). Part I. Structural analysis of rhamnogalacturonan I using enzymic degradation and methylation analysis [J]. Carbohydrate Polymers,44,63-70.
    [75]Hancock W S, Apffel A, et al. Reversed-phase peptide mapping of glycoproteins using liquid chromatography/electrospray ionization-mass spectrometry [J]. Methods in Enzymology,1996,271, 403-427.
    [76]Barber M, Bordoli R S, Sedgwick R D, et al. Fast-atom bombardment of solids as an ion source in mass spectroscopy [J]. Nature,1981,293,270-275.
    [77]Peter-Katalini J. Analysis of glycoconjugates by fast atom bombardment mass spectrometry and related MS techniques [J]. Mass Spectrometry Reviews,1994,13,77-98.
    [78]Karas M, Bahr U, Biemann U. Matrix-assisted laser desorption ionization mass spectrometry [J]. Mass Spectrometry Reviews,1991,10,335-357.
    [79]霍光华,李来生,高荫榆.波谱在多糖结构分析上的应用[J].生命的化学,2002,22,194-196.
    [80]周鹏,谢明勇,傅博强.多糖的结构研究[J].南昌大学学报,2001,25,197-204.
    [81]陈志强,金杨,王昌禄.多糖结构分析方法的研究[J].饲料工业,2008,29,59-51.
    [82]李波,陈海华,许时婴.二维核磁共振谱在多糖结构研究中的应用[J].天然产物研究与开发,2005,523-526.
    [83]王展,方积年.高场核磁共振波谱在多糖结构研究中的应用[J].分析化学,2002,28,240-247.
    [84]刘玉红,王凤山.核磁共振波谱法在多糖结构分析中的应用[J].食品与药品,2007,9,39-43.
    [85]Duus J, Gotfredsen C H, Bock K, et al. Carbohydrate structural determination by NMR spectroscopy:Modern methods and limitations [J]. Chemical Review,2000,100,4589-4614.
    [86]Adeyeye J, Azurmendi H F, Stroop J M, et al. Conformation of the hexasaccharide repeating subunit from the Vibrio cholerae O139 capsular polysaccharide [J]. Biochemistry,2003,42, 3979-3988.
    [87]Niedziela T, Dag S, Lukasiewicz J, et al. Complete lipopolysaccharide of Plesiomonas shigelloides O74:H5 (strain CNCTC 144/92).1. Structural analysis of the highly hydrophobic lipopolysaccharide, including the O-Antigen, Its biological repeating unit, the core oligosaccharide, and the linkage between them [J]. Biochemistry,2006,45,10422-10433.
    [88]Yongye A B, Gonzalez-Outeirino J, Glushka J, et al. The vonformational properties of methyl R-(2,8)-di/trisialosides and their N-acyl analogues:Implications for anti-neisseria meningitidis B vaccine design [J]. Biochemistry,2008,47,12493-12514.
    [89]Liu C, Li X, Li Y, et al. Structural characterization and antimutagenic activity of a novel polysaccharide isolated from Sepiella maindroni ink [J]. Food Chemistry,2008,110,807-813.
    [90]Bubb W A. NMR spectroscopy in the study of carbohydrates:Characterizing the structural complexity [J]. Concepts in Magnetic Resonance Part A,2003,19,1-19.
    [91]Vetvicka V, Yvin J C. Effects of marine β-1,3 glucan on immune reactions [J]. International Immunopharmacology,2004,4,721-730.
    [92]Brown G D, Gordon S. Immune recognition of fungal β-glucans [J]. Cellular Microbiology,2005,7, 471-479.
    [93]Brown G D, Gordon S. Immune recognition. A new receptor for β-glucans [J]. Nature,2001,413, 36-37.
    [94]Munz C, Steinman R M, Fujii S. Dendritic cell maturation by innate lymphocytes:coordinated stimulation of innate and adaptive immunity [J]. Journal of Experimental Medicine,2005,202, 203-207.
    [95]Garcia-Lora A, Pedrinaci S, Garrido F. Protein-bound polysaccharide K and interleukin-2 regulate different nuclear transcription factors in the NKL human natural killer cell line [J]. Cancer Immunology, Immunotherapy:CII,2001,50,191-198.
    [96]Garcia-Lora A, Martinez M, Pedrinaci S, et al. Different regulation of PKC isoenzymes and MAPK by PSK and IL-2 in the proliferative and cytotoxic activities of the NKL human natural killer cell line [J]. Cancer Immunology, Immunotherapy 52:59-64.
    [97]Vetvicka V, Thornton BP, Ross GD,1996. Soluble β-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CDllb/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells [J]. Journal of Clinical Investigation,1996,98,50-61.
    [98]Vetvicka V, Yvin J C. Effects of marine β-1,3 glucan on immune reactions [J]. International Immunopharmacology,2004,4,721-730.
    [99]Brown G D, Taylor P R, Reid D M, et al. Dectin-1 is a major β-glucan receptor on macrophages [J]. Journal of Experimental Medicine,2002,196,407-412.
    [100]Sato M, Sano H, Iwaki D, et al. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-α secretion are down-regulated by lung collectin surfactant protein A [J]. Journal of Immunology 171:417-425.
    [101]Young R E, Thompson R D, Larbi K Y, et al. Neutrophil elastase (NE) deficient mice demonstrate a nonredundant role for NE in neutrophil migration, generation of proinflammatory mediators, and phagocytosis in response to zymosan particles in vivo [J]. Journal of Immunology,2004,172, 4493-4502.
    [102]Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity [J]. Nature Reviews Immunology,2003,3,133-146.
    [103]Steele C, Marrero L, Swain S, et al. Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the dectin-1 β-glucan receptor [J]. Journal of Experimental Medicine,2003,198,1677-1688.
    [104]Taylor P R, Tsoni S V, Willment J A, et al. Dectin-1 is required for β-glucan recognition and control of fungal infection [J]. Nature Immunology,2007,8,31-38.
    [105]Mizuno M, Minato K, Ito H. Anti-tumor polysaccharide from the mycelium of liquid cultured Agaricus blazei mill [J]. Biochemistry and Molecular Biology International,1999,47,707-714.
    [106]Borchers A T, Keen C L, Gershwin M E. Mushrooms, tumors, and immunity:an update [J]. Experimental Biology and Medicine (Maywood),2004,229,393-406.
    [107]Nilsson S, Norlen B J, Widmark A. A systematic overview of radiation therapy effects in prostate cancer [J]. Acta Oncology,2004,43,316-381.
    [108]Chen W, Zhao Z, Chen S F, et al. Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro [J]. Bioresource Technology,2008,99,3187-3194.
    [109]Zhao L, Chen Y, Ren S, et al. Studies on the chemical structure and antitumor activity of an exopolysaccharide from Rhizobium sp. N613 [J]. Carbohydrate Research,2009, doi: 10.1016/j.carres.2009.11.017.
    [110]Takeuchi A, Kamiryou Y, Yamada H, et al. Oral administration of xanthan gum enhances antitumor activity through Toll-like receptor 4 [J]. International Immunopharmacology,2009,9,1562-1567.
    [111]Seifried H E, Anderson D E, Fisher E I, et al. A review of the interaction among dietary antioxidants and reactive oxygen species [J]. Journal of Nutritional Biochemistry,2007,18, 567-579.
    [112]Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease [J]. The International Journal of Biochemistry & Cell Biology,2007, 39,44-84.
    [113]Chen J, Hu T, Zheng R. Antioxidant activities of Sophora subprosrate polysaccharide in immunosuppressed mice [J]. International Immunopharmacology,2007,7,547-553.
    [114]Kardosova A, Machova E. Antioxidant activity of medicinal plant polysaccharides [J]. Fitoterapia, 77,367-373.
    [115]Dong C H, Yao Y J. In vitro evaluation of antioxidant activities of aqueous extracts from natural and cultured mycelia of Cordyceps sinensis [J]. LWT,2008,41,669-677.
    [116]Tseng Y H, Yang J H, Mau J L. Antioxidant properties of polysaccharides from Ganoderma tsugae [J]. Food Chemistry,2008,107,732-738.
    [117]Tsai M C, Song T Y, Shih P H, et al. Antioxidant properties of water-soluble polysaccharides from Antrodia cinnamomea in submerged culture [J]. Food Chemistry,2007,104,1115-1122.
    [118]Li X, Zhou A, Han Y. Anti-oxidation and anti-microorganism activities of purification polysaccharide from Lygodiumjaponicum in vitro [J]. Carbohydrate Polymers,2006,66,34-42.
    [119]Jaehrig S C, Rohn S, Kroh L W, et al. Antioxidative activity of (1-3), (1-6)-β-D-glucan from Saccharomyces cerevisiae grown on different media [J]. LWT,2008,41,868-877.
    [120]Chen H, Zhang M, Xie B. Components and antioxidant activity of polysaccharide conjugate from green tea [J]. Food Chemistry,2005,90,17-21.
    [121]Asker M M S, Ahmed Y M, Ramadan M F. Chemical characteristics and antioxidant activity of exopolysaccharide fractions from Microbacterium terregens [J]. Carbohydrate Polymers,2009,77, 563-567.
    [122]Sun C, Wang J W, Fang L, et al. Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108 [J]. Life Sciences,2004,75,1063-1073.
    [123]Sun C, Shan C Y, Gao X D, et al. Protection of PC12 cells from hydrogen peroxide-induced injury by EPS2, an exopolysaccharide from a marine filamentous fungus Keissleriella sp. YS4108 [J]. Journal of Biotechnology,2005,115,137-144.
    [124]Arena A, Gugliandolo C, Stassi G, et al. An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72:Antiviral activity on immunocompetent cells [J]. Immunology Letters,2009,123,132-137.
    [125]Kang S H, Hong K, Jang K H, et al. Altered mRNA expression of hepatic lipogenic enzyme and PPARa in rats fed dietary levan from Zymomonas mobilis [J]. Journal of Nutritional Biochemistry, 2006,17,419-426.
    [126]Bello F D, Walter J, Hertel C, et al. In vitro study of Prebiotic Properties of Levan-type Exopolysaccharides from Lactobacilli and Non-digestible Carbohydrates Using Denaturing Gradient Gel Electrophoresis [J]. Systematic and Applied Microbiology,2001,24,232-237.
    [127]王兆梅,李琳,郭祀远,等.多糖结构修饰研究进展[J].中国医药工业杂志,2002,33,616-620.
    [128]赖萍,林跃鑫.天然多糖分子修饰研究进展[J].生命的化学,2003,23,183-187.
    [129]张难,吴远根,周剑丽,等.多糖的分子修饰及其在功能食品中的应用展望[J].食品研究与开发,2007,28,159-163.
    [130]赵晓燕,王长云.海洋多糖分子修饰方法研究概况[J].海洋科学,2000,24,20-22.
    [131]Rusnati M, Vicenzi E, Donalisio M, et al. Sulfated K5 Escherichia coli polysaccharide derivatives: A novel class of candidate antiviral microbicides [J]. Pharmacology & Therapeutics,2009,123, 310-322.
    [132]Alban S, Schauerte A, Franz G. Anticoagulant sulfated polysaccharides: Part Ⅰ. Synthesis and structure-activity relationships of new pullulan sulfates [J]. Carbohydrate Polymers,2002,47, 267-276.
    [133]Chen X, Xu X, Zhang L, et al. Chain conformation and anti-tumor activities of phosphorylated (1→3)-β-D-glucan from Poria cocos [J]. Carbohydrate Polymers,2009,78,581-587.
    [134]Sasaki T, Abiko N, Nitta K, et al. Antitumor activity of carboxymethylglucans obtained by carboxymethylation of (1→3)-β-d-glucan from Alcaligenes faecalis var. myxogenes IFO 13140 [J]. European Journal of Cancer,1979,15,211-215
    [135]Wang Y, Zhang L, Li Y, et al. Correlation of structure to antitumor activities of five derivatives of a β-glucan from Poria cocos sclerotium [J]. Carbohydrate Research,2004,339,2567-2574.
    [136]Xu J, Liu W, Yao W, et al. Carboxymethylation of a polysaccharide extracted from Ganoderma lucidum enhances its antioxidant activities in vitro [J]. Carbohydrate Polymers,2009,78,227-234.
    [137]Zhang Z, Zhang Q, Wang J, et al. In vitro antioxidant activities of acetylated, phosphorylated and benzoylated derivatives of porphyran extracted from Porphyra haitanensis [J]. Carbohydrate Polymers,2009,78,449-453.
    [138]聂凌鸿,宁正祥.活性多糖的构效关系[J].林产化学与工业,2003,23,89-94.
    [139]孙群,阚健全,赵国华,等.活性多糖构效关系研究进展[J].广州食品工业科技,20,104-106.
    [140]Demleitner S, Kraus J, Franz G. Synthesis and anti-tumour activity of sulfoalkyl derivatives of curdlan and lichenan [J]. Carbohydrate Research,1992,226,247-252.
    [141]Seviour R J, Stasinopoulos S J, Auer D P F. Production of pullulan and other exopolysaccharides by filamentous fungi [J]. Critical Reviews in Biotechnology,1992,12,279-298.
    [142]Misaki A, Kakuta M, Sasaki T, et al. Studies on interrelation of structure and antitumor effects of polysaccharides:antitumor action of periodate-modified, branched (1/3)-β-D-glucan of Auricularia auricula-judae, and other polysaccharides containing (1/3)-glycosidic linkages [J]. Carbohydrate Research,1981,92,115-129.
    [143]Falch B H, Espevik T, Ryan L, et al. The cytokine stimulating activity of (1/3)-β-D-glucans is dependent on the triple helix conformation [J]. Carbohydrate Research,2000,329,587-596.
    [144]Zhang L, Li X, Xu X, et al. Correlation between antitumor activity, molecular weight, and conformation of lentinan. Carbohydrate Research,2005,340,1515-1521.
    [145]Zekovic D B, Kwiatkowski S, Vrvic M M, et al. Natural and modified (1/3)-β-D-glucans in health promotion and disease alleviation [J]. Critical Reviews in Biotechnology,2005,25,205-230.
    [146]Di Luzio N R, Williams D L, McNamee R B, et al. Comparative evaluation of the tumor inhibitory and antibacterial activity of solubilized and particulate glucan [J]. Recent Results in Cancer Research,1980,75,165-172.
    [147]Xiao Z, Trincado C A, Murtaugh M P. β-glucan enhancement of T cell IFN gamma response in swine [J]. Veterinary Immunology and Immunopathology,2004,102,315-320.
    [148]Hong F, Yan J, Baran J T, et al. Mechanism by which orally administered β-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models [J]. Journal of Immunology,2004,173,797-806.
    [149]Seviour R J, Stasinopoulos S J, Auer D P F. Production of pullulan and other exopolysaccharides by filamentous fungi [J]. Critical Reviews in Biotechnology,1992,12,279-298.
    [150]Miyazaki T, Oikawa N, Yadomae T, et al. Relationship between the chemical structure and anti-tumour activity of glucans prepared from Grifora umbellate [J]. Carbohydrate Research,1979, 69:165-170.
    [151]Mueller A, Raptis J, Rice P J, et al. The influence of glucan polymer structure and solution conformation on binding to (1/3)-β-D-glucan receptors in a human monocyte-like cell line [J]. Glycobiology,2000,10,339-346.
    [152]Gomaa K, Kraus J, Rosskopf F, et al. Antitumour and immunological activity of a β 1→3/1→6 glucan from Glomerella cingulata [J]. Journal of Cancer Research and Clinical Oncology,1992, 118,136-140.
    [153]Okutani K. Antitumor and immunostimulant activities of polysaccharides produced by a marine bacterium of the genus Vibrio [J]. Bulletin of the Japanese Society of Scientific Fisheries,1984,50, 1035-1037.
    [154]Okutani K. Antiviral activities of sulfated derivatives of a fucosamine-containing polysaccharide of marine bacterial origin [J]. Nippon Suisan Gakkaishi,1992,58,927-930.
    [155]Colliec J S, Chevolot L, Helley D, et al. Characterization, chemical modifications and in vitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernos [J]. Biochimica et BiophysicaActa,2001,1528,141-151.
    [156]Vanhooren P T, Vandamme E J. Microbial production of clavan, an L-fucose rich exopolysaccharide [M]. In: Food Biotechnology, Bielecki S, Tramper J, Polak J (eds.), Elsevier Science B.V., Amsterdam, The Netherlands,2000, pp.109-114.
    [157]Lin C C, Casida L E. Gelrite as a gelling agent in media for the growth of thermophilic microorganisms [J]. Applied and Environmental Microbiology,1984,47,427-429.
    [158]Kang K S, Veeder G T, Mirrasoul P J, et al. Agar-like polysaccharide produced by a Pseudomonas species:production and basic properties [J]. Applied and Environmental Microbiology,1982,43, 1086-1089.
    [159]Rosenberg E, Zuckerberg A, Rubinovitz C. Emulsifier of Arthrobacter RAG-1:Isolation and Emulsifying properties [J]. Applied and Environmental Microbiology,1979,37,402-408.
    [160]Ashtaputre A A, Shah A K. Emulsifying property of a viscous exopoysaccharide from Sphingomonas paucimobilis [J]. World Journal of Microbiology and Biotechnology,1995,11, 219-222.
    [161]Iyer A, Mody K, Jha B. Emulsifying properties of a marine bacterial exopolysaccharide [J]. Enzyme and Microbial Technology,2006,38,220-222.
    [162]Kong J, Lee H, Hong J, et al. Utilization of a cell-bound polysaccharide produced by the marine bacterium Zooglea sp.:New biomaterial for metal adsorption and enzyme immobilization [J]. Journal of Marine Biotechnology,1998,6,99-103.
    [163]Iyer A, Mody K H, Jha B. Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae [J]. Marine Pollution Bulletin,2004,49,974-977.
    [164]Iyer A, Mody K H, Jha, B. Biosorption of of heavy metals by a marine bacterium [J]. Marine Pollution Bulletin,2005,50,340-343.
    [165]Wells J. Extracellular microbial polysaccharides-a critical overview [M]. In:ACS Symposium Series 45. Sanford P A, Laskin A (Eds.), American Chemical Society, Washington D.C.,1977, pp. 299-325.
    [166]Calvo C, Ferrer M R, Martinez-Checa F, et al. Some rheological properties of the extracellular polysaccharide produced by Volcaniella eurihalina F2-7 [J]. Applied Biochemistry and Biotechnology,1995,55,45-54.
    [167]Iyer A, Mody K, Jha B. Rheological properties of an exopolysaccharide produced by a marine Enterobacter cloaceae [J]. National Academy of Sciences of the United States,2005,28,119-123.
    [168]Vanhooren P, Vandamme E J. Biosynthesis, physiological role, use and fermentation process characteristics of bacterial exopolysaccharides [J]. Recent Research Development in Fermentation and Bioengineering,1998,1,253-299.
    [169]Iyer A, Mody K, Jha B. Characterization of an exopolysaccharide produced by a marine Enterobacter cloaceae [J]. Indian Journal of Experimental Biology,2005,43,467-471.
    [170]赵琳静,宋小平,等.多糖及其衍生物抗氧化性质的研究进展[J].上海工程技术大学学报,2008,22,44-47.
    [171]周林珠,杨祥良,等.多糖抗氧化作用研究进展[J].中国生化药物杂志,2002,23,210-212.
    [172]冉靓,杨小生,等.抗氧化多糖的研究进展[J].时珍国医国药,2006,17,494-496.
    [173]Sutherland I W. Novel and established applications of microbial polysaccharides [J]. Trends in Biotechnology,1998,16,41-45.
    [174]Liu X, Dong M, Chen X, et al. Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba [J]. Food Chemistry,2007,105,548-554.
    [175]Strobel G, Forda E, Worapong J, et al. Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities [J]. Phytochemistry,2002,60,179-183.
    [176]Mattos K A, Jones C, Heise N, et al. Structure of an acidic exopolysaccharide produced by the diazotrophic endophytic bacterium Burkholderia brasiliensis [J]. European Journal of Biochemistry, 2001,268,3174-3179.
    [177]Serrato R V, Sassaki G L, Cruz L M, et al. Culture conditions for the production of an acidic exopolysaccharide by the nitrogen-fixing bacterium Burkholderia tropica [J]. Canadian Journal of Microbiology,2006,52,489-493.
    [178]Serrato R V, Sassaki G L, Gorin P A J, et al. Structural characterization of an acidic exoheteropolysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica [J]. Carbohydrate Polymers,2008,73,564-572.
    [179]Lebuhn M, Heulin T, Hartmann A. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots [J]. FEMS Microbiological Ecology,1997,22,325-334.
    [180]He Z, Kisla D, Zhang L, et al. Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin [J]. Applied and Environmental Microbiology,2007, 73,168-178.
    [181]Paulus H, Gray P. The biosynthesis of polymyxin B by growing cultures of Bacillus polymyxa [J]. The Journal of Biological Chemistry,1964,239,865-871.
    [182]Morales P, Madarro A, Flors A, Sendra JM, Perez-Gonzalez JA. Purification and characterization of a xylanase and an arabinofuranosidase from Bacillus polymyxa [J]. Enzyme and Microbial Technology,1995,17,424-429.
    [183]Madden JK, Dea ICM. Structural and rheological properties of the extracellular polysaccharides from Bacillus polymyxa [J]. Carbohydrate Polymers,1986,6,51-73.
    [184]Mitsuda S, Miyata N, Hirota T, et al. High viscosity polysaccharide produced by Bacillus polymyxa [J]. Hakkokogaku 1981,59,303-309.
    [185]Glukhova E V, Shenderov B A, Iarotskii S V. Exopolysaccharide formation during the cultivation of Bacillus polymyxa on different carbohydrate substrates [J]. Antibiotiki Meditsinskaia Biotekhnologiia,1985,30,490-495.
    [186]Lee L Y, Seo W T, Kim G J, et al. Optimization of fermentation conditions of production of exopolysaccharide by Bacillus polymyxa [J]. Bioprocess Engineering,1997,16,71-75.
    [187]Han Y W, Clarke M A. Poduction and characterization of microbial levan [J]. Journal of Agricultural and Food Chemistry,1990,38,393-396.
    [188]Gong X Y, Luan Z K, Pei Y S, et al. Culture conditions for flocculant production by Paenibacillus polymyxa BY-28 [J]. J Environ Sci Health A Tox Hazard Subst Environ Eng,2003,38,657-669.
    [190]Lu F, Sun L, Lu Z, et al. Isolation and identification of an endophytic strain EJS-3 producing novel fibrinolytic enzymes [J]. Current Microbiology,2007,54,435-439.
    [1]Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products [J]. Microbiology and Molecular Biology Reviews,2003,67,491-502.
    [2]Tadych M, White J F. (2009). Endophytic microbes. In M. Schaechter (Ed.), Encyclopedia of microbiology (pp.431-442). New York:Academic Press.
    [3]Guo B, Wang Y, Sun X, et al. Bioactive natural products from endophytes: A review [J]. Applied Biochemistry and Microbiology,2008,44,136-142.
    [4]Mattos K A, Jones C, Heise N, et al. Structure of an acidic exopolysaccharide produced by the diazotrophic endophytic bacterium Burkholderia brasiliensis [J]. European Journal of Biochemistry, 2001,268,3174-3179.
    [5]Serrato R V, Sassaki G L, Cruz L M, et al. Culture conditions for the production of an acidic exopolysaccharide by the nitrogen-fixing bacterium Burkholderia tropica [J]. Canadian Journal of Microbiology,2006,52,489-493.
    [6]Serrato R V, Sassaki G L, Gorin P A J, et al. Structural characterization of an acidic exoheteropolysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica [J]. Carbohydrate Polymers,2008,73,564-572.
    [7]Lu F, Sun L, Lu Z, et al. Isolation and identification of an endophytic strain EJS-3 producing novel fibrinolytic enzymes [J]. Current Microbiology,2007,54,435-439.
    [8]孙力军,陆兆新,刘俊,等.一株产胞外多糖植物内生菌EJS-3菌株的分离和鉴定[J].食品科学,2006,27,65-68.
    [9]Madden J K, Dea I C M, Steer D C. Structural and rheological properties of the extracellular polysaccharides from Bacillus polymyxa [J]. Carbohydrate Polymers,1986,6,51-73.
    [10]Lee I Y, Seo W T, Kim G J, et al. Optimization of fermentation conditions for production of exopolysaccharide by Bacillus polymyxa [J]. Bioprocess Engineering,1997,16,71-75.
    [11]Han Y W, Clarke M A. Production and characterization of microbial levan [J]. Journal of Agricultural and Food Chemistry,1990,38,393-396.
    [12]Mitsuda S, Miyata N, Hirota T, et al. High viscosity polysaccharide produced by Bacillus polymyxa [J]. Hakkokogaku,1981,59,303-309.
    [13]Gong X Y, Luan Z K, Pei Y S, et al. Culture conditions for flocculant production by Paenibacillus polymyxa BY-28 [J]. Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances and Environmental Engineering,2003,38,657-669.
    [14]Francis F, Sabu A, Nampoothiri K M, et al. Use of response surface methodology for optimizing process parameters for the production of a-amylase by Aspergillus oryzae [J]. Biochemical Engineering Journal,2003,15,107-115.
    [15]Shih I L, Yu J Y, Hsieh C, et al. Production and characterization of curdlan by Agrobacterium sp. [J]. Biochemical Engineering Journal,2009,43,33-40.
    [16]Banik R M, Santhiagu A, Upadhyay S N. Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology [J]. Bioresource Technology,2007,98,792-797.
    [17]Majumder A, Singh A, Goyal A. Application of response surface methodology for glucan production from Leuconostoc dextranicum and its structural characterization [J]. Carbohydrate Polymers,2009,75,150-156.
    [18]Staub A M. Removal of protein-Sevag method [J]. Methods in Carbohydrate Chemistry,1965,5, 5-6.
    [19]Xiang X, Yang L, Hua S, et al. Determination of oligosaccharide contents in 19 cultivars of chickpea (Cicer arietinum L) seeds by high performance liquid chromatography [J]. Food Chemistry,2008,111,215-219.
    [20]Tang X J, He G Q, Chen Q H, et al. Medium optimization for the production of thermal stable β-glucanase by Bacillus subtilis ZJF-1A5 using response surface methodology [J]. Bioresource Technology,2004,93,175-181.
    [21]Kim H O, Lim J M, Joo J H, et al. Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea [J]. Bioresource Technology, 2005,96,1175-1182.
    [22]Fett W F. Bacterial exopolysaccharides:Their nature, regulation and role in host-pathogen interactions [J]. Current Topics in Botanical Research,1993,1,367-390.
    [23]Park N H, Choi H J, Oh D K. Lactosucrose production by various microorganisms harboring levansucrase activity [J]. Biotechnology Letters,27,495-497.
    [24]Pokhrel C P, Ohga S. Submerged culture conditions for mycelial yield and polysaccharides production by Lyophyllum decastes [J]. Food Chemistry,2007,105,641-646.
    [25]Kim H O, Yun J W. A comparative study on the production of exopolysaccharides between two entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submerged mycelial cultures [J]. Journal of Applied Microbiology,2005,99,728-738.
    [26]Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes [J]. Biotechnology Advances,2004,22,189-259.
    [27]Rodrigues S, Lona L M F, Franco T T. Effect of phosphate concentration on the production of dextransucrase by Leuconostoc mesenteroides B-512F [J]. Bioprocess and Biosystem Engineering, 2003,26,57-62.
    [28]Lin T Y, Chien M F C. Exopolysaccharides production as affected by lactic acid bacteria and fermentation time [J]. Food Chemistry,2007,100,1419-1423.
    [1]Yang L, Zhang L M. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources [J]. Carbohydrate Polymers,2009,76, 349-361.
    [2]Yu R, Yin Y, Yang W, et al. Structural elucidation and biological activity of a novel polysaccharide by alkaline extraction from cultured Cordyceps militaris [J]. Carbohydrate Polymers,2009,75, 166-171.
    [3]Wu S, Jin Z, Kim J, et al. Downstream processing of pullulan from fermentation broth [J]. Carbohydrate Polymers,2009,77,750-753.
    [4]Crini G. Non-conventional low-cost adsorbents for dye removal:A review [J]. Bioresource Technology,2006,97,1061-1085.
    [5]Staub A M. Removal of protein-Sevag method [J]. Methods in Carbohydrate Chemistry,1965,5, 5-6.
    [6]Wang X, Yuan Y, Wang K. Deproteinization of gellan gum produced by Sphingomonas paucimobilis ATCC 31461 [J]. Journal of Biotechnology,2007,128,403-407.
    [7]Ye H, Wang K, Zhou C, et al. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum [J]. Food Chemistry,2008,111, 428-432.
    [8]付学鹏,杨晓杰.植物多糖脱色技术的研究[J].食品研究与开发,2007,28,166-169.
    [9]谢红旗,周春山.香菇多糖脱色工艺研究[J].离子交换与吸附,2007,23,158-165.
    [10]李丹丹,金征宇.牛蒡菊糖脱色工艺的研究[J].农业工程学报,2007,23,241-244.
    [11]夏玮,吕庆,张文清,等.大孔吸附树脂脱色桑叶多糖的研究[J].食品与发酵工业,2007,33,141-144.
    [12]李瑞军,李德耀,张现峰,等.大孔吸附树脂法去除淫羊藿多糖中蛋白的研究[J].高等学校化学学报,2006,27,67-70.
    [13]Gao M, Huang W, Liu C Z. Separation of scutellarin from crude extracts of Erigeron breviscapus (vant.) Hand. Mazz. by macroporous resins [J]. Journal of Chromatography B,2007,858,22-26.
    [14]Fu Y, Zu Y, Liu W, et al. Optimization of luteolin separation from pigeonpea [Cajanus cajan (L.) Millsp.] leaves by macroporous resins [J]. Journal of Chromatography A,2006,1137,145-152.
    [15]Jia G, Lu X. Enrichment and purification of madecassoside and asiaticoside from Centella asiatica extracts with macroporous resins [J]. Journal of Chromatography A,2008,1193,136-141.
    [16]Zhao Y, Chen B, Yao S. Separation of 20(S)-protopanaxdiol type ginsenosides and 20(S)-protopanaxtriol type ginsenosides with the help of macroporous resin adsorption and microwave assisted desorption [J]. Separation and Purification Technology,2007,52,533-538.
    [17]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999,93-126.
    [18]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry,1976,72,248-254.
    [19]Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry,1956,28,350-356.
    [20]Qiao D, Hu B, Gan D, et al. Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from Hyriopsis cumingii [J]. Carbohydrate Polymers,2009,76,422-429.
    [21]Liu J, Luo J, Ye H, et al. Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3 [J]. Carbohydrate Polymers,2009,78,275-281.
    [22]李绍平,张平,夏泉,等.天然和人工冬虫夏草多糖组分的HPLC分析[J].药物分析杂志,2003,23,20-23.
    [23]Blumenkrantz M, Asboe-Hansen G. New method for quantitative determination of uronic acids [J]. Analytical Biochemistry,1973,54,484-489.
    [24]Kawai Y, Seno N, Anno K. A modified method for chondrosulfatase assay [J]. Analytical Biochemistry,1969,32,314-321.
    [25]Mondragon M, Bello-Perez L A, Agama E, et al. Effect of nixtamalization on the modification of the crystalline structure of maize starch [J]. Carbohydrate Polymers,2004,55,411-418.
    [26]黄建Fehling试剂的改进—Sandell试剂—用于糖的还原性的测定[J].运城高专学报,1995,4,67-68.
    [27]杨其林,刘钟栋,任健,等.采用CTAB沉淀法提取茶多糖[J].食品与发酵工业,2004,30,139-142.
    [28]刘晓河,梁惠花.平茹中性多糖和酸性多糖的分离、纯化与鉴定[J].河北北方学院学报,2007,23,21-22.
    [29]张庆红,马梅芳.硫酸-蒽酮法测定天冬中多糖含量[J].中国现代中药,2008,10,18-20.
    [30]陈木森,上官新晨,徐睿庸.大孔树脂纯化青钱柳多糖的研究[J].西北农业学报,2007,16,275-278.
    [1]Yang L, Zhang L M. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources [J]. Carbohydrate Polymers,2009,76, 349-361.
    [2]周鹏,谢明勇,傅博强.多糖的结构研究[J].南昌大学学报(理科版),2001,25,197-204.
    [3]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999,93-126.
    [4]方积年.多糖体的结构分析[M].国外医学.药学分册,1981,4,222-228.
    [5]Madden J K, Dea I C M, Steer D C. Structural and rheological properties of the extracellular polysaccharides from Bacillus polymyxa [J]. Carbohydrate Polymers,1998,6,51-73.
    [6]Han Y W, Clarke M A. Production and characterization of microbial levan [J]. Journal of Agricultural and Food Chemistry,1990,38,393-396.
    [7]Lee I Y, Seo W T, Kim G J, et al. Optimization of fermentation conditions for production of exopolysaccharide by Bacillus polymyxa [J]. Bioprocess Engineering,1997,16,71-75.
    [8]Jung H K, Hong J H, Park S C, et al. Production and physicochemical characterization of β-glucan produced by Paenibacillus polymyxa JB115 [J]. Biotechnology and Bioprocess Engineering,2007, 12,713-719.
    [9]Wack M, Blaschek W. Determination of the structure and degree of polymerisation of fructans from Echinacea purpurea roots [J]. Carbohydrate Research,2006,341,1147-1153.
    [10]Wu Y, Cui S W, Tang J, et al. Preparation, partial characterization and bioactivity of water-soluble polysaccharides from boat-fruited sterculia seeds [J]. Carbohydrate Polymers,2007,70,437-443.
    [11]Yu R, Yang W, Song L, et al. Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris [J]. Carbohydrate Polymers,2007,70, 430-446.
    [12]Liu L, Dong Q, Dong X, et al. Structural investigation of two neutral polysaccharides isolated from rhizome of Polygonatum sibiricum [J]. Carbohydrate Polymers,2007,70,304-309.
    [13]Chen X M, Tian G Y. Structural elucidation and antitumor activity of a fructan from Cyathula officinalis Kuan [J]. Carbohydrate Research,2003,338,1235-1241.
    [14]Cunha P L R., Vieira I G P, Arriaga N M C, et al. Isolation and characterization of galactomannan from Dimorphandra gardneriana Tul. seeds as a potential guar gum substitute [J]. Food Hydrocolloids,2009,23,880-885.
    [15]Kardosova A, Ebringerova A, Alfoldi J, et al. A biologically active fructan from the roots ofArctium lappa L., var. Herkules [J]. International Journal of Biological Macromolecules,2003,33,135-140.
    [16]Tajima K, Uenishi N, Fujiwara M, et al. The production of a new water-soluble polysaccharide by Acetobacter xylinum NCI 1005 and its structural analysis by NMR spectroscopy [J]. Carbohydrate Research,1998,305,117-122.
    [17]Ogawa K, Wanatabe T, Tsurugi J, et al. Conformational behaviour of a gel-forming (1→3)-β-D-glucan in alkaline solution [J]. Carbohydrate Research,1972,23,399-405.
    [18]Hineno M. Infrared spectra and normal vibration of β-D-glucopyranose [J]. Carbohydrate Research, 1997,56,219-227.
    [19]Wu M, Wu Y, Zhou J, et al. Structural characterisation of a water-soluble polysaccharide with high branches from the leaves of Taxus chinensis var. Mairei [J]. Food Chemistry,2009,113, 1020-1024.
    [20]Schwanninger M, Rodrigues J C, Pereira H, et al. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose [J]. Vibrational Spectroscopy,2004,36,23-40.
    [21]Lim J M, Joo J H, Kim H O, et al. Structural analysis and molecular characterization of exopolysaccharides produced by submerged mycelial culture of Collybia maculata TG-1 [J]. Carbohydrate Polymers,2005,61,296-303.
    [22]王展,方积年.高场核磁共振波谱在多糖结构研究中的应用[J].分析化学,2000,28,240-247.
    [22]李波,陈海华,许时婴.二维核磁共振谱在多糖结构研究中的应用[J].天然产物研究与开发,2005,17,523-526.
    [23]刘玉红,王凤山.核磁共振波谱法在多糖结构分析中的应用[J].食品与药品,2007,9,39-43.
    [24]Shimamura A, Tsuboi K, Nagase T, et al. Structural determination of D-fructans from Streptococcus mutans, serotype b, c, e and f strains, by 13C-n.m.r. spectroscopy [J]. Carbohydrate Research,1987, 165,150-154.
    [1]Finkel T, Holbrook N J. Oxidants, oxidative stress and the biology of aging [J]. Nature,2000,408, 239-247.
    [2]Seifried H E, Anderson D E, Fisher E I, et al. A review of the interaction among dietary antioxidants and reactive oxygen species [J]. Journal of Nutritional Biochemistry,2007,18,567-579.
    [3]Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease [J]. The International Journal of Biochemistry & Cell Biology,2007, 39,44-84.
    [4]Grice H C. Safety evaluation of butylated hydroxyanisole from the perspective of effects on forestomach and oesophageal squamous epithelium [J]. Food and Chemical Toxicology,1988,26, 717-723.
    [5]Luo D, Fang B. Structural identification of ginseng polysaccharides and testing of their antioxidant activities [J]. Carbohydrate Polymers,2008,72,376-381.
    [6]Sun C, Wang J W, Fang L, et al. Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108 [J]. Life Sciences,2004,75,1063-1073.
    [7]Yu R, Yang W, Song L, et al. Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris [J]. Carbohydrate Polymers,2007,70, 430-436.
    [8]Chen H, Zhang M, Qu Z, et al. Antioxidant activities of different fractions of polysaccharide conjugates from green tea(Camellia Sinensis) [J]. Food Chemistry,2008,106,559-563.
    [9]Godard M, Decorde K, Ventura E, et al. Polysaccharides from the green alga Ulva rigida improve the antioxidant status and prevent fatty streak lesions in the high cholesterol fed hamster, an animal model of nutritionally-induced atherosclerosis [J]. Food Chemistry,2009,115,176-180.
    [10]Tseng Y H, Yang J H, Mau J L. Antioxidant properties of polysaccharides from Ganoderma tsugae [J]. Food Chemistry,2008,107,732-738.
    [11]Strobel G A. Endophytes as sources of bioactive products [J]. Microbes and Infection,2003,5, 535-544.
    [12]Guo B, Wang Y, Sun X, et al. Bioactive natural products from endophytes:A review [J]. Applied Biochemistry and Microbiology,2008,44,136-142.
    [13]Strobel G, Ford E, Worapong J, et al. Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities [J]. Phytochemistry,2002,60, 179-183.
    [14]Liu X, Dong M, Chen X, et al. Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba [J]. Food Chemistry,2007,105,548-554.
    [15]Lu F, Sun L, Lu Z, et al. Isolation and identification of an endophytic strain EJS-3 producing novel fibrinolytic enzymes [J]. Current Microbiology,2007,54,435-439.
    [16]Arvidson S., Rinehart B T, Gadala-Maria F. Concentration regimes of solutions of levan polysaccharide from Bacillus sp [J]. Carbohydrate Polymers,2006,65,144-149.
    [17]Yoo S H, Yoon E J, Cha J, et al. Antitumor activity of levan polysaccharides from selected microorganisms [J]. International Journal of Biological Macromolecules,2004,34,37-41.
    [18]Bekers M, Upite D, Kaminska E, et al. Stability of levan produced by Zymomonas mobilis [J]. Process Biochemistry,2005,40,1535-1539.
    [19]Liu F, Ooi V E C, Chang S T. Free radical scavenging activities of mushroom polysaccharide extracts [J]. Life Sciences,1997,60,763-771.
    [20]Jin M, Cai Y, Li J, et al. 1,10-Phenanthroline-Fe2+ oxidative assay of hydroxyl radical produced by H2O2/Fe2+[J]. Progress in Biochemistry and Biophysics,1996,23,553-555.
    [21]Ruch R J, Cheng S J, Klauning J E. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea [J]. Carcinogenesis,1989, 10,1003-1008.
    [22]Shimada K, Fujikawa K, Yahara K, et al. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion [J]. Journal of Agricultural and Food Chemistry,1992,40, 945-948.
    [23]Liu C, Wang C, Xu Z, et al. Isolation, chemical characterization and antioxidant activities of two polysaccharides from the gel and the skin of Aloe barbadensis Miller irrigated with sea water [J]. Process Biochemistry,2007,42,961-970.
    [24]Yen G C, Hsieh C L. Antioxidant activity of extracts from Du-zhong(Eucommia ulmoides) towards various lipid peroxidation models in vitro [J]. Journal of Agricultural and Food Chemistry,1998,46, 3952-3957.
    [25]Benzie I F F, Strain J J. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay [J]. Analytical Biochemistry,1996,239,70-76.
    [26]Oyaizu M. Studies on products of browning reactions:Antioxidative activities of products of browning reaction prepared from glucosamine [J]. Japanese Journal of Nutrition,1986,44, 307-315.
    [27]Wickens A P. Ageing and the free radical theory [J]. Respiration Physiology,2001,128,379-391.
    [28]Sun T, Xie W, Xu P. Superoxide anion scavenging activity of graft chitosan derivatives [J]. Carbohydrate Polymers,2004,58,379-382.
    [29]Vrchovska V, Sousa C, Valentao P, et al. Antioxidative properties of tronchuda cabbage (Brassica oleracea L. var. costata DC) external leaves against DPPH, superoxide radical, hydroxyl radical and hypochlorous acid [J]. Food Chemistry,2006,98,416-425.
    [30]Wang J, Liu L, Zhang Q, et al. Synthesized oversulphated, acetylated and benzoylated derivatives of fucoidan extracted from Laminaria japonica and their potential antioxidant activity in vitro [J]. Food Chemistry,2009,114,1285-1290.
    [31]Yuan H, Zhang W, Li X, et al. Preparation and in vitro antioxidant activity of K-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives [J]. Carbohydrate Research,2005,340,685-692.
    [32]Barbouti A, Doulias P T, Nousis L, et al. DNA damage and apoptosis in hydrogen peroxide-exposed Jurkat cells: bolus addition versus continuous generation of H2O2 [J]. Free Radical Biology & Medicine,2002,33,691-702.
    [33]Benedet J A, Shibamoto T. Role of transition metals, Fe(Ⅱ), Cr(Ⅱ), Pb(Ⅱ), and Cd(Ⅱ) in lipid peroxidation [J]. Food Chemistry,2008,107,165-168.
    [34]Abuja P M, Albertini R. Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins [J]. Clinica Chimica Acta,2001,306,1-17.
    [35]Wang H, Gao X D, Zhou G C, et al. In vitro and in vivo antioxidant activity of aqueous extract from Choerospondias axillaris fruit [J]. Food Chemistry,2008,106,888-895.
    [36]Chung Y C, Chang C T, Chao W W, et al. Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1 [J]. Journal of Agricultural and Food Chemistry,2002,50,2454-2458.
    [37]Duan X, Jiang Y, Su X, et al. Antioxidant properties of anthocyanins extracted from litchi (Litchi chinenesis Sonn.) fruit pericarp tissues in relation to their role in the pericarp browning [J]. Food Chemistry,2007,101,1365-1371.
    [38]Hsieh H M, Wu W M, Hu M L. Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer's disease in C57BL/6J mice treated with D-galactose [J]. Food and Chemical Toxicology,2009,47,625-632.
    [39]Song X, Bao M, Li D, et al. Advanced glycation in D-galactose induced mouse aging model [J]. Mechanisms of Ageing and Development,1999,108,239-251.
    [40]Zhong S Z, Ge Q H, Qu R, et al. Paeonol attenuates neurotoxicity and ameliorates cognitive impairment induced by D-galactose in ICR mice [J]. Journal of the Neurological Sciences,2009, 277,58-64.
    [41]Bigdeli M R, Rasoulian B, Meratan A A. In vivo normobaric hyperoxia preconditioning induces different degrees of antioxidant enzymes activities in rat brain tissue [J]. European Journal of Pharmacology,2009,611,22-29.
    [42]Zhong W, Yan T, Lim R, et al. Expression of superoxide dismutases, catalase, and glutathione peroxidase in glioma cells [J]. Free Radical Biology & Medicine,1999,27,1334-1345.
    [43]Yuan C, Huang X, Cheng L, et al. Evaluation of antioxidant and immune activity of Phellinus ribis glucan in mice [J]. Food Chemistry,2009,115,581-584.
    [44]Abuja P M, Albertini R. Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins [J]. Clinica Chimica Acta,2001,306,1-17.
    [45]Anderson D, Phillips B J. Comparative in vitro and in vivo effects of antioxidants [J]. Food and Chemical Toxicology,1999,37,1015-1025.
    [46]Fardet A, Rock E, Remesy C. Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivol [J]. Journal of Cereal Science,48,258-276.
    [1]Finkel T, Holbrook N J. Oxidants, oxidative stress and the biology of aging [J]. Nature,2000,408, 239-247.
    [2]Seifried H E, Anderson D E, Fisher E I, et al. A review of the interaction among dietary antioxidants and reactive oxygen species [J]. Journal of Nutritional Biochemistry,2007,18,567-579.
    [3]Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease [J]. The International Journal of Biochemistry & Cell Biology,2007, 39,44-84.
    [4]Luo D, Fang B. Structural identification of ginseng polysaccharides and testing of their antioxidant activities [J]. Carbohydrate Polymers,2008,72,376-381.
    [5]Wang J, Liu L, Zhang Q, et al. Synthesized oversulphated, acetylated and benzoylated derivatives of fucoidan extracted from Laminaria japonica and their potential antioxidant activity in vitro [J]. Food Chemistry,2009,114,1285-1290.
    [6]Xu J, Liu W, Yao W, et al. Carboxymethylation of a polysaccharide extracted from Ganoderma lucidum enhances its antioxidant activities in vitro [J]. Carbohydrate Polymers,2009,78,227-234.
    [7]Yuan H, Zhang W, Li X, et al. Preparation and in vitro antioxidant activity of K-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives [J]. Carbohydrate Research,2005,340,685-692.
    [8]Zhang Z, Zhang Q, Wang J, et al. Preparation of the different derivatives of the low-molecular-weight porphyran from Porphyra haitanensis and their antioxidant activities in vitro [J]. International Journal of Biological Macromolecules,2009,45,22-26.
    [9]Bae I Y, Oh I K, Lee S, et al. Rheological characterization of levan polysaccharides from Microbacterium laevaniformans [J]. International Journal of Biological Macromolecules,2008,42, 10-13.
    [10]Bekers M, Upite D, Kaminska E, et al. Stability of levan produced by Zymomonas mobilis [J]. Process Biochemistry,2005,40,1535-1539.
    [11]Arvidson S A, Rinehart B T, Gadala-Maria F, et al. Concentration regimes of solutions of levan polysaccharide from Bacillus sp [J]. Carbohydrate Polymers,2006,65,144-149.
    [12]Yoo S H, Yoon E J, Cha J, et al. Antitumor activity of levan polysaccharides from selected microorganisms [J]. International Journal of Biological Macromolecules,2004,34,37-41.
    [13]Xue S, Chen X, Lu J, et al. Protective effect of sulfated Achyranthes bidentata polysaccharides on streptozotocin-induced oxidative stress in rats [J]. Carbohydrate Polymers,2009,75,415-419.
    [14]Lu F, Sun L, Lu Z, et al. Isolation and identification of an endophytic strain EJS-3 producing novel fibrinolytic enzymes [J]. Current Microbiology,2007,54,435-439.
    [15]Williams D L, McNamee R B, Jones E L, et al. Development and characterization of the immunomodulator glucan phosphate [J]. Carbohydrate Research,1991,219,203-213.
    [16]Qi H, Zhang Q, Zhao T, et al. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro [J]. International Journal of Biological Macromolecules,2005,37,195-199.
    [17]Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry,1956,28,350-356.
    [18]Grodahl M, Teleman A, Gatenholm P. Effect of acetylation on the material properties of glucuronoxylan from aspen wood [J]. Carbohydrate Polymers,2003,52,359-366.
    [19]Lowry O H, Roberts N R, Leiner K Y, et al. [J]. Biol. Chem.1954,207,1-17.
    [20]李绍平,张平,夏泉,等.天然和人工冬虫夏草多糖组分的HPLC分析[J].药物分析杂志,2003,23,20--23.
    [21]Liu F, Ooi V E C, Chang S T. Free radical scavenging activities of mushroom polysaccharide extracts [J]. Life Sciences,1997,60,763-771.
    [22]Jin M, Cai Y, Li J, et al. 1,10-Phenanthroline-Fe2+ oxidative assay of hydroxyl radical produced by H2O2/Fe2+[J]. Progress in Biochemistry and Biophysics,1996,23,553-555.
    [23]Oyaizu M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine [J]. Japanese Journal of Nutrition,1986,44, 307-315.
    [24]Tajima K, Uenishi N, Fujiwara M, et al. The production of a new water-soluble polysaccharide by Acetobacter xylinum NCI 1005 and its structural analysis by NMR spectroscopy [J]. Carbohydrate Research,1998,305,117-122.
    [25]Sun T, Xie W, Xu P. Superoxide anion scavenging activity of graft chitosan derivatives [J]. Carbohydrate Polymers,2004,58,379-382.
    [26]Tsiapali E, Whaley S, Kalbfleisch J, et al. Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity [J]. Free Radical Biology and Medicine,2001,30,393-402.
    [27]Vrchovska V, Sousa C, Valentao P, et al. Antioxidative properties of tronchuda cabbage (Brassica oleracea L. var. costata DC) external leaves against DPPH, superoxide radical, hydroxyl radical and hypochlorous acid [J]. Food Chemistry,2006,98,416-425.
    [28]Wang J, Liu L, Zhang Q, et al. Synthesized oversulphated, acetylated and benzoylated derivatives of fucoidan extracted from Laminaria japonica and their potential antioxidant activity in vitro [J]. Food Chemistry,2009,114,1285-1290.
    [29]Yuan H, Zhang W, Li X, et al. Preparation and in vitro antioxidant activity of κ-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives [J]. Carbohydrate Research,2005,340,685-692.
    [30]Liu C, Wang C, Xu Z, et al. Isolation, chemical characterization and antioxidant activities of two polysaccharides from the gel and the skin of Aloe barbadensis Miller irrigated with sea water [J]. Process Biochemistry,2007,42,961-970.
    [31]Chung Y C, Chang C T, Chao W W, et al. Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1 [J]. Journal of Agricultural and Food Chemistry,2002,50,2454-2458.
    [32]Duan X, Jiang Y, Su X, et al. Antioxidant properties of anthocyanins extracted from litchi(Litchi chinenesis Sonn.) fruit pericarp tissues in relation to their role in the pericarp browning [J]. Food Chemistry,2007,101,1365-1371.
    [33]Chen X, Xu X, Zhang L, et al. Chain conformation and anti-tumor activities of phosphorylated (1→ 3)-(3-D-glucan from Poria cocos [J]. Carbohydrate Polymers,2009,78,581-587.
    [34]Wang X, Zhang L. Physicochemical properties and antitumor activities for sulfated derivatives of lentinan [J]. Carbohydrate Research,2009,344,2209-2216.
    [35]Liu Y, Liu C, Tan H, et al. Sulfation of a polysaccharide obtained from Phellinus ribis and potential biological activities of the sulfated derivatives [J]. Carbohydrate Polymers,2009,77,370-375.
    [36]Rice P J, Kelley J L, Kogan G, et al. Human monocyte scavenger receptors are pattern recognition receptors for (1→3)-D-glucans [J]. Journal of Leukocyte Biology,2002,72,140-146.
    [37]Leung M Y K, Liu C, Koon J C M, et al. Polysaccharide biological response modifiers [J]. Immunology Letter,2006,105,101-114.
    [38]Mohammad-Fata M, Hossein M, Shirin G, et al. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi) [J]. International Journal of Immunopharmacology, 2007,7,701-724.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700