用户名: 密码: 验证码:
多粘类芽孢杆菌SQR-21芽孢形成、萌发特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多粘类芽孢杆菌(Paenibcillus polymyxa) SQR-21是本实验室从黄瓜枯萎病发病严重的田块中,采集健康黄瓜植株的根际土壤中分离出来的一株产芽孢的革兰氏阳性细菌。P.polymyxa SQR-21能分泌多种胞外抗菌物质,对多种土传病原菌有抑制活性,能显著提高植物的抗病性,同时能促进作物生长,提高作物的产量,是一种较好的生防促生菌。利用SQR-21能形成抗逆性强的芽孢的特性,将SQR-21接种于能很好保持其活性的腐熟有机物料上经过二次发酵后制成生物有机肥已在得到广泛应用。生物有机肥除了含有较高的有机质外,所含有的有益微生物还表现出对作物生长较好的促进效应。因此,生物有机肥具有提高作物产量、改善作物品质、活化土壤养分、提高土壤生物活性;减少或降低连作作物土传病害等作用。对生产微生物有机肥的企业来说,特殊微生物功能菌种的获取、产品的生产、运输和储存是保证产品质量的几个关键步骤。本实验通过对SQR-21芽孢形成和萌发条件的优化,拟获得高效的产孢条件;研究环境因子对芽孢萌发的影响,根据具体环境因素,通过追加外源物质提高生物有机肥施入土壤后的芽孢萌发效率,芽孢性质受芽孢形成条件的影响,研究产孢温度对芽孢性质的影响,可为获得最优质的芽孢提供依据;通过改变生物有机肥的接种配比、储存温度及含水量,拟获得最佳的有机肥储存条件。
     1、根据MIDI推荐的Sherlock MIS微生物鉴定方法,对供试菌株进行了磷脂脂肪酸(PLFA)的鉴定分析,共检测到12种PLFA。其中含有15个碳原子的异型饱和脂肪酸的含量最多,达到了60%;不饱和脂肪酸为16:1w7calcohol、16:1 w11c、ISO17:1 w10c、17:1 ANTEISO B/iI 17:1 w10c、17:1 ANTEISO B/iI四种,占PLFA总量的9.8%,同时获得与16SrDNA一致的鉴定结果。通过扫描电镜和透射电镜显微技术,直观地观察了SQR-21芽孢的形态、结构和芽孢形成的主要过程。SQR-21芽孢纵轴长为1.5-1.8μm,横轴长为0.5-0.8μm,芽孢表面皱缩、凹陷,有数条鼓起的脊。超薄切片结果显示,SQR-21芽孢为端生;芽孢核外分别被皮层和芽孢衣包裹。芽孢衣分里、中、外三层,呈波浪状包裹在皮层外侧,有明显的突起,横切面显示大约含有8-11个突起的小棱角;这与已报道的P. polymyxa芽孢的星状横切面略有不同。SQR-21芽孢形成过程与一般芽孢杆菌的相似。在前芽孢和母细胞之间,合成皮层的物质开始积累并最终转化为皮层结构,母细胞膜逐渐被降解,电子致密物质开始合成,并逐渐转化为芽孢衣,完成所有的芽孢结构分化后,孢子囊破裂,释放出成熟的芽孢。
     2、在实验室摇瓶发酵条件下,最佳碳源为葡萄糖,浓度为1g/L;最佳氮源为牛肉膏,浓度为16g/L; Mn2+、Mg2+、Ca2+和Fe2+最佳浓度分别为0.1 mmol/L、O.5g/L 1 mmol/L和0.5μmol/L;最佳装液量为250ml三角瓶装液100ml;最佳pH为7.0-8.0;最佳培养温度为37℃。在37℃,170r/min振荡培养48小时后,可获得2.22x1010cfu/ml的细菌总数和2.21 x1010cfu/ml的芽孢产量,芽孢产率接近100%。
     3、芽孢萌发是拮抗微生物在田间发挥生物学效应的重要步骤,因此为了提高生物有机肥的防治效果,进行了芽孢萌发条件研究。本实验以L-天冬酰胺、葡萄糖、果糖和氯化钾(AGFK)组合,以及L-丙氨酸和糖类组合为萌发剂研究P. polymyxa ACCC10252和SQR-21的萌发条件。当AGFK为主要萌发剂,Tris-HCl为萌发缓冲液时,热激活处理和萌发温度对芽孢萌发的影响显得尤为明显。当以PBS为萌发缓冲液时,单一的L-丙氨酸对芽孢萌发的作用很微弱(ACCC10252和SQR-21的OD600的下降百分数分别为17.3%和14.6%),但加入少量的果糖后芽孢能迅速萌发,其中以10mmoll-1 L-丙氨酸和1 mmol l-1果糖组合能获得100%芽孢萌发效率。相反,当萌发缓冲液换成Tris-HCl时,萌发效果并不明显,但10 mmol l-1氯化钠的加入分别能将ACCC 10252和SQR-21的芽孢萌发效率提升19.6%和24.3%。另外,10 mmol l-1 L-丙氨酸和1 mmol l-1果糖诱导的芽孢萌发对pH的适应范围较广。在施用有机肥的过程中,根据土壤环境的差异,我们可以通过添加适当的外源物质,达到促进芽孢迅速繁殖、顺利定殖的目的。
     4、研究不同的芽孢形成温度(25℃,30℃和37℃)对芽孢性质的影响,包括:吡啶羧酸(DPA)的含量、耐热性、脂肪酸组成及含量、萌发效率及芽孢蛋白组成。结果表明,37℃条件下芽孢形成速度和耐热性均高于25℃和30℃条件下形成的芽孢,然而萌发效率呈下降趋势。总的来说,芽孢萌发效率与芽孢形成温度成负相关,25℃形成的芽孢萌发效率是30℃形成芽孢的1.27倍。通过检测芽孢膜上脂肪酸的组成与含量发现,随着芽孢形成温度的增加,Anteiso-/Iso-值呈下降趋势,这与温度影响芽孢内层膜的流动性有关,Anteiso-/Iso-越高细胞膜的渗透性越高。芽孢衣蛋白质的组成及种类同样随芽孢形成温度的升高而增多,经蛋白质测序分析,在37℃的芽孢衣蛋白中检测到草酸脱羧酶蛋白、芽孢肽聚糖水解蛋白和外层芽孢衣蛋白三种。因此,在拮抗微生物的发酵过程中,我们不仅要考虑芽孢的产量,还要在此基础上获得优质的芽孢性能,这直接关系到生物有机肥的肥效。
     5、本实验通过平板计数和原位荧光杂交技术(Fluorescence In Situ Hybridization, FISH)研究生物有机肥(bio-organic fertilizer, BIO)的储存温度,含水量以及接种时SQR-21的存在状态(共27个处理),探讨储存BIO最佳条件,为今后的生物有机肥商品化提供实验依据。实验发现FISH计数结果比平板计数高1-2个数量级,这可能与探针的特异性及芽孢的特性受BIO储存环境影响有关。FISH方法更能便捷、高效、直观地反映复杂环境中微生物状态和数量的变化情况。主要实验结果如下:(1)在20℃储存温度下,接种100%芽孢的处理的芽孢形成率明显高于其它处理。其中S20处理中,第60天时,芽孢获得率为95.6%,总菌数和芽孢数分别占初始值的72.2%和69.0%;S30处理中,第60天时,芽孢获得率为97.3%,总菌数和芽孢数分别占初始值的77.0%和75.0%;而S40处理由于含水量较高,芽孢数明显减少,且萌发后的菌体的存活率不高,第60天时,芽孢获得率为81.6%,总菌数和芽孢数分别只占初始值的49.5%和40.4%。(2)在30℃储存温度下,接种100%芽孢,控制含水量在40%时可保证获得最高的芽孢形成率及细菌总数;接种100%营养体细胞不利于BIO的保存;接种芽孢和营养体的混合菌,控制20%的含水量也能获得相对较高的芽孢形成率和总菌数。(3)在40℃储存温度下,接种100%芽孢的处理中,只有S20处理在第60天时仍保持较高的细菌总数和芽孢数,分别占初始细胞总数的79.4%和79.3%;随着含水量的增加,细胞总数显著减少。总的来说,接种100%的芽孢,保持较低含水量,室温下放置时有利于BIO产品的储存。生产中可以根据实际的环境条件,优化生物有机肥的生产流程和储存条件,以达到节约成本,提高生物有机肥料生物效应的目的。
Paenibacillus polymyxa (P. polymyxa) strains, that can produce two types of peptide antibiotics and can form endospores and survive efficiently in soil make them very popular in biocontrol. P. polymyxa SQR-21 is a spore-forming Gram-positive bacterium, which was isolated from plant rhizosphere soil by the Plant-Microbial Interaction Laboratory, Nanjing Agricultural University. It has been identified as a potential biological control agent and classified as a plant growth-promoting rhizobacterium (PGPR). SQR-21 strain has also been introduced into matured composts to make bioorganic fertilizer. These fertilizers have been shown to exhibit strong biological control of Fusarium wilt disease in cucumber and watermelon when applied to Fusarium oxysporum infested soils. In this thesis, we studies the factors influencing spore formation and germination of SQR-21, and the application of SQR-21 spores in amino acid organic fertilizer to produce bioorganic fertilizer (BIO). The main results were as follows:
     1. The cell membrane of strain SQR-21 contains 12 species of PLFA. The content of anteriso-C15 fatty acid was much higher than other PLFA. The unsaturated fatty acids including 16:1w7c alcohol,16:1 w11c, ISO 17:1 w10c and 17:1 ANTEISO B/i I were about 9.8% of total PLFA. The strain was identified as P. polymyxa by the Sherlock Microbial Identification System (Sherlock MIS). The spore and sporulation process of P. polymyxa SQR-21 were examined by electron microscopy. The dimensions of the oval-shaped spore, formed at terminal portion of cell, were 0.5-0.8μm x 1.5-1.8μm. The spore coat of SQR-21 consisted of three morphologically distinguishable layers, the inner, the middle and the outer spore coat. Eight to eleven ridges were found on a cross section image, which was different from other Bacillus. spp with star-shape. The process of sporulation was essentially the same as that of other Bacillus. spp. During the period of prespore and the mother cell membrane, the substances to form cortex began to accumulate. In the later stage of the sporulation, the electron dense materials were synthesized and became coat structure. At the end, the mature spore released from the mother cell.
     2. In order to enhance cell growth and spore formation of P. polymyxa SQR-21, the impact of medium composition and culture conditions were examined. The optimal medium composition was determined as follows:glucose 1g/L; beef extract 16g/L; Mn2+ 0.1 mmol/L; Mg2+0.5g/L; Ca2+1 mmol/L and Fe2+0.5μmol/L. The optimal pH and temperature for growth and sporulation were 7.0-8.0 and 37℃respectively. The bottle filling capacity 100ml/250ml was best. The maximum total cell number (2.22 x1010 cfu/ml) and spore yields (2.21 x 1010 cfu/ml) were obtained at 37℃,170r/min for 48h.
     3. To optimize the role of Paenibacillus polymyxa SQR-21 in bioorganic fertilizer, a study of spore germination under various conditions was conducted. The abilities to induce spore germination of Paenibacillus polymyxa ACCC10252 and SQR-21 by a mixture of L-asparagine, glucose, fructose and K+(AGFK), and single sugar (glucose, fructose, sucrose and lactose) plus L-alanine were evaluated. Spore germination was measured as a decrease in optical density at 600 nm. The effects of heat activation and germination temperature were important for germination of spores of both strains on AGFK in Tris-HCl. L-alanine alone showed a weak ability to induce spore germination. However, fructose plus L-alanine significantly induced spore germination and the maximum spore germination rate was observed with 10 mmol l-1 L-alanine in the presence of 1 mmol l-1 fructose in PBS. In contrast, fructose plus L-alanine hardly induced spore germination in Tris-HCl. However, addition of 10 mmol l-1 NaCl into Tris-HCl, the percentages of OD600 fall increased by 19.6 and 24.3%for ACCC10252 and SQR-21, respectively. AGFK-induced spore germination needed much more strict germination temperature than fructose plus L-alanine. For both strains, fructose plus L-alanine-induced spore germination was not sensitive to pH.
     4. Effect of spore-forming temperatures on the spore characteristics including dipicolinic acid (DPA) content, heat resistance, fatty acids composition, germination, and spore coat proteins was studied with Paenibacillus polymyxa SQR-21. Spores were formed rapidly at 37℃and showed higher heat resistance than those formed at 25℃and 30℃. However, the germination rate was negatively correlated to the sporulation temperature. The maximum germination rate of spores formed at 25℃was 1.27 times higher than that formed at 30℃, which may be due to the higher permeability of the spores'inner membrane. The pellets of spores formed at higher temperature showed much darker color than those formed at lower temperature and the number of spore coat proteins were increased with the increase of sporulation temperature.
     5. The influences of BIO storage temperature, water content and SQR-21 physiologically inoculated status on BIO were studied by plating method and FISH method. The spore and vegetative cell numbers detected by FISH were 10-100 times higher than that by plate counting, suggesting that FISH might be a better method to detect bacterial numbers. When inoculated with 100% spores of SQR-21 into the amino acid fertilizer with 20%-30% water content, the maximum spore forming rate and total cell number were obtained at 20℃. When incubated at 30℃, the optimal conditions for BIO storage were 40% water content with 100% spores. When the BIO was placed at 40℃, lower water content and inoculation with 100% spores favored the BIO storage. In all words, inoculation with 100% spores and maintaining of water moisture at the range of 20%-30% was favourable toward BIO storage. These results were useful in producing high quality of bio-organic fertilizers and keeping them in a good way.
引文
陈雪丽,郝再彬,王光华等.多粘类芽孢杆菌BRF-1抗菌蛋白的分离纯化.中国生物防治,2007,23:156-159.
    范玉贞.环境因子对细菌形成芽胞的影响,生物学通报,1995(12).
    宋永燕,李平,郑爱萍.生防细菌LM-3的鉴定及其抗菌蛋白的研究.四川大学学报,2006,43:1110-1115.
    童蕴慧,郭桂萍,徐敬友.拮抗细菌诱导番茄植株抗灰霉病机理研究.植物病理学报,2004,34:507-511.
    姚露燕,张水华,曹昱,王永华.金属离子浓度对枯草芽孢杆菌芽孢率的影响.现代食品科,2008(8):770-772.
    姚乌兰,王云山,韩继刚等.水稻生防菌株多粘类芽孢杆菌WY110抗菌蛋白的纯化及其基因克隆.遗传学报,2004,31(6):879-887.
    于晓丹,李刚.木霉生防机制的研究进展,杂粮作物,2004,246:359-360.
    赵继红,李建中.农用微生物杀菌剂研究进展.农药,2003,42:6-8.
    Alberts et al.2002. Molecular Biology of the Cell.4th ed.
    Aryal UK, Hossain MK and Mridha MAU. Effect of rizobium inoculation on growth nodulation and nitrogenase activity of some legume tree species. Journal of Plant Nutrition,1999,22:1049-1059.
    Ash C, Priest FG., Collins MD (1994) Paenibacillus gen. nov. and Paenibacillus polymyxa comb. nov. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB, List no.51. Int J Syst Bacteriol 44:852.
    Barak I and Wilkinson AJ. Where asymmetry in gene expression originates. Mol Microbiol,2005,57: 611-20.
    Bartnicki-Garcia S, Lippman E. Inhibition of Mucor rouxii by polyoxin D:effects on chitin synthetase and morphological development. Journal of General Microbiology,1972,71:301-309.
    Beaman TC, Greenamyre JT, Corner TR, Pankratz HS and Gerhardt P. Bacterial spore heat resistance correlated with water content, wet density, andprotoplast/sporoplast volume ratio. J Bacteriol,1982, 150:870-877.
    Beaman TC, Koshikawa T, Pankratz HS and Gerhardt P. Dehydrationpartitioned within core protoplast accounts for heat resistance of bacterial spores. FEMS Microbiol Lett,1984,24:47-51.
    Beatty PH, Suan EJ. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Canadian Journal of Microbiology,2002,48:159-169.
    Behravan J, Chirakkal H, Masson A and Moir A. Mutations in the gerP locus of Bacillus subtilis and Bacillus cereus affect access of germinants to their targets in spores. J Bacteriol,2000,182: 1987-94.
    Black EP, Wei J, Atluri, Cortezzo DE, Koziol-Dube K, Hoover DG and Setlow P. Analysis of factors influencing the rate of germination of spores of Bacillus subtilis by very high pressure. Journal of Applied Microbiology,2007,102:65-76.
    Bourne N, FitzJames PC and Aronson AI. Structural and germinationdefects of Bacillus subtilis spores with altered contents of a spore coat protein. J Bacteriol,1991,173:6618-25.
    Bowers B, Levin G, Cabib E. Effect of polyoxin D on chitin synthesis and septum formati on in Saccharomyces cerevisiae. Journal of Bacteriology,1974,119:564-575.
    Broussolle V, Gauillard F, Nguyen-The C and Carlin F. Diversity of spore germination in response to inosine and L-alanine and its interaction with NaCl and pH in the Bacillus cereus group. Journal of Applied Microbiology,2008,105:1081-1090.
    Cho KM, Hong SY, Lee SM, et al. A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Applied Microbiology and Biotechnology,2006,73:618-630.
    Choi SK, Park SY, Kim R. Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681.Biochemical and Biophysical Research Communications,2008,365: 89-95.
    Corfe BM, Sammons RL, Smith DA and Mauel C. The gerB region of the Bacillus subtilis 168 chromosome encodes a homologue of the gerA spore germination operon. Microbiology,1994,140 (Pt 3):471-478.
    Cortezzo DE and Setlow P. Analysis of factors that influence the sensitivity of spores of Bacillus subtilis to DNA damaging chemicals. J Appl Microbiol,2005,98:606-17.
    Cortezzo DE, Koziol-Dube K, Setlow B and Setlow P. Treatment withoxidizing agents damages the inner membrane of spores of Bacillus subtilis andsensitizes spores to subsequent stress. J Appl Microbiol,2004,97:838-52.
    Costerton JW. Overview of microbial biofilms. J. Ind. Microbiol,1995,15:137-140.
    Cowan AE, Olivastro EM, Koppel DE, Loshon CA, Setlow B and Setlow P. Lipids in the inner membrane of dormant spores of Bacillus species arelargely immobile. Proc Natl Acad Sci U S A, 2004,101:7733-8.
    Driks A. Bacillus subtilis spore coat. Microbiology and Molecular Biology Reviews,1999,63(1):1-20.
    Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ, Wang ST, Ferguson C, Haga K, Sato T, Liu JS and Losick R. The programof gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol,2004,2:e328.
    Endo A, Kakiki K, Misato T. Mechanism of action of the antifungal agent polyoxin D. Journal of Bacteriology,1970,104:189-196.
    Errington J. Regulation of endospore formation in Bacillus subtilis. Nat RevMicrobiol,2003,1: 117-26.
    Gould GW. Germination. In The Bacterial Spore. Edited by Gould GW, Hurst A. New York:Academic Press; 1969,397-444.
    Gould GW. History of science--spores. J Appl Microbiol,2006,101:507-13.
    Gould GW. Water and the survival of bacterial spores. In Leopold AC (ed.), Membranes, Metabolism, and Dry Organisms. Cornell University Press,Ithaca, USA,1986,143-156.
    Henriques AO, Costa TV, Martins LO and Zilhao R. The functional architecture and assambly of the spore coat. In Ricca E, Henriques AO and Cutting SM (ed.), Bacterial spore formers:probiotics and emerging applications. Horizon Bioscience, Wymondham, Norfolk UK,2004,65-86.
    Hornstra LM. Germination of Bacillus cereus spores. The role of germination receptors. Ph.D. thesis. Wageningen University, Wagenigen,2007.
    Irie R, Y Fujita and M Kobayashi. Nucleotide sequence and gene organisation of the gerK spore germination locus of Bacillus subtilis 168. The Journal of General Applied Microbiology,1996, 42:141-153.
    Jeon YH, Chang SP, Hwang IG. Involvements of growth-promoting rhizobacterium Paenibacillus polymyxa in root rot of stored Korean ginseng. Journal of Microbiology and Biotechnology,2003, 13:881-891.
    Jones CA, Padula NL and Setlow P.Effect of mechanical abrasion on the viability, disruption and germination of spores of Bacillus subtilis. Journal of Applied Microbiology,2005,99:1484-94.
    Katz E and Demain AL. The peptide antibiotics of Bacillus:chemistry,biogenesis and possible role. Bacteriol Rev,1977,41:449-475.
    Kavitha S, Senthikumar S and Gnanamanickam S. Isolation and partial characterization of antifungal protein form Bacillus polymyxa strain VLB 16. Process Biochemistry,2005,40:3236-3243.
    Khan Z, Kim SG and Jeon YH. A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresource Technology,2008,99:3016-3023.
    Kim H, Hahn M, Grabowski P, McPherson DC, Otte MM, Wang R, Ferguson CC, Eichenberger P and Driks A. The Bacillus subtilis spore coat protein interaction network. Mol Microbiol,2006,59: 487-502.
    Kunst F, Ogasawara N, Moszer I and et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature,1997,390:249-56.
    Kurusu K and Ohba K. New peptide antibiotics LI FO3, FO4, FO5, FO7 and FO8, produced by Bacillus polymyxa. J Antibiot,1987,40:1506-1514.
    Masayama A, Kuwana R, Takamatsu H, Hemmi H, Yoshimura T, Watabe K and Moriyama R. A novel lipolytic enzyme, YcsK (LipC), located in the spore coat of Bacillus subtilis, is involved in spore germination. J Bacteriol,2007,189:2369-75
    Mavingui P, Heulin T. In vitro chitinase and antifungal activity of a soil, rhizosphere and rhizoplane population of Bacillus polymyxa. Soil Biology and Biochemistry,1994,26:801-803.
    Moir A. How do spores germinate? J Appl Microbiol,2006,101:526-30.
    Nakashio S and Gerhardt P. Protoplast dehydration correlated with heatresistance of bacterial spores. J Bacteriol,1985,162:571-578.
    Nicholson WL, Munakata N, Horneck G, Melosh HJ and Setlow P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrialenvironments. Microbiol Mol Biol Rev,2000,64:548-72.
    Nicholson WL. Ubiquity, longevity, and ecological roles of Bacillus spores, In Ricca E, Henriques AO and Cutting SM(ed.), Bacterial spore formers:probiotics and emerging applications. Horizon Bioscience, Wymondham, Norfolk UK,2004,1-15.
    Nielsen P, Sorensen J. Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiology Ecology,1997,22:183-192.
    Ohta N, Kakiki K, Misato T. Studies on the mode of action of polyoxin D. II. effect of polyoxin D on the synthesis of fungal cell wall chitin. Agricultural and Biological Chemistry,1970,34: 1224-1234.
    Paidhungat M and Setlow P. Spore germination and outgrowth. In:Sonenshein AL, Hoch JA and Losick R (eds) Bacillus subtilis and its relatives:from genes to cells. American Society for Microbiology, Washington, D.C.2001, pp 537-548.
    Paidhungat M, Ragkousi K and Setlow P. Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca2+ -dipicolinate. J Bacteriol,2001,183:4886-4893.
    Paidhungat M, Setlow B, Daniels WB, Hoover D, Papafragkou E and Setlow P. Mechanisms of initiation of germination of spores of Bacillus subtilis by pressure. Applied and Environmental Microbiology,2002,68:3172-3175.
    Paul M, Atluri S, Setlow B and Setlow P. Mechanisms of killing of sporesof Bacillus subtilis by dimethyldioxirane. J Appl Microbiol,2006,101:1161-8.
    Pichard B, Larue JP and Thouvenot D. Gavaserin and saltavalin. New peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol Lett,1995,13:215-218.
    Piggot PJ and Hilbert DW. Sporulation of Bacillus subtilis. Curr Opin Microbiol,2004,7:579-86.
    Piuri M, Sanchez-Rivas C, Ruzal SM. A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages. Letters in Applied Microbiology,1998,27:9-13.
    Popham DL, Helin J, Costello CE and Setlow P. Muramic lactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not for spore dehydration or heat resistance. Proc Natl Acad Sci U S A,1996,93:15405-10.
    Rose R, Setlow B, Monroe A, Mallozzi M, Driks A and Setlow P. Comparison of the properties of Bacillus subtilis spores made in liquid or on agar plates. Journal of Applied Microbiology, 2007,103:691-699.
    Russell AD. Lethal effects of heat on bacterial physiology and structure. Sci Progr,2003,86:115-137.
    Sekiguchi J, Akeo K, Yamamoto H, Khasanov FK, Alonso JC and Kuroda A. Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis. J Bacteriol,1995,177:5582-9.
    Setlow P. Mechanisms which contribute to the long-term survival of spores of Bacillus species. Soc Appl Bacteriol Symp Ser,1994,23:49S-60S.
    Setlow P. Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu Rev Microbiol,1995,49:29-54.
    Setlow P. Resistance of bacterial spores, In Storz G and Hengge-Aronis R (ed.), Bacterial stress responses. ASM press, Washington DC,2000,217-230.
    Setlow P. Resistance of bacterial spores. In Bacterial Stress Responses. Edited by Storz G, Hengge-Aronis R. Washington, DC:American Society for Microbiology,2000,217-230.
    Setlow P. Resistance of bacterial spores. In Storz G and Hengge-Aronis R (ed.), Bacterial stress responses. American Society for Microbiology, Washington DC,2000,217-230.
    Setlow P. Spore germination. Current Opinion in Microbiology,2003,6:550-556.
    Smoot LA and Pierson MD. Inhibition and control of bacterial spore germination. Journal of Food Protection,1982,45:84-92.
    Stumbo CR. Thermobacteriology in Food Processing.2nd edn, Academic Press, New York.1973.
    Timmusk S, and Wagner EGH. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression:a possible connection between biotic and abiotic stress responses. Mol. Plant-Microbe Interact,1999,12:951-959.
    Timmusk S, West PV, Gow NAR and Wagner EGH. Antagonistic effects of Paenibacillus polymyxa towards the oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. In Mechanism of action of the plant growth promoting bacterium Paenibacillus polymyxa. Uppsala iversity,Uppsala, Sweden,2003,1-28.
    Titus DS. Studies on the germination characteristics of spores of Bacillus stearothermophilus. Ph.D. thesis. University of Illinois, Urbana,1957.
    Vepachedu VR and Setlow P. Localization of SpoVAD to the innermembrane of spores of Bacillus subtilis. J Bacteriol,2005,187:5677-82.
    Vepachedu VR and Setlow P. Role of SpoVA Proteins in release of dipicolinic acid during germination of Bacillus subtilis spores triggered bydodecylamine or lysozyme. J Bacteriol,2007,189: 1565-72.
    Zuberi AR, Moir A and Feavers IM. The nucleotide sequence and gene organization of the gerA spore germination operon of Bacillus subtilis 168. Gene,1987,51:1-11.
    吴愉萍,徐建明,汪海珍,胡宝兰,吴建军.Sherlock MIS系统应用于土壤细菌鉴定的研究.土壤学报,2006,43(4):642-647.
    Ash C, Priest FG, Collins MD. Paenibacillus gen. nov. and Paenibacillus polymyxa comb. nov. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB, List no.51. Int J Syst Bacteriol,1994,44:852.
    Chapman G Electron microscopy of ultrathin sections of bacteria. Ⅱ. Sporulation of Bacillus megaterium and Bacillus cereus. Journal of Bacteriology,1956,71:348-355.
    Dondero NC and Holbert PE. The endospore of Bacillus Polymyxa. Journal of Bacteriology,1957.
    Holbert PE. An Effective Method of Preparing Sections of Bacillus polymyxa Sporangia and Spores for Electron Microscopy. Journal of Biophysical and Biochemical Cytology,1960,7:373-376.
    Hooff A and Aninga S. An electron microscope study on the shape of the spores of Bacillus polymyxa. J Microbiol and Serol,1956,9(2):327.
    Lida K; Amako K; Takade A; Ueda Y; Yoshida S. Electron Microscopic Examination of the Dormant Spore and the Sporulation of Paenibacillus motobuensis Strain MC10. Microbiology and Immunology,2007,51(7):643-648.
    Meyer A. Studien Uiber die Morphologie und Entwickelungsgeschichteder Bakterien. ausgefiihrt an Astasia asterospora A. M. und Bacillus tumescens. Zopf. Flora,1897,84:185.
    Oka N, Hartel PQ Finlay Mo, Gagliardi J, Zuberer DA, Fuhrmann, JJ, Angle JS, Skipper HD. Misidentification of soil bacteria by fatty acid methyl ester (FAME) and Biolog analyses. Biology and Fertility of soils.2000,32:256-258.
    Skomurski JF and Vary JC. Fatty acid phospholipids composition of Bacillus megaterium spores with altered germination properties. Lipid,1982,17:914-923.
    Robinow CF. Spore structure as revealed by thin sections. Journal of Bacteriology,1953,66:300-311.
    Zelles L. Fatty acid patterns of phospholipids and Lipopolysaccharides in the characterisaton of microbial communities in soil:a review. Biol Fertil Soils,1999,29 (2):111-129.
    郭小华,陆文清,邓萍等.益生枯草芽孢杆菌MA139增殖培养基的优化.中国农业大学学报,2006,11(3):41-46。
    连常平.芽孢杆菌的生产方法及该菌在水产养殖中的应用.水产科技情报,2005,32(3):114-117.
    宋卡魏,王星云,张荣意.培养条件对枯草芽孢杆菌B68芽孢产量的影响.中国生物防治,2007,23(3):255-259.
    孙梅,匡群,施大林,等.培养条件对纳豆芽孢杆菌芽孢形成的影响.生物技术,2006,27(8):19-24.
    徐世荣,陈骧,吴云鹏.细菌芽孢形成机制在微生物生态制剂生产中的应用.食品与生物技术学报,2007,26(4):121-126.
    姚露燕,张水华,曹昱,王永华.金属离子浓度对枯草芽孢杆菌芽孢率的影响.现代食品,2008(8):770-772
    张根伟.枯草芽孢杆菌BS26液体发酵条件的研究.河北省科学院学报,2005,22(1):54-57.
    张丽霞,李荣禧,王琦等.枯草芽孢杆菌发酵培养基的优化.中国生物防治,2006,22(增刊):82-88.
    Osadchaya A.I., Kudryavtev, V.A., Safronova, L.A., Kozachko, I.A. and Smirnov, V.V. (1997) Stimulation of growth and spore formation by optimisation of carbohydrate nutrition during submerged cultivation of Bacillus subtilis. Applied Biochemistry and Microbiology 33,286-289.
    Warrine K and Waites WM. Enhanced sporulation in Bacillus subtilis grown on medium containing glucose: ribose. Letters in Applied Microbiology,1999,29:97-102.
    Yokota A, Sasajima K. Derepressed syntheses of sporulation maker enzymes in a Bacillus species mutant. Agric Biol Chem,1981, (45):2417-24231.
    Yousten AA, Wallis DA, Singer S. Effect of oxygen on growth, sporulation, and mosquito larval toxin formation by Bacillus sphaericus 1593. Current Microbiol,1984,(11):175-1781.
    Zhang SS, Raza W and Shen Q. Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol Fertil Soils,2008,44:1073-1080.
    Ash C, Priest FG, Collins MD. Paenibacillus gen. nov. and Paenibacillus polymyxa comb. nov. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB, List no.51. Int J Syst Bacteriol,1994,44:852.
    Atluri S, Ragkousi K, Cortezzo DE, Setlow P. Cooperativity between different nutrient receptors in germination of spores of Bacillus subtilis and reduction of this cooperativity by alterations in the GerB receptor. J Bacteriol,2006,188:28-36.
    Barlass PJ, Houston CW, Clements MO, Moir A. Germination of Bacillus cereus spores in response to L-alanine and to inosine:the roles of gerL and gerQ operons. Microbiology,2002,148:2089-2095.
    Beatty PH and Jensen SE. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol,2002,48:159-169.
    Black EP, Wei J, Atluri, Cortezzo DE, Koziol-Dube K, Hoover DG and Setlow P. Analysis of factors influencing the rate of germination of spores of Bacillus subtilis by very high pressure. J Appl Microbiol, 2007,102:65-76.
    Blocher JC, Busta FF. Multiple modes of inhibition of spore germination and outgrowth by reduced pH and sorbate. J Appl Bacteriol,1985,59:469-478.
    Brigitte Pichard, Jean-Pierre Larue, Daniel Thouvenot, Gavaserin and saltavalin. New peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiology Let-ters,1995,133(3):215-218.
    Broussolle V, Gauillard F, Nguyen-The C and Carlin F. Diversity of spore germination in response to inosine and L-alanine and its interaction with NaCl and pH in the Bacillus cereus group. J Appl Microbiol,2008, 105:1081-1090.
    Ciarciaglini G, Hill PJ, Davies K, McClure PJ, Kilsby D, Brown MH and Coote PJ. Germination induced bioluminescence, a route to determine the inhibitory effect of a combination preservation treatment on bacterial spores. Appl Environ Microbiol,2000,66:3735-3742.
    Clements MO and Moir A. Role of the gerl operon of Bacillus cereus 569 in the response of spores to germinants. J Bacteriol,1998,180:6729-6735.
    Corfe BM, Sammons RL, Smith DA and Mauel C. The gerB region of the Bacillus subtilis 168 chromosome encodes a homologue of the gerA spore germination operon. Microbiology,1994,140: 471-478.
    Cortezzo DE, Setlow B and Setlow P. Analysis of the action of compounds that inhibit the germination of spores of Bacillus species. J Appl Microbiol,2004,96:725-741.
    Dijksterhuis J, Sanders M, Gorris LGM, Smid EJ. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J Appl Microbiol,1999,86:13-21.
    Gould GW. Germination. In:Gould GW and Hurst A (eds) The Bacterial Spore. Academic Press, London, pp: 397-444.
    Gounina-Allouane R, Ve'ronique Broussolle, Fre'de'ric Carlin. Influence of the sporulation temperature on the impact of the nutrients inosine and L-alanine on Bacillus cereus spore germination. Food Microbiol, 2008,25:202-206.
    Helbig. Biological Control of Botrytis cinerea Pers. ex Fr. in Strawberry by Paenibacillus polymyxa (Isolate 18191). J Phytopathol,2001,149:265-273.
    Hornstra LM. Germination of Bacillus cereus spores. The role of germination receptors. Ph.D. thesis. Wageningen University, Wagenigen,2007.
    Irie R, Fujita Y and Kobayashi M. Nucleotide sequence and gene organisation of the gerK spore germination locus of Bacillus subtilis 168. J Gen. Appl. Microbiol,1996,42:141-153.
    Jones CA, Padula NL and Setlow P. Effect of mechanical abrasion on the viability, disruption and germination of spores of Bacillus subtilis. J Appl Microbiol,2005,99:1484-1494.
    Katz E and Demain AL. The peptide antibiotics of Bacillus:chemistry, biogenesis, and possible functions. Bacteriol Rev,1977,41:449-474.
    Kurusu K, Ohba K, Arai T and Fukushima K. New peptide antibiotics LI-FO3, FO4, FO5, FO7, and FO8, produced by Bacillus polymyxa. Journal Antibiotics XL,1987,1506-1514.
    McCann KP, Robinson C, Sammons RL, Smith DA and Corfe BM. Alanine germinant receptors of Bacillus subtilis. Lett Appl Bacteriol,1996,23:290-294.
    Moir A. How do spores germinate? J Appl Microbiol,2006,101:526-530.
    Paidhungat M and Setlow P. Spore germination and outgrowth. In Sonenshein AL, Hoch JA and Losick R (eds) Bacillus subtilis and its relatives from genes to cells. American Society for Microbiology, Washington DC,2001, pp:537-548.
    Paidhungat M, Setlow B, Daniels WB, Hoover D, Papafragkou E and Setlow P. Mechanisms of initiation of germination of spores of Bacillus subtilis by pressure. Appl Environ Microbiol,2002,68:3172-3175.
    Riesenman P J and Setlow P. Role of the spore coat layer in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation. Appl Environ Microbiol,2000,66: 620-626.
    Rose R, Setlow B, Monroe A, Mallozzi M, Driks A and Setlow P. Comparison of the properties of Bacillus subtilis spores made in liquid or on agar plates. J Appl Microbiol,2007,103:691-699.
    Sacks LE and Thompson PA. Germination requirements of Bacillus macerans spores. J Bacteriol,1970,105: 739-746.
    Setlow B, Cowan AE and Setlow P. Germination of spores of Bacillus subtilis with dodecylamine. J Appl Microbiol,2003,95:637-648.
    Smoot LA and Pierson MD. Inhibition and control of bacterial spore germination. J Food Protect (1969), 1982,45:84-92.
    Stumbo CR. Thermobacteriology in Food Processing.2nd edn, Academic Press, New York,1973.
    Thanh NV, Rombouts FM and Nout MJR. Effect of individual amino acids and glucose on activation and germination of Rhizopus oligosporus sporangiospores in tempe starter. J Appl Microbiol,2005,99: 1204-1214.
    Timmusk S, Grantcharova N, Gerhart, Wagner H. Paenibacillus polymyxa invades plant roots and forms biofilms. Appl environ microbial,2005,71:7292-7300.
    Titus DS. Studies on the germination characteristics of spores of Bacillus stearothermophilus. Ph.D. thesis. University of Illinois, Urbana,1957.
    White CH, Chang RR, Martin JH and Loewenstein M. Factors affecting L-Alanine induced germination of Bacillus spores. J Dairy Sci,1974,57:1309-1314.
    Yang J, Kharbanda PD, Mirza M. Evaluation of Paenibacillus polymyxa pkbl for biocontrol of Pythium disease of cucumber in a hydroponic system. Acta Horti,2004,635:59-66.
    Zhang SS, Raza W and Shen Q. Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol Fertil Soils,2008,44:1073-1080.
    Zuberi AR, Moir A and Feavers IM. The nucleotide sequence and gene organization of the gerA spore germination operon of Bacilltls stlbtilis 168. Gene,1987,51:1870-1876.
    纪春艳,李云峰,王振中.稻瘟菌糖蛋白激发子(CSBI)的纯化及其鉴定.植物生理与分子生物学学报,2006,32(5):587-592.
    陶树兴.复混肥料中化肥含量对3种肥料微生物存活率的影响.浙江林学院学报,2006,23(5):507-511.
    Antelmann H, Towe S, Albrecht D and Hecker M. The phosphorus source phytate changes the composition of the cell wall proteome in Bacillus subtilis. J Proteome Res,2007,6:897-903.
    Ash C, Priest FG, Collins MD. Paenibacillus gen. nov. and Paenibacillus polymyxa comb. nov. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB, List no.51. Int J Syst Bacteriol,1994,44:852.
    Baweja RB, Zaman MS, Mattoo AR, Sharma K, Tripathi V, Aggarwal A, Dubey GP, Kurupati RK, Ganguli M, Chaudhury NK, Sen S, Das TK, Gade WN and Singh Y. Properties of Bacillus anthracis spores prepared under various environmental conditions. Arch Microbiol,2008,189: 71-79.
    Beatty PH and Jensen SE. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol,2002,48:159-169.
    Brigitte Pichard, Jean-Pierre Larue, Daniel Thouvenot, Gavaserin and saltavalin. New peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiology Let-ters,1995,133(3):215-218.
    Cortezzo DE and Setlow P. Analysis of factors influencing the sensitivity of spores of Bacillus subtilis to DNA damaging chemicals. J Appl Microbiol,2005,98:606-617.
    Costa T, Steil L, Martins LO, Volker U, Henriques AO. Assembly of an oxalate decarboxylase produced under sigmaK control into the Bacillus subtilis spore coat. J Bacteriol,2004,186:1462-1474.
    Dadd AH, McCormick KE and Daley GM. Factors influencing the resistance of biological monitors to ethylene oxide. J Appl Bacteriol,1983,55:39-48.
    De Wulf P, Soetaert W, Schwengers D and Vandamme EJ. D-glucose does not catabolite repress a transketolasedeficient D-ribose producing Bacillus subtilis mutant strain. J Ind Microbiol,1996,17: 104-109.
    Dijksterhuis J, Sanders M, Gorris LGM, Smid EJ. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J Appl Microbiol,1999,86:13-21.
    Driks A. Bacillus subtilis spore coat. Microbiol Mol Biol Rev,1999,63:1-20.
    Gerhardt P and Marquis RE. Spore thermoresistance mechanisms. In Smith I, Slepecky RA and Setlow P (eds) Regulation of Prokaryotic Development. American Society for Microbiology. Washington DC,1989, pp:43-63.
    Gounina-Allouane R, Ve'ronique Broussolle, Fre'de'ric Carlin. Influence of the sporulation temperature on the impact of the nutrients inosine and L-alanine on Bacillus cereus spore germination. Food Microbiol,2008,25:202-206.
    Hederstedt L. In Sonenshein AL, Hoch JA and Losick R (eds) Bacillus subtilis and Other Gram-Positive Bacteria:Biochemistry, Physiology and Molecular Genetics. ASM, Washington, DC,1993, pp: 181-197.
    Helbig. Biological Control of Botrytis cinerea Pers. ex Fr. in Strawberry by Paenibacillus polymyxa (Isolate 18191). J Phytopathol,2001,149:265-273.
    Katz E and Demain AL. The peptide antibiotics of Bacillus:chemistry, biogenesis, and possible functions. Bacteriol Rev,1977,41:449-474.
    Kurusu K, Ohba K, Arai T and Fukushima K. New peptide antibiotics LI-FO3, FO4, FO5, FO7, and FO8, produced by Bacillus polymyxa. Journal Antibiotics XL,1987,1506-1514.
    Kuwana R, Kasahara Y, Fujibayashi M, Takamatsu H, Ogasawara N and Watabe K. Proteomics characterization of novel spore proteins of Bacillus subtilis. Microbiology,2002,148:3971-3982.
    Mansilla MC, Cybulski LE, Albanesi D and de Mendoza D. Control of membrane lipid fluidity by molecular thermosensors. J Bacteriol,2004,186:6681-6688.
    Marquis RE and Shin SY. Mineralization and responses of bacterial spores to heat and oxidative agents. FEMS Microbiol Rev,1994,14:375-380.
    Marquis RE, Sim J and Shin SY. Molecular mechanisms of resistance to heat and oxidative damage. J Appl Bacteriol,1994,76:40S-48S.
    Melly E, Genest PC, Gilmore ME, Little S, Popham DL, Driks A and Setlow P. Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures. J Appl Microbiol,2002, 92:1105-1115.
    Moir A. How do spores germinate? J Appl Microbiol,2006,101:526-530.
    Penna TC, Machoshvili IA and Ishii M. Effect of media on spore yield and thermal resistance of Bacillus stearothermophilus. Appl Biochem Biotechnol,2003,105-108:287-294.
    Raza W, Yang XM, Wu HS, Wang Y, Xu YC and Shen QR (2009) Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f.sp. nevium. Eur J Plant Pathol 125:471-483.
    Rose R, Setlow B, Monroe A, Mallozzi M, Driks A and Setlow P. Comparison of the properties of Bacillus subtilis spores made in liquid or on agar plates. J Appl Microbiol,2007,103:691-699.
    Setlow P. Resistance of bacterial spores. In Storz G and Hengge-Aronis R (eds) Bacterial Stress Responses. American Society for Microbiology. Washington, DC,2000, pp:217-230.
    Takamatsu H, Kodama T, Imamura A, Asai K, Kobayashi K, Nakayama T, Ogasawara N and Watabe K. The Bacillus subtilis yabG gene is transcribed by SigK RNA polymerase during sporulation, and yabG mutant spores have altered coat protein composition. J Bacteriol,2000,182:1883-1888.
    Warriner K and Waites WM. Ehanced sporulation in Bacillus subtilis grown on medium containing glucose:ribose. Lett Appl Microbiol,1999,29:97-102.
    Yang J, Kharbanda PD, Mirza M. Evaluation of Paenibacillus polymyxa pkbl for biocontrol of Pythium disease of cucumber in a hydroponic system. Acta Horti,2004,635:59-66.
    Zhang SS, Raza W and Shen Q. Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol Fertil Soils,2008,44:1073-1080.
    蔡燕飞,廖宗文.土壤微生物生态学研究方法进展.土壤与环境,2002,11(2):167-171.
    李艳娜,许科伟,堵国成等.厌氧生境体系中产氢产乙酸细菌的F ISH定量解析.微生物学报,2007,47(6):1038-1043.
    谭燕,程杰成,屈睿等.油井采出液中硝酸盐还原菌的分离培养及对硫酸盐还原的抑制.应用与环境生物学报,2007,13(3):390-394.
    陶树兴.复混肥料中化肥含量对3种肥料微生物存活率的影响.浙江林学院学报,2006,23(5):507-511.
    王明义,袁晓燕,宋雪珍等.荧光原位杂交法在检测硫酸盐还原菌中的应用.中国现代医学杂志,2008,18(3):302-304.
    邢薇,左剑恶,孙寓娇.利用FISH和DGGE对产甲烷颗粒污泥中微生物种群的研究.环境科学,2006,27(11):2268-2272.
    张玲妍,白玉兴、杨雪莲、李凤梅、郭书海.荧光原位杂交技术对土壤是由降解菌的检测.生态学杂志,2009,28(6):1123-1127.
    张秋霞.南京农业大学硕士学位论文,2010.
    张树生.微生物有机肥缓解黄瓜枯萎病的生物学效应及其作用机制.南京农业大学博士学位论文,2009.
    赵桂芳,吴晓磊,曾景海,等.胜利油田外排水中铁细菌主要类群的监测及群落结构分析.应用与环境生物学报,2006,12(6):828-832.
    Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R and Stahl DA. Combination of 16S rRNAtargeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol,1990,56:1919-1925.
    Chambon P, Deutscher MP and Kornberg A. Biochemical studies of bacterial sporulation and germination. X. Ribosomes and nucleic acid of vegetative cells and spore of Bacillus megaterium. J Biol Chem,1968,243:5110-5116.
    Christiansson A. Bacillus cereus. In Encyclopedia of Dairy Sciences (Roginsky H, Fuquay JW and Fox PF, eds.). Academic Press, Amsterdam, The Netherlands,2003, pp:123-128.
    Driks A. Maximum shields:The assembly and function of the bacterial coat. Trends Microbiol,2002,10: 251-254.
    Eneroth A, Svensson B, Mollin G and Christansson A. Contamination of pasteurized milk by Bacillus cereus in the filling machine. J Dairy Res,2001,68:186-196.
    Fischer K, Hahn D, Honerlage W, Schonholzer F and Zeyer J. In situ detection of spore and vegetative cells of Bacillus megaterium in soil by whole cell hybridization. System Appl Microbiol,1995,18: 265-273.
    Fukushima H, Katsube K, Hata Y, Kishi R and Fujiwara S. Rapid separation and concentration of food-borne pathogens in food samples prior to quantification by viable-cell counting and real-time PCR. Appl Environ Microbiol,2007,73:92-100.
    Griffiths MW. Bacillus cereus in liquid milk and other milk products. Bull Int Dairy Fed,1992,275: 36-39.
    Moir A. How do spore germinate? J Appl Microbiol,2006,101:526-530.
    Oda Y, Slagman SJ, Meijer WG, Forney LJ and Gottschal JC. Influence of growth rate and starvation on fluorescent in situ hybridization of Rhodopseudomonas palustris. FEMS Microbiol. Ecol,2000,32: 205-213.
    Park SH, Kim HJ, Kim JH, Kim TW and Kim HY. Simultaneous detection and identification of Bacillus cereus group bacteria using multiplex PCR. J Microbiol. Biotechnol,2007,17:1177-1182.
    Perry L, Heard P, Kane M, Kim H, Savikhin S, Dominguez W and Applegate B. Application of multiplex polymerase chain reaction to the detection of pathogens in food. J Rapid Methods Autom. Microbiol,2007,15:176-198.
    Quarto M and Chironna M. Hepatitis A:Sources in food and risk for health. In Review in Food and Nutrition Toxicity. Vol.2 (Preedy VR and Watson RR, eds.). CRC Press, London, UK,2005, pp: 91-126.
    Setlow P. Mechanisms which contribute to the long-term survival of spores of Bacillus species. J Appl Bacteriol Suppl,1994,76:49S-60S.
    Setlow P. Spore germination. Curr Opin Microbiol,2003,6:550-556.
    Swerdlow BM, Setlow B and Setlow P. Level of H+and other monovalent cations in dormant and germinating spores of Bacillus megaterium. J Bacteriol,1981,148:20-29.
    Wagner M, Horn M and Daims H. Fluorescence in situ hybridization for the identification and characterization of prokaryotes. Curr Opin Microbiol,2003,6:302-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700