用户名: 密码: 验证码:
类芽孢杆菌B69中脂肽类化合物Pelgipeptins的分离鉴定及相关基因簇分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肽类抗生素是一类重要的抗生素,具有抗菌谱广,抗菌效果佳,不容易使病原菌产生耐药性等特点。随着达托霉素、棘白霉素等新一代脂肽类抗生素的上市,越来越多的科研工作者将目光转移至对该类抗生素的研发上。本室在微生物资源筛选时获得一株对所有测试过的致病菌均有明显抑制作用的类芽孢杆菌B69,盘栽试验表明该菌所产化合物具有良好的生物防治效果。前期的研究结果表明,该菌所产抗生素可能为脂肽类化合物。本研究围绕着该菌所产抗菌活性物质展开系统研究,包括对活性物质进行分离、纯化、结构鉴定及生物活性测定。同时,利用全基因组测序获得该类次级代谢产物生物合成基因簇信息;并通过异源表达A结构域蛋白的方法对其功能进行验证。具体的研究内容与结果如下:
     1、脂肽类抗生素pelgipeptins的分离纯化与结构鉴定。通过培养基和发酵条件优化筛选出最适的发酵工艺;该菌发酵液中的活性物质经大孔吸附树脂、固相萃取、高效液相等多种手段的分离,获得了4种不同组分。ESI-CID-MS质谱分析和核磁共振技术分析表明,这4种化合物(pelgipeptins A、B、C和D)是结构非常相似的脂肽类化合物,其分子量分别为1072Da、1100Da、1086Da和1086Da。其中化合物A和D被鉴定为国内外首次发现的新次级代谢产物。
     2、脂肽类抗生素pelgipeptins的生物活性测定。对pelgipeptins A-D纯品进行抗菌活性检测,结果表明:四种化合物对病原微生物大肠杆菌、绿脓菌等革兰氏阴性细菌以及枯草芽孢杆菌、金黄色葡萄球菌、粪肠球菌等革兰氏阳性菌均有很强的抗菌活性;其中包括多重耐药金黄色葡萄球菌ATCC43300,暗示了该类化合物在医药领域应用的潜力。此外,pelgipeptins对假丝酵母、尖镰孢菌、禾谷镰孢菌、串珠镰孢菌、立枯丝核菌和亚麻刺盘镰孢菌等植物致病真菌也有明显的抑制作用。盘栽实验表明,pelgipeptins粗提物对水稻纹枯病、黄瓜灰霉病、黄瓜白粉病、小麦白粉病和黄瓜霜霉病均有一定的生防作用,其中对水稻纹枯病的防治效果最佳。杀菌曲线表明该类抗生素的杀菌效果具有浓度依赖性。在外膜通透性实验中,pelgipeptin B具有与polymyxin B类似的细菌外膜破坏作用,推测该类抗生素的作用机制可能与polymyxin B相似,即均通过对细菌内、外膜的破坏达到快速杀菌的效果。
     3、基因组水平挖掘pelgipeptins生物合成plp基因簇。为研究pelgipeptins生物合成途径,本实验室测定了该菌株的全基因组草图。生物信息学分析表明,B69基因组中至少包含2个完整的NRPS家族基因簇、3个PKS/NRPS杂合基因簇以及一个trans-PKS基因簇。其中一个至少包含8个ORF的plp基因簇(plp A-H)可能对应于已分离获得的pelgipeptins;根据相关基因的比对分析以及功能预测,推测该基因簇编码蛋白催化合成的次级代谢产物与pelgipeptins的结构完全吻合,暗示pelgipeptins是通过NRPS途径催化合成的。
     4、plp基因簇的功能验证。通过PCR技术扩增plp基因簇部分模块中的A结构域基因序列,克隆至大肠杆菌表达载体pET-28a,并在大肠杆菌BL21(DE3)中进行异源表达。体外活性分析表明,所测3个A结构域的底物特异性与pelgipeptins对应位点的氨基酸基本一致,最终间接证明了plp基因簇通过NRPS途径负责pelgipeptins在细菌体内的合成。
Lipopeptide antibiotic is one important kind of antibiotics with broad spectrum and good antibacterial effect, and usually it is not easy to make pathogens resistant. As the launch of daptomycin and echinocandin recently, much more attention was focused on the development of this kind of compounds. The strain, isolated and identified as Paenibacillus elgii B69in our lab, showed potent antimicrobial activity to the tested indicator strains, including gram-positive, gram-negative bacteria, and fungi, which attracted our attention for further study. In this study, the work was mainly carried out on the separation, purification, structure elucidation and biological activity of the bioactive compounds isolated from this strain. Meanwhile, according to the genome information, we obtained the gene cluster possibly responsible for these bioactive antibiotics. Further study on the functional relationship between the compounds and the gene cluster was performed, including gene knock-out and heterologous expression The results were shown as follows:
     1. The purification and identification of lipopeptide antibiotics-pelgipeptins. Under the appropriate medium composition and culture conditions, four unobserved lipopeptide antibiotics, named pelgipeptins A, B, C and D, were isolated by macroporous resin adsorption and RP-HPLC separation in the B69fermentation culture. The molecular mass of these four compounds were1072Da,1100Da,1086Da,1086Da, respectively. Mass-spectrometry and NMR spectroscopy indicated that all these active compounds belonged to the polypeptin family, and pelgipeptins A and D were the novel antibiotics to date.
     2. The biological characterization of pelgipeptins. The biological activities of pelgipeptins were tested as follows:pelgipeptins A-D showed potent antibacterial activity to the tested gram-negative bacteria and gram-positive bacteria, including MRSA, suggests application of such compounds in the potential field of medicine. In addition, pelgipeptins also showed strong inhibition on the fungi, such as Candida albicans, Fusarium oxysporium, Fusarium graminearum. Fusarium maniliforme, Rhizoctonia solani. Colletotrichum lini. Also, in plant experiments, Rhizoctonia solani, Botrytis cinerea. Sphaerotheca fuliginea, Blumeria graminis and Pseudoperonospora cubensis were effectively inhibited during its growth under the pelgipeptin with the concentration of250μg/mL. Among these tests, the biocontrol property in Rhizoctonia solani was the best. In vitro time kill curve, the bactericidal effect of these antibiotics performed in a concentration-dependent manner. Through the outer membrane permeability test, we found that pelgipeptin B might be with the similar bactericidal action of polymyxin B, suggesting that the targets of the class of antibiotics may be associated with the inner and outer membrane of bacteria to achieve rapid bactericidal effect.
     3. The pip gene cluster responsible for pelgipeptins biosynthesis. In order to analyze pelgipeptins biosynthetic pathway in strain B69, we obtained the draft genome sequence through the Solexa paired-end sequencing technology. Several unknown giant gene clusters were found in B69genome, including two nonribosomal peptide synthetases (NRPS), one polyketide synthetase (PKS) and three hybrid NRPS-PKS synthetases gene. Further inspection revealed that one NRPS gene cluster (plp) harboring8open reading frames (plp A-H) could be assigned to pelgipeptins biosynthesis. According to the gene blast and functional perdition, the proposed structure of this secondary metabolite was in agreement with that of pelgipeptins, indicating that pelgipeptins might be catalyzed through plp gene cluster in NRPS synthesis pathway.
     4. The functional analysis of plp gene cluster. Three A domains in plp gene cluster were cloned by PCR. Then, the genes were cloned into plasmid pET-28a and expressed in E.coli BL21(DE3). In vitro biochemical analysis showed that the measured substrate specificities of tested A domain proteins were consistent with the corresponding amino acids in pelgipeptins. These results provided the indirect evidence that the plp gene cluster was responsible for the catalytic synthesis of pelgipeptins.
引文
[1]MRSA:Methicillin-resistant Staphylococcus aureus in Healthcare Settings. Centers for Disease Control and Prevetion (October 17,2007).
    [2]Ahmed, F., T. Ohtsuki, W. Aida, and M. Ishibashi.2008. Ty rosine derivatives isolated from Streptomyces sp. IFM 10937 in a screening program for TRAIL-resistance-overcoming activity[J]. Journal of Nature Product 71:1963-1966.
    [3]Ansari, M.2004. NRPS-PKS:a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Research 32:W405.
    [4]Araujo da Silva, K., J. Salles, L. Seldin, and J. van Elsas.2003. Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere. Journal of Microbiological Methods 54:213-231.
    [5]Aron, Z. D, P. C. Dorrestein, J. R. Blackhall, N. L. Kelleher, and C. T. Walsh.2005. Characterization of a new tailoring domain in polyketide biogenesis:the amine transferase domain of MycA in the mycosubtilin gene cluster. Journal of the American Chemical Society 127:14986-14987.
    [6]Arpigny, J. L., and K. E. Jaeger.1999. Bacterial lipolytic enzymes:classification and properties. Biochemical Journal 343:177.
    [7]Ash, C., F. Priest, and M. Collins.1993. Molecular identification of rRNA group 3 Bacilli (Ash, Farrow, Wallbanks and Collins) using a PCRprobe test. Antonie Van Leeuwenhoek. 64:253-260.
    [8]Ayuso-Sacido, A., and O. Genilloud.2005. New PCR primers for the screening of NRPS and PKS-I systems in Actinomycetes:detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microbial ecology 49:10-24.
    [9]Bachmann, B. O., and J. Ravel.2009. Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzy mol 458:181-217.
    [10]Bachmann, B. O., and J. Ravel.2009. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods In En zy mo logy 458:181-217.
    [11]Bais, H. P., R. Fall, and J. M. Vivanco.2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology 134:307-319.
    [12]Bergendahl, V., U. Linne, and M. A. Marahiel.2002. Mutational analysis of the C-domain in nonribosomal peptide synthesis. European Journal Of Biochemistry 269:620-629.
    [13]Bergmann, S., J. Schumann, K. Scherlach, C. Lange, A. A. Brakhage, and C. Hertweck.2007. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nature chemical biology 3:213-217.
    [14]Boeck, L., and R. Wetzel.1990. A54145, a new lipopeptide antibiotic complex:factor control through precursor directed biosynthesis. The Journal of antibiotics 43:607.
    [15]Bok, J. W., D. Hoffmeister, L. A. Maggio-Hall, R. Murillo, J. D. Glasner, and N. P. Keller. 2006. Genomic mining for Aspergillus natural products. Chemistry & Biology 13:31-37.
    [16]Busti, E., P. Monciardini, L. Cavaletti, R. Bamonte, A. Lazzarini, M. Sosio, and S. Donadio. 2006. Antibiotic-producing ability by representatives of a newly discovered lineage of Actinomycetes. Microbiology-Sgm 152:675-683.
    [17]Carrillo, C., J. A. Teruel, F. J. Aranda, and A. Ortiz.2003. Molecular mechanismof membrane permeabilization by the peptide antibiotic surfactin. Biochimica Et Biophysica Acta-Bio membranes 1611:91-97.
    [18]Chait, B.T., R. Wang, R. C. Beavis,and S. B. H. Kent.1993. Protein Ladder Sequencing. Science 262:89-92.
    [19]Challis, G. L.2008. Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154:1555.
    [20]Chen, L., N. Wang, X. Wang, J. Hu, and S. Wang.2010. Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10. Bioresource Technology 101:8822-8827.
    [21]Chen, X. H., A. Koumoutsi, R. Scholz, K. Schneider, J. Vater, R. Sussmuth, J. Piel, and R. Borriss.2009. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Journal of biotechnology 140:27-37.
    [22]Choi, S., S. Park, R. Kim, S. Kim, C. Lee, J. Kim, and S. Park.2009. Identification of a polymyxin synthetase gene cluster of Paenibacilluspolymyxa and heterologous expression of the gene in Bacillus subtilis[J]. Journal of Bacteriology 191:3350.
    [23]Choi, S. K., S. Y. Park. R. Kim, S. B. Kim, C. H. Lee. J. F. Kim. and S. H. Park.2009. Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. Journal of Bacteriology 191:3350-3358.
    [24]Choi, S. K., S. Y. Park, R. Kim, S. B. Kim, C. H. Lee. J. F. Kim, and S. H. Park.2009. Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. Journal of Bacteriology 191:3350-3358.
    [25]Conti, E., T. Stachelhaus, M. A. Marahiel, and P. Brick.1997. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. The EMBO Journal 16:4174-4183.
    [26]Corre, C., and G. L. Challis.2007. Heavy tools for genome mining. Chemistry & Biology 14:7-9.
    [27]Cosmina, P., F. Rodriguez, F. de Ferra, G. Grandi, M. Perego, G. Venema, and D. van Sinderen.1993. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 8:821-831.
    [28]Deleu, M., O. Bouffioux, H. Razafindralambo, M. Paquot, C. Hbid, P. Thonart, P. Jacques, and R. Brasseur.2003. Interaction of surfactin with membranes:a computational approach. Langmuir 19:3377-3385.
    [29]Deng, Y.,Y. Zhu,P. Wang, L.Zhu, J.Zheng, R. Li, L. Ruan, D. Peng, and M. Sun.2011. Complete Genome Sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with Antimicrobial Activity to Plant Pathogen Et-winia carotovora subsp.carotovora. Journal of Bacteriology.00129-0011 lv00121.
    [30]Dieckmann, R., Y. O. Lee, H. van Liempt. H. von Dhren, and H. Kleinkauf.1995. Expression of an active adenylate-forming domain of peptide synthetases corresponding to acyl-CoA-synthetases. FEBS Letters 357:212-216.
    [31]Dixon, R. A., and I. Chopra.1986. Poly my xin Band polymyxin Bnonapeptide alter cytoplasmic membrane permeability in Escherichia coli. Journal of Antimicrobial Chemotherapy 18:557.
    [32]Eggert, T., G. Pencreac'h, I. Douchet, R. Verger, and K. E. Jaeger.2000. A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol hydrolase. European Journal of Biochemistry 267:6459-6469.
    [33]Eppelmann, K., T. Stachelhaus, and M. A. Marahiel.2002. Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. Biochemistry 41:9718-9726.
    [34]Erian i, G., M. Delarue. O. Poch. J. Gangloff, and D. Moras.1990. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203-206.
    [35]Eshita, S. M., N. H. Roberto, J. M. Beale, B. M. Mamiya, and R. F. Workman.1995. Bacillomycin L c, a New Antibiotic of the Iturin Group:Isolations, Structures, and Antifungal Activities of the Congeners. The Journal of Antibiotics 48:1240-1247.
    [36]Falagas, M. E., Kasiakou, S. K.2006. Toxicity of polymy xins:a systematic review of the evidence fromold and recent studies. Critical Care 10:R27.
    [37]Falla, T. J., and R. Hancock.1997. Improved activity of a synthetic indolicidin analog. Antimicrobial Agents and Chemotherapy 41:771.
    [38]Finking, R., and M. A. Marahiel.2004. Biosynthesis of nonribosomal peptidesl. Microbiology 58:453-488.
    [39]Fischbach, M. A., and C. T. Walsh.2006. Assembly-line enzymology for poly ketide and nonribosomal peptide antibiotics:logic, machinery, and mechanisms. Chemical Reviews 106:3468-3496.
    [40]Fleischmann, R. D., M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R. Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, and J. M. Merrick.1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496.
    [41]Fujii K, S. K., Kashiwagi T, Hirayama K, Harada K.1999. Nostophycin, a novel cyclic peptide fromthe to xic Cyanobacterium Nostoc sp.152. The Journal of Organic Chemistry 64:5777-5782.
    [42]Gangolli, S. D., P. Simson, M. T. Lis, B. Cheng, R. F. Crampton. and D. M. Matthews.1970. Amino acid and peptide uptake in protein absorption. Clinical Science 39:18.
    [43]Gewolb, J.2002. Working outside the protein-synthesis rules. Science 295:2205.
    [44]Hashizume, H., C. Nosaka, S. Hirosawa, M. Igarashi, Y. Nishimura, and Y. Akamatsu.2007. Production of tripropeptins in media supplemented with precursors based on the biosynthetic pathway. Arkivoc 7:241-253.
    [45]Heerklotz, H., T. Wieprecht, and J. Seelig.2004. Membrane perturbation by the lipopeptide surfactin and detergents as studied by deuterium NMR. The Journal of Physical Chemistry B 108:4909-4915.
    [46]Hornung, A., M. Bertazzo, A. Dziarnowski, K. Schneider, K. Welzel, S. E. Wohlert, M. Holzenk mpfer, G. J. Nicholson, A. Bechthold, and R. D. Sussmuth.2007. A Genomic screening approach to the structure-Guided identification of drug candidates from aatural sources. Chembiochem 8:757-766.
    [47]Izumikawa, M., M. Murata, K. Tachibana, Y. Ebizuka, and I. Fujii.2003. Cloning of modu lar type Ipolyketide synthase genes fromsalinomycin producing strain of Streptomyces albus. Bioorganic & Medicinal Chemistry 11:3401-3405.
    [48]J.萨姆布鲁克.2002.分子克隆实验指南.科学出版社.
    [49]Jaeger, K. E., S. Ransac, H. B. Koch, F. Ferrato, and B. W. Dijkstra.1993. Topological characterization and modeling of the 3D structure of lipase from Pseudomonas aeruginosa. FEBS letters 332:143-149.
    [50]Kagami, S., Y. Esumi, M. Nakakoshi, M. Yoshihama, and K. I. Kimura.2003. Control of liposidomycin production through precursor-directed biosynthesis. Journal of Antibiotics 56:552-556.
    [51]Keating, T. A., C. G. Marshall, C. T. Walsh, and A. E. Keating.2002. The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. Nature Structural & Molecular Biology 9:522-526.
    [52]Kessler,N., H. Schuhmann, S. Morneweg, U. Linne, and M. A. Marahiel.2004. The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. Journal of Biological Chemistry 279:7413.
    [53]Kim, D. S., C. Y. Bae, D. H. Kim, S. W. Choi, and K. H. Choi.2005. Paenibacillus elgii SD17 as a biocontol agent against soil-borne turf diseases. Plant Pathology 21:328-333.
    [54]Kim, K., S. Y. Jung, D. K. Lee, J. K. Jung, J. K. Park, D. K. Kim, and C. H. Lee.1998. Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A(2). Biochemical Pharmacology 55:975-985.
    [55]Kim, P. I., H. Bai, D. Bai, H. Chae, S. Chung, Y. Kim, R. Park, and Y. Chi.2004. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. Journal of Applied Microbiology 97:942-949.
    [56]Kim, P. I., J. Ryu, Y. Kim, and Y. Chi.2010. Production of Biosurfactant Lipopeptides Iturin A, Fengycin, and Surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. Journal of Microbiology and Biotechnology.20:138-145.
    [57]Koumoutsi, A., X. H. Chen, A. Henne, H. Liesegang, G. Hitzeroth, P. Franke, J. Vater, and R. Borriss.2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology 186:1084-1096.
    [58]Lambalot, R. H., A. M. Gehring, R S. Flugel, P. Zuber, M. LaCelle, M. A. Marahiel, R. Reid, C. Khosla, and C. T. Walsh.1996. A new enzyme superfamily--thephosphopantetheinyl transferases. Chemistry & Biology 3:923-936.
    [59]le Maire, M., P. Champeil, and J. V. M Her.2000. Interaction of membrane proteins and lip ids with solubilizing detergents. Biochimica et Biophysica Acta (BBA)-Biomembranes 1508:86-111.
    [60]Li, J., P. K. Beatty, S. Shah, and S. E. Jensen.2007. Use of PCR-targeted mutagenesis to disrupt production of fusaricidin-type antifungal antibiotics in Paenibacilluspolymyxa. Applied and Environmental Microbiology 73:3480-3489.
    [61]Li, J., and S. E. Jensen.2008. Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct activation of a D-amino acid. ChemBiol 15:118-127.
    [62]Lin, X., R, Hopson, and D. E. Cane.2006. Genome Mining in Streptomyces coelicolor. molecular cloning and characterization of a new sesquiterpene synthase. Journal of the American Chemical Society 128:6022-6023.
    [63]Loh, B., C. Grant, and R. Hancock.1984. Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 26:546.
    [64]Magetdana, R.. and F. Peypoux.1994. Iturins. a special-class of pore-forming lipopeptides-biological and physicochemical properties. Toxicology 87:151-174.
    [65]Marahiel, M. A.. T. Stachelhaus, and H. D. Mootz.1997. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chemical Reviews 97:2651-2674.
    [66]May, J. J., N. Kessler, M. A. Marahiel, and M. T. Stubbs.2002. Crystal structure of DhbE, an archetype foraryl acid activating domains of modular nonribosomal peptide synthetases. Proceedings of the National Academy of Sciences of the United States of America 99:12120.
    [67]McKay, G. A., S. Beaulieu, F. F. Arhin, A. Belley, I. Sarmiento, P. T. Jr, and G. Moeck.2009. Time-kill kinetics of oritavancin and comparator agents against Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium. Journal of Antimicrobial Chemotherapy 63:1191-1199.
    [68]McQuade, T. J., A. D. Shallop, A. Sheoran, J. E. DelProposto, O. V. Tsodikov, and S. Garneau-Tsodikova.2009. A nonradioactive high-throughput assay for screening and characterization ofadenylation domains for nonribosomal peptide combinatorial biosynthesis. Analytical Biochemistry 386:244-250.
    [69]McVay, C. S., and R. D. Rolfe.2000. In vitro and in vivo activities of nitazoxanide against Clostridium difficile. Antimicrobial Agents and Chemotherapy 44:2254-2258.
    [70]Mhammedi, A., F. Peypoux, F. Besson, and G. Michel.1982. Bacillomycin-F, anew antibiotic of Iturin group-isolation and characterization. Journal of Antibiotics 35:306-311.
    [71]Mofid, M. R., R. Finking, L. O. Essen, and M. A. Marahiel.2004. Structure-based mutational analysis of the 4'-phosphopantetheinyl transferases Sfp from Bacillus subtilis:carrier protein recognition and reaction mechanism. Biochemistry 43:4128-4136.
    [72]Montes, M. J., E. Mercade, N. Bozal, and J. Guinea.2004. Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 54:1521-1526.
    [73]Mootz, H. D., and M. A. Marahiel.1997. The tyrocidine biosynthesis operon of Bacillus brevis:complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. Journal of Bacteriology 179:6843.
    [74]Moyne, A. L., R. Shelby, T. E. Cleveland, S. Tuzun, and A. R. S. Usda.2001. Bacillomycin D: an iturin with antifungal activity against Aspergillusflavus.
    [75]Naruse,N., O. Tenmyo, S. Kobaru, H. Kamei, T. Miyaki, M. Konishi, and T. Oki.1990. Pumilacidin, a complex ofnew antiviral antibiotics-production.isolation, chemical-properties, structure and biological-activity. Journal of Antibiotics 43:267-280.
    [76]Nishikiori, T., H. Naganawa, Y. Muraoka, T. Aoyagi, and H. Umezawa.1986. Plipastatins: new inhibitors ofphospholipase A2, produced by Bacillus cereus BMG302-fF67. The Journal of Antibiotics 39:755-761.
    [77]Ogle, J. M., A. P. Carter, and V. Ramakrishnan.2003. Insights into the decoding mechanism from recent ribosome structures. Trends In Biochemical Sciences 28:259-266.
    [78]Ongena, M., and P. Jacques.2008. Bacillus lipopeptides:versatile weapons for plant disease biocontrol. Trends In Microbiology 16:115-125.
    [79]Peypoux, F., J. Bonmatin, and J. Wallach.1999. Recenttrends in the biochemistry ofsurfactin. Applied Microbiology and Biotechnology 51:553-563.
    [80]Pirri, G., A. Giuliani, S. Nicoletto, L. Pizzuto, and A. Rinaldi.2009. Lipopeptides as anti-infectives:a practical perspective. Central European Journal of Biology 4:258-273.
    [81]Qin, X., J. D. Evans, K. Aronstein, K. D. Murray, and G. M. Weinstock.2006. Genome sequences of the honey bee pathogens Paenibacillus lamae and Ascosphaera apis. Insect Molecular Biology 15:715-718.
    [82]Rausch, C, I. Hoof, T. Weber, W. Wohlleben, and D. H. Huson.2007. Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evolutionary Biology 7:78.
    [83]Rausch, C, T. Weber, O. Kohlbacher, W. Wohlleben, and D. H. Huson.2005. Specificity prediction ofadenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Research 33:5799.
    [84]Robinson, J. A.1991. Polyketide synthase complexes:their structure and function in antibiotic biosynthesis. Philosophical Transactions:Biological Sciences 332:107-114.
    [85]Romero-Tabarez, M., R. Jansen, M. Sylla, H. Lunsdorf, S. Haussler, D. A. Santosa, K.N. Timmis, and G. Molinari.2006.7-O-malonyl macrolactin A, a new macrolactin antibiotic fromBacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococci, and a small-colony variant of Burkholderia cepacia. Antimicrobial Agents and Chemotherapy 50:1701-1709.
    [86]Saum, S. H., and V. Miiller.2008. Growth phase-dependent switch in osmolyte strategy in a moderate halophile:ectoine is a minor osmolyte but major stationary phase solute in Halobacillus halophilus. Environmental Microbiology 10:716-726.
    [87]Schneider, A., and M. A. Marahiel.1998. Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Archives of Microbiology 169:404-410.
    [87]Sogn, J. A.1976. Structure of the peptide antibiotic polypeptin. Journal of Medicinal Chemistry 19:1228-1231.
    [891 Song,L., F. Barona-Gomez, C. Corre, L. Xiang, D. W. Udwary, M. B. Austin, J. P. Noel, B. S. Moore, and G. L. Challis.2006. Type Ⅲ polyketide synthase β-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. Journal of the American Chemical Society 128:14754-14755.
    [90]Sparkman, O. D.2000. Mass spectrometry desk reference. Pittsburgh:Global view Pub ISBN 0-9660813-2-3.
    [91]Steenbergen, J.N., J. Alder, G. M. Thorne, and F. P. Tally.2005. Daptomycin:a lipopeptide antibiotic for the treatment of serious Gram-positive infections. Journal of Antimicrobial Chemotherapy 55:283-288.
    [92]Steller, S., A. Sokoll, C. Wilde, F. Bernhard, P. Franke, and J. Vater.2004. Initiation of surfactin biosynthesis and the role of the SrfD-thioesterase protein. Biochemistry 43:11331-11343.
    [93]Steller, S., D. Vollenbroich, F. Leenders, T. Stein, B. Conrad, J. Hofemeister, P. Jacques, P. Thonart, and J. Vater.1999. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chemistry & Biology 6:31-41.
    [94]Storm, D. R., K. S. Rosenthal, and P. E. Swanson.1977. Polymyxin and related peptide antibiotics. Annual Review of Biochemistry 46:723-763.
    [95]Sugawara, K.,M. Konishi, and H. Kawaguchi.1984. Bmy-28160, a New Peptide Antibiotic. Journal of Antibiotics 37:1257-1259.
    [96]Svetoch, E. A., N. J. Stem, B. V. Eruslanov, Y. N. Kovalev, L. I. Volodina, V. V. Perelygin, E. V. Mitsevich, I. P. Mitsevich, V. D. Pokhilenko, V. N. Borzenkov, V. P. Levchuk, O. E. Svetoch, and T. Y. Kudriavtseva.2005. Isolation of Bacillus circulans and Paenibacillus polymyxa strains inhibitory to Campy lobacterjejuni and characterization of associated bacteriocins. Journal of Food Production 68:11-17.
    [97]Takeuchi, Y., A. Murai, Y. Takahara, and M. Kainosho.1979. Structure of Permetin-a, a New Polypeptin Type Antibiotic Produced by Bacillus-Circulans. Journal of Antibiotics 32:121-129.
    [98]Tally, F. P., and M. F. De Bruin.2000. Development of daptomycin for gram-positive infections. Journal of Antimicrobial Chemotherapy 46:523.
    [99]Tamura, K., J. Dudley, M. Nei, and S. Kumar.2007. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24:1596.
    [100]Thiericke, R.1993. Biological variation of microbial metabolites by precursor-directed biosynthesis. Natural Product Reports 10:265-289.
    [101]Thiericke, R., and J. Rohr.1993. Biological variation of microbial metabolites by precursor-directed biosynthesis. Natural Product Reports 10:265-289.
    [102]Thompson, J. D., D. G. Higgins, and T. J. Gibson.1994. CLUSTALW:Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673.
    [103]Tjalsma, H., A. Bolhuis,J. D. H. Jongbloed, S. Bron, and J. M. Van Dijl.2000. Signal peptide-dependent protein transport in Bacillus subtilis:a genome-based survey of the secretome. Microbiology and Molecular Biology Reviews 64:515.
    [104]Tran, A. X., M. E. Lester, C. M. Stead, C. R H. Raetz, D. J. Maskell, S. C. McGrath, R. J. Cotter, and M. S. Trent.2005. Resistance to the antimicrobial peptide polymyxin requires myristoylation of Escherichia coli and Salmonella typhimurium lipid A. Journal of Biological Chemistry 280:28186.
    [105]Vandenende, C. S., M. Vlasschaert, and S. Y. Seah.2004. Functional characterization of an aminotransferase required for pyoverdine siderophore biosynthesis in Pseudomonas aemginosa PAO1. Journal of Bacteriology 186:5596-5602.
    [106]Vanittanakom, N., W. Loeffler, U. Koch, and G. Jung.1986. Fengycin-a Novel Antifungal Lipopeptide Antibiotic Produced by Bacillus-Subtilis F-29-3. Journal of Antibiotics 39:888-901.
    [107]Velkov,T., P. E. Thompson. R. L. Nation, and J. Li.2009. Structure-activity relationships of polymyxin antibiotics. Journal of Medicinal Chemistry 53:1898-1916.
    [108]Volpon, L., F. Besson. and J. M. Lancelin.2000. NMR structure of antibiotics plipastatins A and B fromBacillus subtilis inhibitors of phospholipase A2. FEBS letters 485:76-80.
    [109]Walsh, C.2004. Poly ketide and nonribosomalpeptide antibiotics:modularity and versatility. Science 303:1805.
    [110]Wang, J., J. Liu, X. Wang, J. Yao, and Z. Yu.2004. Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. Letters In Applied Microbiology 39:98-102.
    [111]Wang, Z., and X. Liu.2008. Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology. Bioresource Technology 99:8245-8251.
    [112]Wong, H. C., G. Liu, Y. M. Zhang, C. O. Rock, and J. Zheng.2002. The solution structure of acyl carrier protein from Mycobacterium tuberculosis. Journal of Biological Chemistry 277:15874.
    [113]Wu, X, C. Qian, H. Fang, Y. Wen, J. Zhou, Z. Zhan, R Ding, O. Li, and H. Gao. Paenimacrolidin, a novel macrolide antibiotic from Paenibacillus sp. F6-B70 active against methicillin-resistant Staphylococcus aureus. Microbial Biotechnology, no. doi: 10.1111/j.1751-7915.2010.00201.x.
    [114]Wu, X. C., W. F. Chen, C. D. Qian, O. Li, P. Li, and Y. P. Wen.2007. Isolation and identification of newly isolated antagonistic Streptomyces sp. strain API 9-2 producing chromo my cins. Journal of Microbiology 45:499-504.
    [115]Wu, X. C., X. B. Shen, R. Ding, C. D. Qian, H. H. Fang, and O. Li.2010. Isolation and partial characterization of antibiotics produced by Paenibacillus elgii B69. FEMS Microbiology Letters 320:32-38.
    [116]Yakimov,M., H. Fredrickson,and K. Timmis.1996. Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant fromBacillus licheniformis BAS50. Biotechnology and Applied Biochemistry 23:13-18.
    [117]Yakimov, M. M., A. Kroger, T. N. Slepak, L. Giuliano, K. N. Timmis, and P. N. Golyshin. 1998. A putative lichenysin A synthetase operon in Bacillus licheniformis:initial characterization. Biochim Biophys Acta 1399:141-153.
    [118]Zhao, B., X. Lin, L. Lei, D. C. Lamb, S. L. Kelly, M. R Waterman, and D. E. Cane.2008. Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor A3 (2). Journal of Biological Chemistry 283:8183.
    [119]赵爽,刘伟成,裘季燕,王敬国和周立刚.2008.多粘类芽孢杆菌抗菌物质和防病机制之研究进展.中国农学通报24:347-350.
    [120]陈代杰.2001.抗菌药物与细菌的耐药性.上海:华东理工大学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700