用户名: 密码: 验证码:
基于CFD流场分析的多工况多约束条件的叶片优化设计方法与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球市场竞争日益激烈,提高性能、降低研发成本和缩短设计周期的压力迫使叶轮机械设计工作者不断改进设计方法。近年来,CFD技术被广泛地应用于叶轮机械内部的三维粘性流场的数值模拟,其有效性逐步得到了研究者的肯定。同时,多种性能优良的优化算法也不断被推出。而计算机软硬件的飞速发展使得将CFD技术与优化算法相结合进行叶轮机械优化设计成为可能。本文着眼于叶轮机械叶片及叶轮的优化设计方法的实现,对相关优化设计算法进行了较为全面深入的研究。根据不同优化对象的特点,发展了适合叶轮机械叶片及叶轮的多工况多约束条件的优化设计方法,并将其成功地应用于相应的优化算例中。
     为了在计算时间与计算精度之间寻求良好的平衡,使CFD技术可以有效地应用于叶轮机械的气动优化设计,作者研究了叶轮机械定常流动数值模拟中RANS方程的空间离散形式与求解方法,阐述了代数Balding-Lomax模型、一方程Sparlart-Allmaras模型和标准k-ε模型的构造形式,并介绍了本文计算中遵循的收敛准则。以NASA Low Speed Centrifugal Compressor (LSCC)实验叶轮为研究对象,结合其试验结果,讨论了湍流模型和网格等因素对计算结果的影响,为后续优化设计中湍流模型与网格的选取提供指导。
     本文发展了一套基于CFD流场分析的多工况多约束条件的叶片优化设计方法。针对优化对象计算成本和优化工况或目标多少的不同,该方法可以灵活地发展成适合其具体特征的优化设计方法,本文将该优化方法分别应用于平面叶栅的单、多工况多约束条件优化设计、带分流叶片的离心叶轮优化设计单目标多约束条件和某一工业用超低比转速离心鼓风机叶片的多工况多约束条件优化设计中。
     为实现上述优化方法,根据优化对象的不同特点和要求,发展了相应的实现算法。发展了适于叶栅和离心压缩机/鼓风机叶型参数化方法,大大减少了优化的设计变量;提出了并行神经网络算法,其映射质量和训练效率较传统神经网络算法有较大的提高;为避免基本遗传算法存在的早熟或陷入停滞现象等问题,受自然界和人类社会进化现象的启发,发展了一种新的遗传算法—改进的等级公平竞争遗传算法HFCGA-DN;发展了改进的INSGA-II算法,将分布函数引入NSGA-II算法中,提高了多目标Pareto遗传算法的多样性;并将上述算法与试验设计方法和CFD技术通过发展的数据接口有机地连接起来。
     针对某二维透平叶栅优化问题,以极大化其升阻比作为优化目标函数,以叶栅的几何进出口角不变,叶栅截面的面积不小于初始叶型的20%和优化叶型阻力系数不大于初始叶型为约束条件,运用本文针对平面叶栅发展的单目标优化设计方法对叶栅进行优化设计。从气动力积分的结果来看,优化叶栅的气动阻力比初始叶栅减小3.2%,升阻比增加了8.3%。针对某带分流叶片的离心压缩机叶轮,以极大化其等熵效率作为目标函数,以流量和总压比不小于初始叶轮为性能约束条件和叶轮参数设定的变化范围为几何约束条件,运用本文发展的基于近似模型的单目标多约束优化方法通过改变轮毂、轮缘型线和叶片形状对初始叶轮进行了优化设计。优化后叶轮的等熵效率较初始叶轮提高了1.06%,同时总压比也提高了0.52%。
     以极小化上述透平叶栅三个工况点的总压损失系数为目标函数,同样以叶栅的几何进出口角不变,叶栅截面的面积不小于初始叶型的20%为约束条件,运用本文发展的基于近似模型的多目标Pareto类优化设计方法对叶栅进行优化设计。优化后叶栅的目标函数在i=-10o,0o,10o的三个工况点分别比初始叶栅下降了8.31%、8.43%、8.52%。
     根据某一工业用超低比转速离心鼓风机叶片的特点和性能要求,提出了楔形叶片的设计概念,发展了一套基于近似模型的鼓风机叶型叶片的多工况多约束优化方法。该优化方法的目标函数是极大化在三个指定工况点上的总压升,性能约束条件是效率和流量分别不小于初始叶型值,几何约束条件是设计变量的变化范围。为验证优化前后叶型的性能,将优化前后叶型加工成模型样机,并搭建了试验台,进行性能试验和叶轮内部流动的PIV测试。数值优化和试验结果都表明,优化楔形叶片在满足约束条件的前提下,三个指定工况点上的压升都有大幅度的提高,同时也验证了本文发展的优化设计方法是有效的。
     通过将本文发展的多工况多约束条件叶片优化设计方法成功地应用于不同的优化对象,以及对某工业用超低比转速离心鼓风机的实验研究和数值模拟,更加全面和深入地认识了叶片形状对其性能和流场的影响,进一步丰富了叶片优化设计技术,为提高叶轮机械的研制水平提供了技术依据。
The competitive pressure to improve performance, reduce research cost and design duration has always pushed turbomachinery designers to develop better and faster design methods. In recent years, CFD technology has been widely applied to numerical simulation of the three-dimensional viscous flow field inside turbomachinery, which has been verified by many researchers. Meanwhile, several effective optimization algorithms have been proposed. Fortunately, the rapid development of software and hardware of computers makes it possible for turbomachinery optimum design with the combination of CFD technology and those algorithms. To establish an optimum design system for turbomachinery impellers and blades, the author made an in-depth investigation of the related optimization methods, and developed several multi-point and multi-constraint optimization approaches for turbomachinery blades or impellers according to their individual characteristics. The developed approaches have been successfully applied to corresponding optimization cases.
     The balance of computation time frame and computation precision must be achieved so that CFD technology can be effectively applied to the aerodynamic optimization design of turbomachinery. The author has studied the discretization scheme and numerical solution of steady Reynolds-Averaged Navier-Stokes equations, illustrated the formulation of Baldwin-Lomax model, Spalart-Allmaras model and k-εmodel, and introduced the convergence criteria of the present study. The NASA Low speed compressor’s impeller was selected as the reference case for numerical simulation and experimental validation. The influences of the turbulence models and grid distributions on the simulation results were discussed, which provided the ongoing optimum design with guidance.
     A CFD-based multi-point and multi-constraint blade optimization approach was developed, which can be convenient to develop different proper approach for specific optimum object with regard to different computation cost and the number of operating points. The approach was successfully applied into the single- and multi-point optimum design for cascade blade, the single-point and multi-constraint optimum design for a centrifugal compressor impeller with splitter, and the multi-point and multi-constraint optimum design for a very low-specific-speed industrial centrifugal blower blade.
     To realize these four optimization approaches, the corresponding optimization algorithms were developed. The parametrization methods for cascades and blades were developed to greatly reduce the number of the design variables. The proposed PANN has the improved mapping quality and training efficiency, which are superior to those of the traditional artificial neural networks. Inspired by the competitions occurring in populations and between populations in nature and society, HFCGA-DN was developed to overcome premature convergence. It is very efficient in global search. To improve the diversity of Pareto GA, the distribution function was introduced into NSGA-II algorithm, and INSGA-II was then developed. The data interface programs were also developed to combine the above algorithms with design of experiment (DOE) method and CFD technology.
     As for the optimization case for a two-dimensional cascade, the maximum lift-to-drag ratio was selected as the objective. That the leading edge metal angle and trailing edge metal angle are kept constant, the section area of the optimized is greater than or equal to that 20% of the original one, and the drag coefficient of the optimized is less than or equal to that of the original one, were selected as the constraints. From the results of the nondimensional aerodynamic forces, the drag coefficient of the optimized blade is 3.2% reduction over that of the original one, while the lift-drag ratio of the optimized blade is 8.3% higher than that of the original one.
     As for the same cascade, the minimum total pressure loss coefficients over three operating points, i=-10o,0o,10o, were selected as objective. And the constraints are the same as those of the above case. The multi-objective Pareto optimization approach based on approximate model was applied to the optimization process. The loss coefficients of the three points of the optimized cascade are decreased by 8.31%, 8.43% and 8.52%, respectively.
     As for a centrifugal compressor impeller with splitters, a single-objective optimization approach based on approximate model was developed. The maximum isentropic efficiency was selected as the objective. That the mass flow and total pressure ratio are greater than or equal to those of the original one was selected as the performance constraints, and the variation ranges of the design variables were selected as the geometric constraints. The optimized impeller was obtained by varying the profiles of the impeller hub, shroud and blade. The isentropic efficiency is improved by 1.06%, while the total pressure ratio is also increased by 0.52%.
     An optimization approach based on approximate model was proposed against many time-consuming CFD calculations during the numerical optimization process of turbomachinery. The core of this approach is a sample database, which is to build the approximate mode between the geometric information and its performance of samples. This proposed approach was applied to the optimum design of a set of three-dimensional compressor blades presented in this paper. The control points’ordinates of characteristic polygon of Bezier curve representing the profile of meridian plane and blade were selected as design variables, while maximum isentropic efficiency was selected as objective function. The maximum pressure rises at the three points were selected as the objective. That the mass flow and efficiency at each point are greater than or equal to those of the original one was selected as the performance constraints, and the variation ranges of the design variables were selected as the geometric constraints. The objective function of the optimized impeller is 1.06% higher than that of the original one on the condition that the pressure ratio does not fall, and flow quality on the meridian plane and in the flow channels is improved.
     A multipoint optimization approach to a very low-specific-speed industrial centrifugal blower blade was developed with the consideration of its structural characteristics and performance requirements. The total pressure rise at three specified operating points were selected as the objective function. That the flow rate and impeller total pressure efficiency are not less than those of the original one was selected as the performance constraints. The numerical optimization was carried out in two phases, the optimization phases of constant thickness blade and varying thickness blade. To validate their aerodynamic performances, the original and optimized blower blades were made into experimental prototypes. Their performances were tested on the same experimental facilities, and their internal flow patterns inside the impeller were measured by PIV system. The results of both the numerical optimization and performance experiment show that significant improvement has been obtained in the optimization objective, which validates the effectiveness of the developed optimization approach. In addition, the performance variation rule of this very low-specific-speed blower is different from that of the traditional ones.
     With the development of the multi-point and multi-constraint optimization approaches, successful application to different optimization cases, and numerical simulation and experimental investigation of a very low-specific-speed centrifugal blower, the author had a better knowledge of the influence of the blade profile on its performance and flow field, and made contribution to the optimization technology of turbomachinery.
引文
[1]刘高联,王甲升.叶轮机械气体动力学基础[M].北京:机械工业出版社, 1980.
    [2]叶轮机气动力学新一代反命题和优化设计的研究(国家自然科学基金重点项目结题报告,报告号:50136030)[R].上海:上海大学, 2006.
    [3]徐忠.离心压缩机原理[M].北京:机械工业出版社, 1990.
    [4] Wu C H. A General theory of three-dimensional flow in subsonic and supersonic turbomachines of axial and mixed-flow types[R]. NACA TN2604-1952.
    [5]陶文铨.计算传热学的近代进展[M].北京:科学出版社, 2000.
    [6] Chernobrovkin A A, Lakshminarayana B. Numerical simulation of complex turbomachinery flows[R]. NASA/CR-1999-209303.
    [7] Weyer H B. Optical methods of flow measurement and visualization in rotors[R]. Proceeding of Measurement Methods in Rotating Components of Tubomachinery[C], 1980, 99-110.
    [8] Lakshminarayana B. Techniques for aerodynamic and turbulence measurements in turbomachinery rotors[J]. ASME Journal of Engineering for Power, 1981, 103(2): 374-392.
    [9] Larguier R. Experimental analysis method for unsteady flow in turbomachines[J]. ASME Journal of Engineering for Power, 1981, 103(2): 415-423.
    [10] Fischer K, Thomas D. Investigation of the condition in a centrifugal pump[R]. ASME HYD-54-8, 1932, 141-153.
    [11] Johnson I A, Ginsburg A. Some NACA research on centrifugal compressors[J]. Trans. ASME, 1953, 75: 805-811.
    [12] Hamrick J T, Some aerodynamic investigations in centrifugal impellers[J]. Trans. ASME, 1956, 78: 591-602.
    [13] Dean R, Senoo Y. Rotating wakes in vaneless diffusers[J]. ASME Journal of Basic Engineering, 1960, 82: 563-574.
    [14] Lennemann E, Howard J H G. Unsteady flow phenomena in rotating centrifugal impeller passages[J]. ASME Journal of Engineering for Power, 1970, 92(1): 65-72.
    [15] Howard J H G, Lennemann E. Measured and predicted secondary flows in a centrifugal impeller[J]. ASME Journal of Engineering for Power, 1971, 103: 126-132.
    [16] Howard J H G, Kittmer C W. Measured passage velocities in a radial impeller with shrouded and unshrouded configurations[J]. ASME Journal of Engineering for Power, 1975, 97(2): 207-213.
    [17] Eckardt D. Instantaneous measurements in the jet-wake discharge flow of a centrifugal compressor impeller[J]. ASME Journal of Engineering for Power, 1975, 97(3): 337-345.
    [18] Wisler D C, Mossey P W. Gas velocity measurements within a compressor rotor passage using the laser Doppler velocimeter[J]. ASME Journal of Engineering for Power, Series A, 1973, 95(2): 91-97.
    [19] Eckardt D. Detailed flow investigations with in a high speed centrifugal compressor impeller[J]. ASME Journal of Fluids Engineering, 1976, 98(3): 390-402.
    [20] Adler D, Levy Y. A laser-Doppler investigation of the flow inside a backswept closed centrifugal impeller[J]. Journal of Mechanical Engineering Science, 1979, 21(1): 1-6.
    [21] Eckardt D. Flow field analysis of radial and backswept centrifugal compressor impellers-Part I: Flow measurements using a laser velocimenter, performance prediction of centrifugal pumps and compressors[M]. ASME Publications, 1980: 77-87.
    [22] Howard J H G, Mukker O S, Naoem T. Laser Doppler measurements in a radial pump impeller[R]. Measurement methods in Rotating Components of Turbomachinery[C]. ASME I00130, 1980, 133-138.
    [23] Krain H. A study on centrifugal impeller and diffuser flow[J]. ASME Journal of Engineering for Power, 1981: 103(3): 688-697.
    [24] Hamkins C P, Flack R D. Laser velocimeter measurements in shrouded and unshrouded radial flow pump impellers[J]. ASME Journal of Turbomachinery, 1986, 109(1): 70-76.
    [25] Johnson M W, Moore J. The development of wake flow in a centrifugal impeller[J]. ASME Journal of Engineering for Power, 1980, 102(2): 382-390.
    [26] Moore J. A wake and an eddy in a rotating, radial-flow passage[J]. ASME Journal of Engineering for Power, Series A, 1973, 95: 205-219.
    [27] Anand A K, Lakshminarayana B. An experimental study of three-dimensional turbulent boundary layer and turbu1ence characteristics inside a turbomachinery rotor passage[J]. ASME Journal of Engineering for Power, 1978, 100(4): 676-690.
    [28] Krain H. A study on centrifugal impeller and diffuser flow[J]. ASME Journal of Engineering for Power, 1981, 103(3): 688-697.
    [29] Johnson M W, Moore J. The influence of flow rate on the wake in a centrifugal impeller[J]. ASME Journal of Engineering for Power, 1983, 105(1): 33-39.
    [30] Harada H. Performance characteristics of shrouded and unshrouded impeller of a centrifugal compressor[J]. ASME Journal of Engineering for Gas Turbines and Power, 1985, 107(2): 528- 533.
    [31] Krain H. Swirling impeller flow[J]. ASME Journal of Turbomachinery, 1988, 110(2): 122-128.
    [32] Krain H, Hoffman W. Verification of an impeller design by laser measurements and 3D-viscous flow calculations[R]. ASME Paper 89-GT-159, 1989.
    [33] Kjork A, Lofdahl L. Hotwire measurements inside a centrifugal fan impeller[J]. ASME Journal of Fluids Engineering, 1989, 111(4): 363-368.
    [34] Hah C. Krain H. Secondary flows and vortex motion in a high-eficiency backswept impeller at design and of-design conditions[J]. ASME Journal of Turbornachinery 1990, 112(1): 7-13.
    [35] Rohne K H, Banzhaf M. Investigation of the flow at the exit of an unshrouded centrifugal impeller and comparison with the“classical”jet-wake theory[J]. ASME Journal of Turbomachinery, 1991, 113(4): 654-659.
    [36] Hathaway M D, Chriss R M, Wood J R. Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field[J]. ASME Journal of Turbomachinery, 1993, 115(3): 527-542.
    [37] Abramian M, Howard J H G. Experimental investigation of the steady and unsteady relative flow in a model centrifugal impeller passage[J]. ASME Journal of Turbomachinery, 1994, 116(2): 269-279.
    [38] Ubaldi M, Zunino P, Ghiglione A. Detailed flow measurements within the impeller and the vaneless diffuser of a centrifugal turbomachine[J]. Experimental Thermal and Fluids Science, 1998, 17(1-2): 147-155.
    [39] Jansen W. Steady fluid flow in a radial vaneless diffuser[J]. ASME Journal of Basic Engineering,1964, 86(3): 607-619.
    [40] Senoo Y, Ishida M. Behavior of severely asymmetric flow in vaneless diffuser[J]. ASME Journal of Engineering for Power, 1975, 97(3): 375-387.
    [41] Senoo Y, Kinoshita Y, Ishida M. Asymmetric flow in a vaneless diffuser of centrifugal blowers[J]. ASME Journal of Fluids Engineering, 1977, 99(1): 104-113.
    [42] Johnston J P, Dean R C. Losses in vaneless diffusers on centrifugal compressors and pumps[J]. Journal of Engineering for Power, 1966, 88(1): 137-155.
    [43] Inoue M, Cumpsty N A. Experimental study of centrifugal impeller discharge flow in vaneless and vaned diffusers[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(2): 455-467.
    [44]席光,王尚锦.离心式叶轮出口及其无叶扩压器内部流场的实验研究[J].工程热物理学报, 1992, 13(2): 91-96.
    [45] Pinarbasi A, Johnson M W. Detailed flow measurements in a centrifugal compressor vaneless diffuser[J]. ASME Journal of Turbornachinery, 1994, 116(3): 453-461.
    [46] Pinarbasi A, Johnson M W. Off-design flow measurements in a centrifugal compressor vaneless diffuser[J]. ASME Journal of Turbornachinery, 1995, 117(4): 602-610.
    [47] Shin Y H, Kim K H, Son B J. An experimental study on the development of a reverse flow zone in a vaneless difuser[J]. JSME International Journal, Series B, 1998, 41(3): 546-555.
    [48]刘立军,徐忠.离心压气机无叶扩压器内部流动的实验测量和数值分析[J].西安交通大学学报, 2001, 35(3): 270-274.
    [49]张莉.离心叶轮机械内部非定常流动的研究[D].上海:上海交通大学博士论文, 2001.
    [50]张玮,王元,徐忠,等.离心叶轮出口与无叶扩压器内部流动特性的DPIV实验研究[J].空气动力学学报, 2005, 23(2): 11-18.
    [51] Baghdadi S, MacDonald A T. Performance of three vaned radial diffuser with swirling transonic flow[J]. ASME Journal of Fluid Engineering, 1975, 97(2), 155-173.
    [52] Baghdadi S. The effect of rotor blade wakes on centrifugal compressor diffuser performance-A comparative experiment[J]. ASME Journal of Fluids Engineering, 1977, 99(1): 45-52.
    [53] Stein W, Rautenberg M. Flow measurements in two cambered vane diffusers with different passage widths[R]. ASME Paper 85-GT-46, 1985.
    [54] Stein W, Rautenberg M. Analysis of measurements in vaned diffusers of centrifugal compressors[J]. ASME Journal of Turbomachinery, 1988, 110(1): 115-121.
    [55]刘立军.离心压气机级内非定常黏性流动的数值分析与实验研究[D].西安:西安交通大学博士论文, 1999.
    [56] Gostelow J P. A new approach to the experimental study of turbomachinery flow phenomena[J]. ASME Journal of Engineering for Power, 1977, 99(1): 97-105.
    [57] Dring R P. , Joslyn H D., Hardin LW., et al. Turbine rotor-stator interaction[J]. ASME Journal of Engineering for Power, 1982, 104: 729-742.
    [58] Arndt N, Acosta A J. Rotor-stator interaction in a diffuser pump[J]. ASME Journal of Turbomachinery, 1989, 111(3): 213-221.
    [59] Ubaldi M. An experimental investigation of stator induced unsteadiness on centrifugal impeller outflow[J]. ASME Journal of Turbomachinery, 1996, 118(1): 41-54.
    [60] Akin O, Rockwell D. Actively controlled radial flow pumping system: manipulation of spectral contest of wakes and wake-blade interactions[J]. ASME Journal of Fluids Engineering, 1994,116(3): 528-537.
    [61] Akin O, Rockwell D. Flow structure in a radial flow pumping system using high-image-density particle image velocimetry[J]. ASME Journal of Fluids Engineering, 1994, 116(2): 538-544.
    [62] Wernet M P. Digital PIV measurements in the diffuser of a high speed centrifugal compressor[R]. AIAA Paper 98-2777, 1998.
    [63] Wernet M P. Development of digital particle imaging velocimetry for use in turbomachinery[J]. Experiments Fluids, 2000, 28(1): 97-115.
    [64] Sinha M. Rotor-stator interactions, turbulence modeling and rotating stall in a centrifugal pump with diffuser vanes[D]. Baltimore: Johns Hopkins University, 1999.
    [65] Sinha M, Katz J. Quantitative visualization of the flow in a centrifugal pump with diffuser vanes I: On flow structures and turbulence[J]. ASME Journal of Fluids Engineering, 2000, 122(1): 137-144.
    [66]杨华.基于整机紊流模拟的离心泵叶型优化方法与实验研究[D].上海:上海交通大学博士论文, 2006.
    [67]郭强.带无叶扩压器的离心压缩机失速现象的实验和数值研究[D].上海:上海交通大学博士论文, 2007.
    [68] Wu C H. Three-dimensional turbomachines flow equations expressed with respect to nonorthogonal curvilinear coordinates and methods of solution[R]. Proceedings of the 3rd ISABE. Munich, Germany, 1976.
    [69] Krimerman Y, Adler D. The complete three-dimensional calculation of the compressible flow field in turbo impeller[J]. Journal of Mechanical Engineering Science, 1978, 20(3): 149-158.
    [70] Alder D, Krimerman Y. On the relevance of internal subsonic flow calculations to real centrifugal impeller flow[J]. ASME Journal of Fluids Engineering, 1980, 102(1):78-84.
    [71] Alder D. Status of centrifugal impeller internal aerodynamics-Part I: Inviscid flow prediction method[J]. ASME Journal of Engineering for Power, 1980, 102(3): 728-737.
    [72] Johnson J P, Eide S A. Turbulent boundary layers on centrifugal compressor blades: Prediction of the effects of surface curvature and rotation[J]. ASME Journal of Fluids Engineering, 1976, 98(3): 374-381.
    [73] Ekeral H, Railly J W. A theory for boundary layer growth on the blade for radial impeller including end-wall influence[J]. ASME Paper 82-GT-90, 1982.
    [74] Zhang J, Lakshminarayana B. Computation and turbulence modeling for three-dimensional boundary layers including turbomachinery rotary flows[J]. AIAA Journal, 1990, 28(11): 1861-1869.
    [75] Denton J D. A time marching method for two- and three-dimensional blade-to-blade flows[R]. Marchmood Engineering Laboratories Report, ARC R. & M. No. 3775, 1975.
    [76] Rai M M. Three dimensional Navier-Stokes simulations of turbine rotor-stator interaction[J]. Journal Propulsion, 1989, 5(3): 367-374.
    [77] Moore J, Moore J G, Timmis D H. Performance evaluation of centrifugal compressor impellers using three dimensional viscous flow calculations[J]. ASME Journal of Engineering for Gas Turbine and Power, 1984, 106(2): 475-481.
    [78] Dawes W N. Application of full Navier-Stokes solvers to turbomachinery flow problems[R]. VKI Lectures Series 2, Numerical Techniques for Viscous Flow Calculation in Turbomachinery Bladings, 1986.
    [79] Briley W R. McDonald H. Solution of the multidimensional compressible Navier-Stokes equations by a general implicit method[J]. Journal Computational Physics, 1977, 24(4): 372-397.
    [80] Hah C. Numerical study of three-dimensional flow and heat transfer near the endwall of a turbine blade row[R]. AIAA Paper 89-1689, 1989.
    [81]郭延虎,刘秋生,王保国,等.隐式多重网格法求解叶轮机械三维跨声速湍流流场[J].空气动力学学报, 1995, 14(3): 468-473.
    [82]季路成.轴流叶轮机转子/静子干扰非定常流动探索[D].北京:北京航空航天大学博士论文, 1998.
    [83]王仲奇,冯国泰,王松涛,等.透平叶片中的二次流旋涡结构的研究[J].工程热物理学报. 2002, 23(5): 553-556.
    [84]高丽敏.离心压缩机级内流动的数值分析与实验研究[D].西安:西安交通大学博士论文, 2002.
    [85]王保国,刘淑艳,张雅,等.双时间步长加权ENO-强紧致高分辨率格式及在叶轮机械非定常流动中的应用[J].航空动力学报. 2005, 20(4): 534-539.
    [86]杨策,胡良军,何永玲.叶片前缘后掠对离心压气机性能的影响[J].北京理工大学学报, 2006, 26(11), 957-960.
    [87]王嘉炜.叶轮机械中若干非定常流动特征的初步研究[D].北京:中国科学院研究生院博士论文, 2006.
    [88] Launder B E, Reece B J, Rodi W. Progress in the development of a Reynolds stress turbulence closure model[J]. Journal of Fluid Mechanics, 1976, 52: 609-612.
    [89] Baldwin B, Lomax H. Thin layer approximation and algebraic model for separated flow[R]. AIAA Paper 78-0257, 1978.
    [90] Kang S, Hirsch C. Numerical simulation of three-dimensional viscous flow in a linear compressor cascade with tip clearance[J]. ASME Journal of Turbomachinery, 1996, 118(3): 492-505.
    [91] Moore J, Moore J G. Calculation of three-dimensional viscous flow and wake development in a centrifugal impeller[J]. ASME Journal of Engineering for Gas Turbine and Power, 1981, 103(3): 367-372.
    [92] Lauder B E, Spalding D B. The numerical calculation of turbulent flows[J]. Computational Methods in Applied Mechanic and Engineering, 1974, 3(1): 269-289.
    [93] Majumdar A K, Pratap V S, Spalding D B. Numerical computation of flow in rotating ducts[J]. ASME Journal of Fluids Engineering, 1977, 99(1): 148-153.
    [94] Speziale C G. On nonlinear k-εmodel of turbulent flows[J]. Journal of Fluid Mechanics, 1987, 178(3): 459-475.
    [95] Speziale C G, Thangam S. Analysis of an RNG based turbulence model for separated flows[J]. International Journal Engineering Science, 1992, 30(10): 1379-1388.
    [96] Chien K Y. Predictions of channel and boundary layer flows with a low Reynolds number turbulence model[J]. AIAA Journal, 1982, 20(1): 33-38.
    [97] Shih T H, Liou W W, Shabbir A, et al. A new k-εeddy viscosity model for high Reynolds number turbulent flows[J]. Computer Fluids, 1995, 24(3): 227-238.
    [98] Launder B E, Sharma B I. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc[J]. Letters in Heat and Mass Transfer, 1974, 1(2): 131-138.
    [99] Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows[R]. AIAAPaper 92-0439, 1992.
    [100] Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three dimensional parabolic flows[J]. International Journal Heat Transfer, 1972, 15(10): 1787-1806.
    [101] Van Doormaal J P. Enhancement of the simple method for predicting imcompressible fluid flows[J]. Numerical Heat Transfer, 1984, 7(2): 147-163.
    [102] Patankar S V. A calculation procedure for two-dimensional elliptic situations[J]. Numerical Heat Transfer, 1981, 4: 409-425.
    [103]帕坦卡S V著,张政译.传热与流体流动的数值计算[M].北京:科学出版社, 1984.
    [104] Issa R I, Gosman A D, Watkins A P. The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme[J]. Journal of Compute Physics, 1986, 62: 66-82.
    [105]谷传纲.不同攻角下平面叶栅内部实际粘性流动的数值及实验研究[D].西安:西安交通大学博士学位论文, 1986.
    [106] Xi G, Wang S J, Miao Y M. A calculation procedure for three-dimensional turbulent flow in a centrifugal impeller with any blade geometry[R]. ASME Paper 91-GT-171, 1991.
    [107]王彤,谷传纲.设计工况下离心压气机内部动静部件耦合非定常流动的数值模拟[J].机械工程学报, 2001, 37(3): 20-24, 29.
    [108]王彤,谷传纲,杨波,等.非定常流动计算的PISO算法[J].水动力学研究与进展A辑, 2003, 18(2): 431-437.
    [109]闻苏平,张楚华,李景银.旋转叶轮和叶片扩压器耦合的非定常流动计算[J].西安交通大学学报, 2004, 38(7): 754-757.
    [110] Rhie C M, Delaney R A, Makain T F. Three dimensional viscous flow analysis for centrifugal impeller[R]. AIAA Paper 84-1286, 1984.
    [111] Hah C. A Navier-Stokes analysis of three dimensional turbulent flow inside turbine blade rows at design and off design conditions[J]. ASME Journal of Engineering for Gas Turbine and Power, 1984, 106(3): 421-429.
    [112] Von Neumann J, Richtmyer R D. A method for the numerical calculation of hydrodynamic shocks[J]. Journal of Applied Physics, 1950, 21(3): 232-237.
    [113] Jameson A, Schmidt W, Baker T J. Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping scheme[R]. AIAA Paper 81-1259, 1981.
    [114] Jameson A. Solution of the Euler Equations for Two Dimensional Transonic Flow by a Multigrid Method[J]. Applied Mathematics and Computation, 1983, 13: 327-355.
    [115] Jameson A, Baker T J. Multigrid solution of the Euler equations for aircraft configurations[R]. AIAA Paper 84-0093, 1984.
    [116] Martinelli L, Jameson A, Grasso F. A multigrid method for the Navier-Stokes equations[R]. AIAA Paper 86-0208, 1986.
    [117] Liu F, Jameson A. Multigrid Navier-Stokes calculations for three-dimensional cascades[J]. AIAA Journal, 1993, 31(10): 1785-1791.
    [118] Denton J D. The use of a distributed body force to simulate viscous effects in 3D flow calculation[R]. ASME Paper 86-GT-144, 1986.
    [119] Denton J D. An improved time-marching method for turbomachinery flow calculation[J]. ASME Journal of Engineering for Gas Turbine and Power, 1983, 105(4): 514-524.
    [120] Ni R H. A multiple grid scheme for solver the Euler equations[R]. AIAA Paper 81-1025, 1981.
    [121] Dawes W N. A numerical analysis of the three-dimensional viscous flow in a transonic compressor rotor and comparison with experiment[J]. ASME Journal of Turbomachinery, 1987, 109: 83-109.
    [122] Dawes W N. The application of multigrid to Navier-Stokes simulation of 3D flow in axial and radial flow turbomachinery[J]. International Journal for Numerical Methods in Fluids, 1988, 8(10): 1217-1227.
    [123] Walker P J, Dawes W N. The extension and application of three-dimensional time-marching analyses to incompressible turbomachinery flows[J]. ASME Journal of Turbomachinery, 1990, 112(3): 385-390.
    [124] Chima R V, Yokota J W. Numerical analysis of three-dimensional viscous internal flows[J]. AIAA Journal, 1990, 28(5): 798-806.
    [125] Dawes W N. The extension of a solution-adaptive three-dimensional Navier-Stokes solver toward geometries of arbitrary complexity[J]. ASME Journal of Turbomachinery, 1993, 115(2): 283-295.
    [126] Arnone A. Viscous analysis of three-dimensional rotor flow using a multigrid method[J]. ASME Journal of Turbomachinery, 1994, 116(3): 435-445.
    [127] NUMECA software, FineTM/Design3D Model. User Manual Version 6.1[M]. Brussels, 2003.
    [128]王正明, Dulikravich G S.使用Navier-Stokes方程叶栅粘性反问题的数值解[J].工程热物理学报, 1995, 16(4): 406-413.
    [129]陈铁,刘仪,刘斌.轴流式叶轮机械叶型的参数设计方法[J].西安交通大学学报, 1997, 31(5): 52-57.
    [130]彭艳,吴国钏.有限体积法求解任意回转面叶栅叶型反问题设计的欧拉方程[J].南京航空航天大学学报, 1999, 31(1): 43-46.
    [131]刘波,姜正礼,仲永兴.轴流压气机转子新叶型设计与试验研究[J].西北工业大学学报, 1999, 17(2): 157-161.
    [132]肖敏,刘波.轴流压气机超音叶片叶型几何设计方法的研究[J].航空动力学报, 2000, 15(3): 237-240.
    [133]肖敏,刘波,程荣辉.轴流压气机超音叶片新设计技术研究[J].航空动力学报, 2002, 17(1): 83-86.
    [134]戴韧.透平叶片型线BEZIER曲线构造方法的研究[R].中国工程热物理学会热机气动热力学学术会议论文集[C], 2000, 210-215.
    [135]周正贵.混合遗传算法及其在叶片自动优化设计中的应用[J].航空学报, 2002, 23(6): 571-574.
    [136]周正贵.压气机叶片自动优化设计[J].航空动力学报, 2002, 17(3): 305-308.
    [137]周正贵.高亚声速压气机叶片优化设计[J].推进技术, 2004, 25(1): 58-61.
    [138]姚征,刘高联.基于气动载荷与叶片厚度分布的叶栅气动设计方法[J].应用数学和力学, 2003, 24(8): 785-790.
    [139]乌晓江,姚征,陈康民.叶型气动设计的杂交型方法计算软件[J].上海理工大学学报, 2003, 25(3): 213-217.
    [140]方祥军,刘思永,王屏,等.超跨音对转涡轮大转折角叶片的高次多项式解析造型研究[J].航空动力学报, 2003, 18(1): 76-81.
    [141]曹志鹏,靳军,刘波,等.基于优化技术的叶型反方法改进设计[J].航空动力学报, 2004, 19(4): 484-489.
    [142]宋立明,丰镇平,李军,等.基于椭圆型方程的扭叶片造型方法的研究[J].工程热物理学报, 2004, 25(9): 31-34.
    [143] Burguburu S, Toussaint C, Bonhomme C, et al. Numerical optimization of turbomachinery bladings[J]. Journal of Turbomachinery, 2004, 126(1): 91-100.
    [144]王宏亮,席光.多目标优化设计方法在翼型气动优化中的应用研究[J].工程热物理学报, 2008, 29(7): 1129-1132.
    [145]王志恒,席光.离心压气机叶片扩压器气动优化设计[J].工程热物理学报, 2008, 29(3): 391-394.
    [146]陈波,袁新.基于NURBS三维造型的粘性气动最优化设计技术[J].工程热物理学报, 2005, 26(5): 764-766.
    [147]陈波,高学林,袁新.采用NURBS的某级透平叶片全三维气动最优化设计[J].动力工程, 2006, 26(2): 201-206.
    [148]陈波,高学林,袁新.基于NURBS的叶片全三维气动优化设计[J].工程热物理学报, 2006, 27(5): 763-765.
    [149]陈志鹏,袁新.全工况性能优化在压气机多级环境中的应用[J].工程热物理学报, 2008, 29(2): 221-224.
    [150] Lakshminarayna B. An assessment of computational fluid dynamic techniques in the analysis and design of turbomachinery[J]. Journal of Fluid Engineering, 1991, 113(3): 315-352.
    [151]刘高联.平面叶栅气动设计的最优化理论[J].力学学报, 1980, 4: 337-346.
    [152]刘高联.平面叶栅气动设计的最优化理论(II)[J].力学学报, 1982, 2: 122-128.
    [153]姚征,陈月林.叶轮机械任意旋成面叶栅气动杂交命题矩函数型变分有限元解法[J].空气动力学学报, 1989, 7(3): 315-322.
    [154]谷传纲.轴流式及混流式压气机扩压因子流型设计的理论、应用及其优化[J].机械工程学报, 1983, 19(2): 87-95.
    [155] Gu C G, Miao Y M. Blade design of axial-flow compressors by the method of optimal control theory-physical model and mathematical expression[J]. ASME Journal of Turbomachinery, 1987, 109(1): 99-102.
    [156] Gu C G, Miao Y M. Blade design of axial-flow compressors by the method of optimal control theory-application and results[J]. Journal of Turbomachinery, 1987, 109(1): 102-108.
    [157]谷传纲,吉永明.二维扩压器最优型线的理论研究和设计方法[J].机械工程学报, 1990, 26(2): 79-83.
    [158]谷传纲,张谋进,陈西.二维扩压器壁面最优速度分布的动态规划法研究[J].西安交通大学学报, 1991, 25(5): 75-80.
    [159] Gu C G, Zhang M J, Miao Y M. A new method of optimal design for a two-dimensional diffuser by using dynamic programming[R]. Third International Conference on Inverse Design Concept and Optimization in Engineering Sciences[C], Washington, USA, 1991.
    [160] Veressá, Van Den Braembussche R. Inverse design and optimization of a return channel for a multistage centrifugal compressor[J]. ASME Journal of Fluids Engineering, 2004, 126(5): 799-806.
    [161]汪庆桓,赵育,高居礼.复合形法在离心压气机级总体参数优化中的应用[J].工程热物理学报, 1995, 16(2): 185-188.
    [162]王幼民,唐铃凤.低比转速离心泵叶轮多目标优化设计[J].机电工程, 2001, 18(1): 52-54.
    [163]王彤,谷传纲,杨波,等.多工况多级离心压缩机总体优化命题的建模与数值方法[J].流体机械, 2002, 30(2): 21-26.
    [164]阎超,谢磊,李云晓.跨音速翼型的气动最优化设计方法[J].北京航空航天大学学报, 1998, 24(3): 304-307.
    [165] Zubair Islam,朱一锟,朱自强,等.跨音速翼型气动优化设计方法[J].航空学报, 1998, 19(1): 83-86.
    [166]钱瑞战,乔志德,宋文萍.基于NS方程的跨声速翼型多目标多约束优化设计[J].空气动力学学报, 2000, 18(3): 350-355.
    [167] Lee Y T, Luo L, Bein T W. Direct method for optimization of a centrifugal compressor vaneless diffuser[J]. Journal of Turbomachinery, 2001, 123(1): 73-79.
    [168]杨华,谷传纲,汤方平,等.基于CFD紊流计算的离心泵叶型优化设计[J].扬州大学学报, 2007, 10(3): 41-44.
    [169] Holland, J H, Adaptation in natural and artificial systems[M]. Michigan: University of Michigan Press, 1975.
    [170]丰镇平,李军,沈祖达.遗传算法及其在透平机械优化设计中的应用[J].燃气轮机技术, 1997, 10(2): 13-22.
    [171] Trigg M A, Tubby G R, Sheard A G. Automatic genetic optimization approach to two-dimensional blade profile design for steam turbines[J]. Journal of Turbomachinery, 1999, 121(1): 11-17.
    [172] Carlo C, Antonio S. A Navier-Stokes based strategy for the aerodynamic optimisation of a turbine cascade using a genetic algorithm[R]. ASME 2001-GT-0508, 2001.
    [173]席兵,杨春信.遗传算法在离心压气机叶轮结构优化中的应用[J].热能动力工程, 2001, 16(2): 182-185.
    [174] Oksuz O, Akmandor I S, Kavsaoglu M S. Aerodynamic optimization of turbomachinery cascades using Euler/boundary layer coupled genetic algorithms[J]. Journal of Propulsion and Power, 2002, 18(3): 652-657.
    [175]肖翔,赵晓路.遗传算法在离心压缩机参数优化中的应用[J].工程热物理学报. 2001, 22(5): 581-584.
    [176] Yamaguchi Y, Arima T. Multi-objective optimization for the transonic compressor stator blade[R]. AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization[C], AIAA-2000-4909, 2000.
    [177] Sonoda T, Yamaguchi Y, Arima T, et al. Advanced high turning compressor airfoils for low Reynolds number condition-Part I: Design and optimization[J]. Journal of Turbomachinery, 2004, 126(3): 350-359.
    [178] Pierret S, Van Den Braembussche R A. Turbomachinery blade design using a Navier-Stokes solver and artificial neural network[J]. Journal of Turbomachinery, 1999, 121(2): 326-332.
    [179] K?ller U, M?nig R, Küsters, B, et al. Development of advanced compressor airfoils for heavy-duty gas turbines-Part I: Design and optimization [J]. ASME Journal of Turbomachinery, 2000, 122(3), 397-405.
    [180] ?ksüz ?, Akmandor B S. Turbine blade shape aerodynamic design using artificialintelligence[R], ASME GT2005-68094, 2005.
    [181] Chen N X, Zhang H W, Ning F F, et al. An effective turbine blade parameterization and aerodynamic optimization procedure using an improved response surface method[R]. ASME GT2006-90104, 2006.
    [182] Iwase T, Sugimura K, Shimada R. Technique for designing forward curved bladed fans using computational fluid dynamics and numerical optimization[R]. FEDSM 2006-98136, 2006.
    [183] Islek A A. Optimization of micro compressor blades using CFD analysis and artificial intelligence[R]. Proceedings of the ASME/JSME Joint Fluids Engineering Conference[C], 1 Part C, 2139-2146, 2003.
    [184]王晓锋,席光,王尚锦.响应面方法在叶片扩压器优化设计中的应用研究[J].工程热物理学报, 2003, 24(3): 391-394.
    [185]王晓锋,席光,王尚锦. Kriging与响应面方法在气动优化设计中的应用[J].工程热物理学报, 2005, 26(3): 423-425.
    [186]席光,王志恒,王尚锦.叶轮机械气动优化设计中的近似模型方法及其应用[J].西安交通大学学报, 2007, 41(2), 125-135.
    [187]丰镇平,李军,沈祖达.遗传算法及其在透平机械优化设计中的应用[J].燃气轮机技术, 1997, 10(2): 13-22.
    [188]丰镇平,李军,任斌,等.气动优化设计中的进化计算[J].热力透平, 2003, 1: 6-16.
    [189]李军,任斌,丰镇平.基于复合进化算法和Navier-Stokes方程求解技术的透平叶栅气动优化设计[J].热能动力工程, 2004,19(2): 167-170.
    [190]高学林,袁新.叶轮机械全三维粘性气动优化设计系统[J].中国电机工程学报, 2006, 26(4): 88-92.
    [191]伊卫林,黄鸿雁,韩万金.轴流压气机叶片优化设计[J].热能动力工程, 2005, 21(2): 140-144.
    [192]伊卫林,黄鸿雁,韩万金.模拟退火算法与响应面模型在压气机动叶优化设计中的应用[J].动力工程, 2006, 26(4): 483-485, 524.
    [193]伊卫林,黄鸿雁,韩万金.基于数值优化方法的跨声速压气机掠动叶设计[J].推进技术, 2006, 27(1): 33-36, 51.
    [194]伊卫林,黄鸿雁,韩万金.基于数值优化的跨音速压气机动叶三维设计[J].燃气轮机技术, 2006, 19(2): 34-38, 63.
    [195]盛森芝,徐月亭,袁辉靖.近十年来流动测量技术的新发展[J].力学与实践, 2002, 24(5): 1-14.
    [196] Meyers J F. An overview of particle sampling bias[R]. Second International Symposium on Application of Laser Anemometry to Fluid Mechanics[C], Lisbon, Portugal, 1984.
    [197] Meyers J F. Generation of particles and seeding[R]. Von Kaman Institute for Fluid Dynamics Lecture Series 1991-08, 1991.
    [198] TSI CO. Particle image velocimetry system operation manual[M]. USA, TSI CO., 2002.
    [199]童秉纲,张炳暄,崔尔杰主编.非定常流与涡运动[M].北京:国防工业出版社, 1993.
    [200]杨策,蒋滋康,索沂生.时间推进方法在叶轮机械内部流场计算中的进展[J].力学进展, 2000, 20(1): 83-94.
    [201] Ashford G A, Powell K G. An unstructured grid generation and adaptive solution technique for Hugh-Reynolds number compressible flow[R]. VKI Lectures Series 1996-06, 1996.
    [202]刘超群.多重网格法及其在流体力学中的应用[M].北京:清华大学出版社, 1995.
    [203] Hathaway M D, Chriss R M, Strazisar A J, et al. Laser anemometer measurements of the three-dimensional rotor flow field in the NASA low-speed centrifugal compressor[R]. NASA Technical Paper 3527, 1995.
    [204] Moore J, Moore J G. Three-dimensional viscous flow calculation for assessing the thermodynamic performance of centrifugal compressor-study of the Eckardt compressor[R]. AGARD-CP-282, 1980.
    [205]方开泰.均匀设计-数论方法在试验设计中的应用[J].概率统计通讯, 1978, 1: 56-97.
    [206] Bundschuh P, Zhu Y, A method for exact calculation of the discrepancy of low-dimensional finite point sets (I) [J]. Abh. Math. Sem. Hamburg, 1993, 63(1): 115-133.
    [207] Hagan T, Demuth H, Beale M. Neural network design[M]. Boston, MA: PWS Publishing, 1996.
    [208] Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans on Syst, Man and Cybern, 1994, 24(4): 656-666.
    [209] Hu J J, Goodman E D, Seo K S, et al. Adaptive Hierarchical Fair Competition (AHFC) model for parallel evolutionary algorithms[R]. GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference[C]. New York: Morgan Kaufmann Publishers, 2002, 772-779.
    [210] Hacker K. Efficient robust systems design through the use of hybrid optimization and distributed computing[D]. Buffalo: State University of New York, 2002.
    [211] Goldberg D E, Richardson J. Genetic algorithms with sharing for multimodal function optimization[R]. Proc. 2nd Int. Conf. Genetic Algorithms and their Applications[C], 1987, 41-49.
    [212] Deb K. Multi-objective optimization using evolutionary algorithms[M]. Chichester: Wiley, 2002.
    [213] Reuther J, Jameson A. Aerodynamic shape optimization of complex aircraft configurations via an adjoint formulation[R]. AIAA Paper 1996-0094, 1996.
    [214] Shelton M L, Gregory B A. Optimization of a transonic turbine airfoil using artificial intelligence, CFD and cascade testing[R]. ASME Paper 1993-GT-161, 1993.
    [215] Wang X, Damodaran M. Comparison of deterministic and stochastic optimization algorithms for generic wing design problems [J]. Journal of Aircraft, 2000, 37(5): 929-932.
    [216] Shu X W, Gu C G, Wang T, et al. Aerodynamic optimization for turbine blade based on hierarchical fair competition genetic algorithms with dynamic niche[J]. Chinese Journal of Mechanical Engineering, 2007, 20(6): 38-42.
    [217] Rodgers C. Experiments with a low-specific-speed partial emission centrifugal compressor[J]. ASME Journal of Turbomachinery, 1990, 112(1): 30-37.
    [218] Kurokawa J, Matsumoto K, Matsui J, et al., Performances of centrifugal pumps of very low specific speed[R]. Proceedings of the 19th IAHR Symposium on Hydraulic Machinery and Cavitation[C], Singapore, 2, 1998, 833-842.
    [219] Kurokawa J, Matsumoto K, Matsui J, et al. Performance improvement and peculiar behavior of disk friction and leakage in very low specific-speed pumps[R]. Proceedings of the 20th IAHR Symposium on Hydraulic Machinery and Systems[C], Charlotte, USA, CD-ROM Paper No. 3B(PD-02), 2000.
    [220] Choi Y D, Kurokawa J, Matsui J. Performance and internal flow characteristics of a very low specific speed centrifugal pump[J]. ASME Journal of Fluids Engineering, 2006, 128(2): 341-349.
    [221]袁寿其.低比速离心泵理论与设计[M].北京:机械工业出版社, 1997.
    [222]袁寿其,何有世,袁建平,等.带分流叶片的离心泵叶轮内部流场的PIV测量与数值模拟[J].机械工程学报, 2006, 42(5): 60-63.
    [223]朱祖超.低比转速高速离心泵的理论及设计应用[M].北京:机械工业出版社, 2007.
    [224]谷传纲,王彤,杨波,等.用于锦纶化纤聚合热泵循环干燥系统中的超低比转速离心鼓风机的研究与应用[R].上海交通大学, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700