用户名: 密码: 验证码:
气相色谱—质谱定性定量分析新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气相色谱质谱法是一种常用的仪器分析方法,它结合气相色谱高效分离能力和质谱可提供丰富的结构信息的优点,是分析挥发性或半挥发性小分子化合物的重要分析方法。目前,在气相色谱质谱数据的处理中,定性分析主要依赖于基于相似度匹配的库搜索或保留指数数据库查询的方法,并使用标准品进行验证。由于数据库内存在大量相似的质谱,搜索结果中可能包含相似度匹配非常接近的一组化合物。在实际的定性过程中,分析工作者只能选择相似度最高的备选结构作为定性结果,大大降低了分析结果的准确度。更加重要的是,一些未收录于标准物质质谱数据库的化合物基本无法定性。针对这种困境,作者提出了三种解决的新思路:1)挖掘质谱特征和保留指数规律,并利用质谱特征和保留指数的互补性进行定性;2)建立专用质谱和保留指数数据库;3)消除仪器间质谱差异,实现高相似异构体的定性分析。在定量分析上,利用质谱数据离散性的特征,提出了两种识别特征离子的方法,并与迭代目标转换因子分析法结合发展了半自动化的多元分辨方法。本论文的主要内容包括:
     一、提出利用中性丢失和质谱特征离子构建质谱分类器和预测结构特征的新方法。本文运用数据挖掘和逐步求精的方法确定中性丢失和特征离子,并构建质谱分类器的方法;提出了差异性分析的方法从原始质谱数据中提取特征离子和中性丢失信息,并构建未知化合物的结构特征的预测机。与模式识别方法比较发现,由中性丢失和特征离子构建的质谱分类器和结构特征预测机具有以下优点:a)能取得更好的分类或预测效果;b)在逐步求精过程中选出的变量得到经典质谱裂解理论的解释,变量具有较强的可解释性,模型也更具有拓展性;c)中性丢失被巧妙的利用作为一个变量用于质谱分类和特征提取。(第二章)
     二、运用差异分析提取质谱特征,并结合保留指数发展新的定性分析方法。首先,运用数据挖掘和逐步求精的方法对NIST05标准物质质谱数据中的烷烃进行了挖掘,建立了烷烃和直链饱和烷烃的识别方法;接着,利用差异分析对数据中90单甲基烷烃的标准质谱进行了挖掘,得到了质谱局部特征并建立局部特征与甲基位置之间的关系。结合保留指数和分子离子峰的信息,建立了自动化识别单甲基烷烃的方法。该方法利用互补的左右凹陷,保留指数和分子离子峰的信息相互支撑,相互验证,为提高准确的定性结果提供了保障。最后,对蜡脂质谱和保留指数进行深入的挖掘,根据不同不饱和度蜡脂质谱谱图地貌的差异把蜡脂的质谱分成三类。针对每类质谱,提出了利用特征离子计算蜡脂中脂肪酸部分和脂肪醇部分碳原子数和不饱和度的公式。通过模拟数据的演示,实际数据和标准品数据的验证,说明差异分析可以有效的提取出质谱特征,也说明质谱特征结合保留指数的方法能够更加准确的定性样本中的未知化合物。(第三、四章)
     三、提出了建立专有保留指数和质谱数据库的方法。结合质谱特征和化学计量学方法建立无需标准品的定性新方法,并用于五种食用植物油,杜仲果油和人类血浆样本中脂肪酸进行了定性定量分析。本方法利用固定的色谱条件测定所有样本,保证利用数据库内保留指数定性的准确度;利用化学计量学多元分辨的方法弥补因固定色谱条件造成的色谱峰重叠的不足;利用通过质谱特征识别出的样品内部的直链饱和脂肪酸甲酯的保留时间信息计算其它脂肪酸甲酯的等效链长,减少因不同进样批次引起的保留指数误差,从而实现在不使用标准品的情况下对脂肪酸甲酯进行准确定性。通过标准品混合物的验证,证明该方法在无需标准品的情况用于常规脂肪酸的检测分析。分析结果表明杜仲果油确实具有开发制作营养品的价值;同时该方法为利用人体血清中脂肪酸轮廓诊断疾病提供了坚实的定性定量分析方法学基础。(第五章)
     四、发展了两种异源质谱的校正新方法,并用于质谱和保留指数都极相似异构体的识别。首先,提出了加权平均相对强度比向量的方法。该方法直接计算训练集中每对异源质谱中相对强度大于阈值的质谱峰的强度比,所有质谱得到的强度比的平均值作为最终的比值向量。相对强度小于阈值的质谱峰不参与强度比计算和平均值计算,训练集中所有相对强度都小于阈值的质荷比视为未校正,设其强对比为1。所有的质荷比的强度比组成最终的加权平均相对强度比向量,又称校正向量。其次,发展了分段直接标准校正法(最小二乘回归)的质谱校正方法。训练集和两类测试集的检验证明了这两种方法不仅能够很好把训练集中的质谱转化为目标条件下的质谱,且适用于具有不同的支链,官能团,双键位置和顺反异构的脂肪酸甲酯的质谱。最重要的是,它们可以消除仪器或条件引起的质谱差异,提高高相似质谱定性的准确度,能够在基本解决质谱定性的问题。(第六章)
     五、提出了两种潜在特征离子识别的方法,并用于迭代目标转换因子分析法中浓度矢量的初始化。第一种方法是通过比较渐进因子分析法所确定得组份起始点和结束点,并与单个质荷比所对应的色谱图中的组份起始点和结束点进行比较分析,从而到达识别各组份的潜在选择性离子;第二种方法通过比较不同流出区域的质谱差异,以识别潜在选择性离子。对于多组份体系提出了分割法的策略,即从多组份体系中依次提取当前组份的流出窗口,分别获得各组份的浓度曲线,然后利用最小二乘回归方法计算得到纯物质的质谱,最后由标准质谱同样利用最小二乘回归方法计算出最终的各组份的浓度矢量。与HELP法的结果比较说明,这两种方法能够快速的获得高质量的解析结果。通过低信噪比数据体系,墨旱莲挥发油,97#汽油样本的数据的测试,结果证明这两种方法能够满足常规分析检测的需要。(第七章)
Gas chromatography mass spectrometry (GC-MS), which combines the high-performance separation capability of gas chromatography and abundant structural information from mass spectrometer, has been widely used to analyze the volatile or semi-volatile compounds. So far, in the processing of the GC-MS data, the main methods of qualitative analysis are similarity search in the reference mass spectral library and/or comparison of the retention index with standards or ones in library. Since there are many highly similar mass spectra in the reference mass spectral library, it is very difficult to determine the correct result from hit list. In this case, the accuracy of identification greatly reduces for most of analysts simply take the first candidate with the highest similarity as the correct result. More importantly, the method of library searching does not apparently well work for the unknown compounds out of library. To address these questions, three strategies are proposed as follows:1) mine the reference mass spectra and retention indices to obtain the mass spectral characteristics and elution features, and then combine these two information to determine the structure for unknown compounds; 2) establish the special library of mass spectra and retention indices for in-house analysis; 3) develop calibration model of mass spectra from different sources and distinguish isomers with highly similar mass spectra and highly similar retention indices. In quantitative analysis, with the help of discreteness of mass spectra, we propose two methods to identify the potential selective ions, whose chromatogram could be used to initialize concentration vector for iterative target transformation factor analysis. The main contents of this thesis are:
     1. With the help of data mining and stepwise refinement, the mass spectral classifier is built by the neutral mass loss and characteristic ions. Additionally, dissimilarity analysis is developed and employed to build the prediction machine of number of branches in 2-heptene and 2-octene. This method calculates the difference spectrum of the unknown spectra and the corresponding spectra of normal 2-heptene or 2-octene, and then selects the most abundant peak in the difference spectrum as important ion, which is used to calculate the neutral loss. Finally, the neutral loss and some characteristic ions are emplyed to build the prediction machine. Through comparison with the chemometric methods of pattern recognition, the results indicate that the classifier and structure prediction machine built by neutral loss and characteristic ions have the following advantages:a) the better classification or prediction results can be achieved; b) the model can easily be expanded to similar compounds, due to important variables have been explained by the classical theory of fragmentation; c) neutral loss is ingeniously described and employed in mass spectrometry classification and feature extraction for the first time. (Chapter II)
     2. After the mass spectral characteristics are obtained with the help of dissimilarity analysis, they are used to combine the retention indices of monomethylalkane to develop new method of qualitative analysis. In this thesis, firstly, mass spectral characteristics of alkane are summarized using the data mining and stepwise refinement and employed to establish model to identify the normal alkane and other alkanes; secondly, dissimilarity analysis of standard mass spectrometry of 90 monomethyl-alkanes is carried out to discover the local features of mass spectra, which could be employed to deduce the methyl position. Combining these features with retention index and the molecular ion peak, an automated method of identifying monomethylalkane is developed. In this method, complementary left and right concave, retention index and molecular ion peak could work together to improve the accuracy of the qualitative results; thirdly, through data mining of reference mass spectra of wax ester, the several mass spectral characteristics are summarized and explained by classic theory of fragmentation. According to the profiling of the whole spectra, the wax could be classified into three categories in the light of unsaturation degree in two moieties. For these three kinds of mass spectra, the calculation formulas are designed by mass of characteristic ions. Tested by the simulated data, the real data and validated by standards, the results indicate that the dissimilarity analysis is an effective method to mine the mass spectral characteristics and the combination of mass spectral characteristics and retention index could improve the accuracy of qualitative analysis for unknown compounds. (Chapter III and IV)
     3. The strategy of special database is proposed and demonstrated by a simple library of fatty acids. To avoid the chromatographic shift, the fixed experimental conditions are used to analyze all samples. The chemometrics methods are employed to solve the overlapping peaks to overcome the shortage of fixed conditions. After the establishment of retention indices and mass spectra database, a method combining the mass spectral characteristics, retention indices and chemometrics is proposed to analyze the fatty acids in biological samples without standards. Furthermore, five edible vegetable oils, Eucommia ulmoides seed oil and fatty acids in human plasma samples are analyzed by this method. The saturated fatty acids are firstly identified by mass spectral characteristics and then used to calculate the equivalent chain length (ECL) values for other wax esters. Finally, the comparison with the ECL values in the special data is carried out to identify the unsaturated fatty acids. The results show that Eucommia ulmoides seed oil has nutritional value and this method could provide the fatty acid profiling of human serum for the diagnosis of disease with a solid basis for qualitative and quantitative analysis. (Chapter V)
     4. Two calibration methods to transfer the mass spectra detected in different instruments or under different conditions to target are developed and employed to distinguish isomers with highly similar mass spectra and highly similarly retention indices. Two methods are the vector of calibration ratios and piecewise direct standardization. The first one mainly computes the weighted average of the ratio of relative abundance, while the second one is the piecewise direct standard with calibration method of least squares regression. After tested by a training set and two types of test sets, two methods are proved to be effective for not only for mass spectra in the training set, but also for fatty acids with different branch, functional groups, double bond position and the geometrical isomerisation of double bonds. For cis/trans isomers of polyunsaturated fatty acid methyl esters, the differences among their mass spectra are smaller than systematic difference from instrument or condition. After calibration, the most of the geometrical isomerisation of double bonds could be identified. (Chapter VI)
     5. Two detectors of potential selective ion are proposed and used to initialize the concentration vector of iterative target transformation factor. The former method compares the start and end points determined from evolving factor analysis (EFA) and mass chromatograms, while the latter one analyzes the difference of mass spectra from different regions to identify potential selective ion. For multi-component system segmentation strategy is proposed to divide the whole data into several sub-windows, in which just one component mainly exists. The concentration profiles could be obtained from each subwindow and then be used to calculated mass spectra with the help of the least squares regression, whose standard spectra could be employed to compute the pure chromatographic curves by using the least squares regression. Through compared with previous method and tested by the low SNR data system, volatile oil of Eclipta prostrata,97# gasoline, the results suggest that the two methods could quickly get higher quality analytical results. (Chapter VII)
引文
[1]Dunn WB, Ellis DI. Metabolomics:current analytical platforms and methodologies, Trends in Analytical Chemistry,2005,24(4):285~294
    [2]Fiehn O, Kopka J, Dormann P, et al. Metabolic profiling for plant functional genomics, Nature Biotechnology,2000,18(11):1157~1161
    [3]Kind T, Wohlgemuth G, Lee DY, et al. FiehnLib:Mass Spectral and Retention Index Libraries for Metabolomics Based on Quadrupole and Time-of-Flight Gas Chromatography/Mass Spectrometry, Analtical Chemistry,2009,81 (24): 10038~10048
    [4]Scalbert A, Brennan L, Fiehn O, et al. Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research, Metabolomics,2009,5(4):435~458
    [5]Law WS, Huang PY, Ong ES, et al. Metabonomics investigation of human urine after ingestion of green tea with gas chromatography/mass spectrometry, liquid chromatography/mass spectrometry and 1H NMR spectroscopy, Rapid Communications in Mass Spectrometry,2008,22(16):2436-2446
    [6]Xue RY, Lin ZX, Deng CH, et al. A serum metabolomic investigation on hepatocellular carcinoma patients by chemical derivatization followed by gas chromatogrphy/mass spectrometry, Rapid Communications in Mass Spectrometry,2008,22(19):3061~3068
    [7]Li X, Xu ZL, Lu X, et al. Comprehensive two-dimensional gas chromatography/ time-of-flight mass spectrometry for metabonomics:biomarker discovery for diabetes mellitus, Analytica Chimica Acta,2008,633(2):257~262
    [8]Chen MJ, Ni Y, Duan HQ, et al. Mass spectrometry-based metabolic profiling of rat urine associated with general toxicity induced by the multiglycoside of Tripterygium wilfordii Hook.f., Chemical Research in Toxicology,2008,21(2): 288~294
    [9]Pongsuwan W, Fukusaki E, Bamba T, et al. Prediction of Japanese green tea ranking by gas chromatography/mass spectromtry-based hydrophilic metabolite fingerprinting, Journal of Agricultural and Food Chemistry,2007,55(2): 231~236
    [10]Lisec J, Schauer N, Kopka J, et al. Gas chromatography mass spectrometry-based metabolite profiling in plants, Nature Protocols,2006,1(1):387~396
    [11]Koek MM, Muilwijk B, van der Werf MJ, et al. Microbial metabolomics with gas chromatography/mass spectrometry, Analytical Chemistry,2006,78(4): 1272~1281
    [12]Gullberg J, Johnsson P, Nordstrom A, et al. Design of experiments:an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomics studies with gas chromatography/mass spectrometry, Analytical Biochemistry,2004,331(2): 283~295
    [13]Pasikanti KK, Ho PC, Chan ECY. Gas chromatography/mass spectrometry in metabolic profiling of biological fluids, Journal of Chromatography B,2008, 871(2):202-211
    [14]Jellum E, Stokke O, Eldjarn L. Application of gas chromatography, mass spectrometry, and computer methods in clinical biochemistry, Analtical Chemistry,1973,45(7):1099~1106
    [15]Horning EC, Horning MG. Metabolic profiles:gas-phase methods for analysis of metabolites. Clinical Chemistry,1971,17 (8):802~809
    [16]Denkert C, Budczies J, Kind T, et al. Mass spectrometrybased metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Research,2006,66 (22):10795~10804
    [17]Eldjarn L, Jellum E, Stokke O. Application of gas chromatography-mass spectrometry in routine and research in clinical chemistry. J Chromatogrophy 1974,91:353~366
    [18]Kind T, Tolstikov V, Fiehn O, et al. A comprehensive urinary metabolomic approach for identifying kidney cancer, Analytical Biochemistry,2007,363(2): 185~195
    [19]Ilic M, Antic M, Antic V, et al. Investigation of bioremediation potential of zymogenous bacteria and fungi for crude oil degradation, Environmental Chemistry Letters,2011,9(1):133~140
    [20]Li N, Ma XL, Zha QF, et al. Analysis and Comparison of Nitrogen Compounds in Different Liquid Hydrocarbon Streams Derived from Petroleum and Coal, Energy & Fuels,2010,24 (10):5539~5547
    [21]Hao CY, Zhao XM, Yang P. GC-MS and HPLC-MS analysis of bioactive Pharmaceuticals and personal-care products in environmental matrices, TrAC Trends in Analytical Chemistry,2007,26 (6):569~580
    [22]Herron NR, Donnelly JR, W SG:Software-based mass spectral enhancement to remove interferences from spectra of unknowns. Journal of the American Society for Mass Spectrometry,1996,7 (6):598~604
    [23]Zhong XK, Li DC, Jiang JG. Identification and Quality Control of Chinese Medicine Based on the Fingerprint Techniques, Current Medicinal Chemistry,2009,16(23):3064~3075
    [24]Yang BJ, Chen JH, Lee FSC, et al. GC-MS fingerprints for discrimination of Ligusticum chuanxiong from Angelica, Journal of Separation Science,2008, 31(18):3231~3237
    [25]Shum KC, Chen F, Li SL, et al. Authentication of Radix Aucklandiae and its substitutes by GC-MS and hierarchical clustering analysis, Journal of Separation Science,2007,30(18):3233~3239
    [26]Kopka J. Current challenges and developments in GC-MS based metabolite profiling technology, Journal of Biotechnology,2006,124 (1):312~322
    [27]Stein SE. Chemical Substructure Identification by Mass Spectral Library Searching, Journal of the American Society for Mass Spectrometry,1995,6 (8): 644~655
    [28]Stein SE, Scott DR. Optimization and Testing of Mass Spectral Library Search Algorithms for Compound Identification, Journal of the American Society for Mass Spectrometry,1994,5 (9):859~866
    [29]Stein SE. Estimating Probabilities of Correct Identification from Results of Mass Spectral Library Searches, Journal of the American Society for Mass Spectrometry,1994,5 (4):316~323
    [30]Sparkman OD. Evaluating Electron Ionization Mass Spectral Library Search Results, Journal of the American Society for Mass Spectrometry,1996,7 (4): 313~318
    [31]Pesyna GM, Venkataraghavan R, Dayringer HE, et al. Probability based matching system using a large collection of reference mass spectra, Analytica Chemistry,1976,48 (9):1362~1368
    [32]Stauffer DB, McLafferty FW, Ellis RD, et al. Adding forward searching capabilities to a reverse search algorithm for unknown mass spectra, Analytical Chemistry,1985,57 (3):771~773
    [33]Atwater BL, Stauffer DB, McLafferty FW, et al. Reliability ranking and scaling improvements to the probability based matching system for unknown mass spectra, Analytical Chemistry,1985,57 (4):899~903
    [34]Stein SE. An Integrated Method for Spectrum Extraction and Compound Identification from Gas Chromatography/Mass Spectrometry Data, Journal of the American Society for Mass Spectrometry,1999,10 (8):770~781
    [35]NIST-2010. NIST Mass Spectral Database, National Institute of Standards and Technology, Gaithersburg MD 20899, USA,2010
    [36]Wiley-1998, Wiley/NBS Mass Spectral Database 4th edition:Electronic Publishing Division, John Wiley & Sons, Inc. New York,1998
    [37]Varmuza K, He P, Fang KT. Boosting Applied to Classification of Mass Spectral Data, Journal of Data Science,2003,1 (4):391~404
    [38]Varmuza K, Werther W. Mass spectral classifiers for supporting systematic structure elucidation, Journal of Chemical Information and Computer Sciences, 1996,36 (2):323-333
    [39]Werther W, Lohninger H, Stancl F, et al. Classification of mass spectra. A comparison of yes/no classification methods for recognition of simple structural properties, Chemometrics and Intelligent Laboratory Systems,1994,22 (1): 63~76
    [40]Werther W, Demuth W, Krueger FR, et al. Evaluation of mass spectra from organic compounds assumed to be present in cometary grains. Exploratory data analysis, Journal of Chemometrics,2002,16 (2):99~110
    [41]Yoshida H, Leardi R, Funatsu K, et al. Feature selection by genetic algorithms for mass spectral classifiers. Analytica Chimica Acta,2001,446 (1-2):485~494
    [42]Alsberg BK, Goodacre R, Rowland JJ, et al. Classification of pyrolysis mass spectra by fuzzy multivariate rule induction-comparison with regression, K-nearest neighbour, neural and decision-tree methods. Analytica Chimica Acta, 1997,348 (1-3):389~407
    [43]Lohninger H, Stancl F. Comparing the performance of neural networks to well-established methods of multivariate data analysis:the classification of mass spectral data, Fresenius' Journal of Analytical Chemistry,1992,344 (4-5): 186~189
    [44]He P, Fang KT, Xu CJ. The classification tree combined with SIR and its applications to classification of mass spectra, Journal of Data Science,2003,1 (4):425~445
    [45]Xu CJ, He P, Liang YZ. Building an honest tree for mass spectra classification based on prior logarithm normal distribution, Journal of Data Science,2003,1 (4):391~404
    [46]Varmuza K, Scsibrany H. Substructure isomorphism matrix, Journal of Chemical Information and Computer Sciences,2000,40 (2):308~313
    [47]Luinge HJ. A Knowledge-based system for structure analysis from infrared and mass spectral data, Trends in Analytical Chemistry,1990,9 (2):66~69
    [48]Xiong Q, Zhang YX, Li ML. Computer-assisted Prediction of Pesticide Substructure using Mass Spectra, Analytica Chimica Acta,2007,593 (2): 199~206
    [49]陈耀祖,涂亚平.有机质谱原理和应用[M].北京:科学出版社,2004:127-158
    [50]丛浦珠,苏克曼.分析化学手册-第九分册:质谱分析[M].北京:化学工业出版社,2000:101-677
    [51]宁永成.有机化合物结构鉴定和有机波谱学(第二版)[M].北京:科学出版社,2000:266-322
    [52]王光辉,熊少祥.有机质谱解析[M].北京:化学工业出版社,2005:27-58
    [53]McLafferty FW, Turecek F. Interpretation of Mass Spectra (4th edition), Sausalito, California:University Science Books,1993:35~85,185~283
    [54]Rubio-Rodriguez N, Beltran S, Jaime I, et al. Production of omega-3 polyunsaturated fatty acid concentrates:A review, Innovative Food Science & Emerging Technologies,2010,11(1):1~12
    [55]Schmidt EB, Kristensen SD, De Caterina R, et al. The effects of n-3 fatty acids on plasma lipids and lipoproteins and other cardiovascular risk factors in patients with hyperlipidemia, Atherosclerosis,1993,103(2):107~121
    [56]Laugero KD, Smilowitz JT, German JB, et al. Plasma omega 3 polyunsaturated fatty acid status and monounsaturated fatty acids are altered by chronic social stress and predict endocrine responses to acute stress in titi monkeys, Prostaglandins, Leukotrienes and Essential Fatty Acids,2011,84 (3-4):71~78
    [57]McNamara RK, Carlson SE. Role of omega-3 fatty acids in brain development and function:Potential implications for the pathogenesis and prevention of psychopathology, Prostaglandins, Leukotrienes and Essential Fatty Acids,2006, 75 (4-5):329~349
    [58]Reis LC, Hibbeln JR. Cultural symbolism of fish and the psychotropic properties of omega-3 fatty acids, Prostaglandins, Leukotrienes and Essential Fatty Acids, 2006,75 (4-5):227~236
    [59]David Menoyo D, Lopez-Bote CJ, Diez A, et al. Impact of n-3 fatty acid chain length and n-3/n-6 ratio in Atlantic salmon(Salmo salar) diets, Aquaculture, 2007,267(1-4):248~259
    [60]Kitz R, Rose MA, Schubert R, et al. Omega-3 polyunsaturated fatty acids and bronchial inflammation in grass pollen allergy after allergen challenge, Respiratory Medicine,2010,104(12):1793~1798
    [61]Weiland SK, von Mutius E, HiJsing A, et al. Intake of trans fatty acids and prevalence of childhood asthma and allergies in Europe, the Lancet,1999,353 (): 2040~2041
    [62]Reisbick S, Neuringer M, Hasnain R, et al. Home cage behavior of rhesus monkeys with long-term deficiency of omega-3 fatty acids, Physiology & Behavior,1994,55(2):231~239
    [63]Liang YZ, Kvalheim OM, Manne R. White, gray and black multicomponent systems-a classification of mixture problems and methods for their quantitative analysis, Chemometrics and Intelligent Laboratory Systems,1993,18 (3):235~250
    [64]Pinel G, Weigel S, Antignac JP, et al. Targeted and untargeted profiling of biological fluids to screen for anabolic practices in cattle, Trends in Analytical Chemistry,2010,29 (11):1269~1280
    [65]Lommen A, van der Weg G, van Engelen MC, et al. An untargeted metabolomics approach to contaminant analysis:Pinpointing potential unknown compounds, Analytica Chimica Acta,2007,584(1):43~49
    [66]Werner E, Heilier JF, Ducruix C, et al. Mass spectrometry for the identification of the discriminating signals from metabolomics:Current status and future trends, Journal of Chromatography B,2008,871 (2):143~163
    [67]Anizan S, Bichon E, Monteau F, et al. A new reliable sample preparation for high throughput focused steroid profiling by gas chromatography-mass spectrometry, Journal of Chromatography B,2010,1217 (43):6652-6660
    [68]Theodoridis G, Wilson ID. Hyphenated techniques for global metabolite profiling, Journal of Chromatography B,2008,871 (2):141~142
    [69]Jiang JH, Liang YZ, Ozaki Y. Principles and methodologies in self-modeling curve resolution, Chemometrics and Intelligent Laboratory Systems,2004,71 (1):1~12
    [70]Manne R, Grande BV. Resolution of two-way data from hyphenated chromatography by means of elementary matrix transformations, Chemometrics and Intelligent Laboratory Systems,2000,50 (1):35-46
    [71]Manne R. On the resolution problem in hyphenated chromatography, Chemometrics and Intelligent Laboratory Systems,1995,27 (1):89-94
    [72]Grande BV, Manne R. Use of convexity for finding pure variables in two-way data from mixtures, Chemometrics and Intelligent Laboratory Systems,2000,50 (1):19-33
    [73]Keller HR, Massart DL, Liang YZ, et al. Evolving factor analysis in the presence of heteroscedastic noise, Analytica Chimica Acta,1992,263(1-2):29~36
    [74]Maeder M, Zubbuhler AD. The resolution of overlapping chromatographic peaks by evolving factor analysis, Analytica Chimica Acta,1986,181:287~291
    [75]Gampp H, Maeder M, Meyer CJ, et al. Calculation of equilibrium constants from multiwavelength spectroscopic data-III:Model-free analysis of spectrophotometric and ESR titrations, Tananta,1985,32:1133~1139
    [76]Maeder M. Evolving factor analysis for the resolution of overlapping chromatographic peaks, Analytical Chemistry,1987,59 (3):527~530
    [77]Maeder M, Zilian A. Evolving factor analysis, a new multivariate technique in chromatography, Chemometrics and Intelligent Laboratory Systems,1988,3 (3): 205~213
    [78]Malinowski ER. Window factor analysis:Theoretical derivation and application to flow injection analysis data, Journal of Chemometrics,1992,6(1):29~40
    [79]Shao XG, Shao LM, Li MQ, et al. An improvement of window factor analysis for resolution of noisy HPLC-DAD data, Science in China Series B:Chemistry, 2002,45(3):289~298
    [80]Kvalheim OM, Liang YZ. Heuristic evolving latent projections:resolving two-way multicomponent data.1. Selectivity, latent-projection graph, datascope, local rank, and unique resolution, Analytical Chemistry,1992,64(8):936-946
    [81]Liang YZ, Kvalheim OM, Keller HR, et al. Heuristic evolving latent projections: resolving two-way multicomponent data.2. detection and resolution of minor constituents, Analytical Chemistry,1992,64(8):946~953
    [82]Lorber A. Error propagation and figures of merit for quantitation by solving matrix equations, Analytical Chemistry,1986,58 (6):1167~1172
    [83]Xu CJ, Liang YZ, Jiang JH. Resolution of the Embedded Chromatographic Peaks by Modified Orthogonal Projection Resolution and Entropy Maximization Method, Analytical letters,2000,33 (10):2105~2128
    [84]Manne R, Shen HL, Liang YZ. Subwindow Factor Analysis, Chemometrics and Intelligent Laboratory Systems,1999,45(1-2):171~176
    [85]Tauler R, Casassas E. Application of principal component analysis to the study of multiple equilibria systems:Study of copper (Ⅱ)/salicylate/mono-, di-and triethanolamine systems, Analytica Chimica Acta,1989,223:257~268
    [86]Tauler R. Multivariate curve resolution applied to second order data, Chemometrics and Intelligent Laboratory Systems,1995,30 (1):133~146
    [87]Gemperline PJ. A priori estimates of the elution profiles of the pure components in overlapped liquid chromatography peaks using target factor analysis, Journal of Chemical Information and Computer Sciences,1984,24 (4):206~212
    [88]Vandeginste BGM, Derks W, Kateman G. Multicomponent self-modelling curve resolution in high-performance liquid chromatography by iterative target transformation analysis, Analytica Chimica Acta,1985,173:253~264
    [89]Paatero P. Least squares formulation of robust non-negative factor analysis, Chemometrics and Intelligent Laboratory Systems,1997,37 (1):23~35
    [90]Malinowski ER. Automatic window factor analysis-A more efficient method for determining concentration profiles from evolutionary spectra, Journal of Chemometrics,1996,10(4):273~279
    [91]Zhu ZL, Cheng ZW, Zhao Y. Iterative target transformation factor analysis for the resolution of kinetic-spectral data with an unknown kinetic model, Chemometrics and Intelligent Laboratory Systems,2002,64 (2):157~167
    [92]Carvalho AR, Wattoom J, Zhu LF, et al. Combined kinetics and iterative target transformation factor analysis for spectroscopic monitoring of reactions, the Analyst,2006,131 (1):90~97
    [93]Liang XH, Andrews JE, de Haseth JA. Resolution of Mixture Components by Target Transformation Factor Analysis and Determinant Analysis for the Selection of Targets, Analytical Chemistry,1996,68 (2):378~385
    [94]Gao HT, Li TH, Chen K, et al. A novel approach of initial vectors construction in iterative target transformation factor analysis, Talanta,2006,68 (3):542~548
    [95]Shen HL, Stordrange L, Manne R, et al. The morphological score and its application to chemical rank determination, Chemometrics and Intelligent Laboratory Systems,2000,51(1):37~47
    [96]Liu ZC, Cai WS, Shao XG. Sequential extraction of mass spectra and chromatographic profiles from overlapping gas chromatography-mass spectroscopy signals, Journal of Chromatography A,2008,1190(1~2):358-364
    [97]Smith RM. Understanding mass spectra:A basic approach (2nd edition), Wiley-interscience A John Wiley & Sons, Inc. Publication.2005:99~285
    [98]Lawton WH, Sylvestre EA. Self-modeling curve resolution, Technometrics,1971, 13 (3):617~633
    [99]Windig W, Guilment J. Interactive self-modeling mixture analysis, Analytical Chemistry,1991,63 (14):1425~1432
    [100]Sanchez FC, Khots MS, Massart DL et al. Algorithm for the assessment of peak purity in liquid chromatography with photodiode-array detection, Analytica Chimica Acta,1994,285 (1-2):181~192
    [101]Sanchez FC, Khots MS, Massart DL. Algorithms for the assessment of peak purity in liquid chromatography with photodiode-array detection:Part II, Analytica Chimica Acta 1994,290 (3):249~258
    [102]Sanchez FC, Toft J, van den Bogaert B, et al. Orthogonal projection approach applied to peak purity assessment, Analytical Chemistry,1996,68 (1):79~85
    [103]Malinowski ER. Obtaining the key set of typical vectors by factor analysis and subsequent isolation of component spectra, Analytica Chimica Acta,1982,134: 129~137
    [104]Schostack KJ, Malinowski ER. Preferred set selection by iterative key set factor analysis, Chemometrics and Intelligent Laboratory Systems,1989,6 (1):21~29
    [105]Helland K, Bruvoll T, Esbensen K, et al. In memoriam:Professor Odd Sergei Borgen, Journal of Chemometrics,1995,9 (3):139~141
    [106]Borgen OS, Kowalski BR. An extension of the multivariate component resolution method to three components, Analytica Chimica Acta,1985,174: 1-26
    [107]Borgen OS, Davidsen N, Zhu M, et al. The multivariate N-component resolution problem with minimum assumptions, Mikrochimica Acta,1986,2 (1-6):63~73
    [108]Jiang JH, Liang YZ, Ozaki Y. On simplex-based method for self-modeling curve resolution of two-way data, Chemometrics and Intelligent Laboratory Systems,2003,65 (1):51~65
    [109]Wang ZG, Jiang JH, Liang YZ, et al. Vertex vectors sequential projection for self-modeling curve resolution of two-way data, Chemometrics and Intelligent Laboratory Systems,2006,82 (1-2):154~164
    [110]Katajamaa M, Oresic, M. Data processing for mass spectrometry-based metabolomics, Journal of Chromatography A,2007,1158 (1-2):318~328
    [111]McMurry J. Organic chemistry, Brooks/Cole Thomson Learning, New York,5th edn,1999:743~796
    [112]Tomic T, Babic S, Nasipak NU, et al. Determination of alkenes in cracking products by normal-phase high-performance liquid chromatography-diode array detection, Journal of Chromatography A,2009,1216 (18):3819~3824
    [113]Kumar P, Vermeiren W, Dath JP, et al. Production of alkylated gasoline using ionic liquids and immobilized ionic liquids, Applied Catalysis A:General,2006, 304:131~141
    [114]Daudin A, Lamic AF, Perot G. Microkinetic interpretation of HDS/HYDO selectivity of the transformation of a model FCC gasoline over transition metal sulfides, Catalysis Today,2008,130 (1):221~230
    [115]Venter A, Rohwer ER, Laubscher AE. Analysis of alkane, alkene, aromatic and oxygenated groups in petrochemical mixtures by supercritical fluid chromatography on silica gel, Journal of Chromatography A,1999,847 (1-2): 309~321
    [116]Villegas JI, Kubicka D, Reinikainen SP, et al. Classification and pattern recognition of acyclic octenes based on mass spectra, Talanta,2007,72 (4): 1573~1580
    [117]Gray NAB. Computer-Assisted Structure Elucidation, John Wiley; New York, 1986:1-10
    [118]Sojak L, Addova G, Kubinec R, et al. Gas chromatographic-mass spectrometric characterization of all acyclic C5-C7 alkenes from fluid catalytic cracked gasoline using polydimethylsiloxane and squalane stationary phases, Journal of Chromatography A,2002,974 (1):103~109
    [119]Sojak L, Addova G, Kubinec R, et al. Capillary gas chromatography-mass spectrometry of all 93 acyclic octenes and their identification in fluid catalytic cracked gasoline, Journal of Chromatography A,2004,1025 (2):237~253
    [120]Fiehn O, Kopka J, Trethewey RN, et al. Identification of Uncommon Plant Metabolites Based on Calculation of Elemental Compositions Using Gas Chromatography and Quadrupole Mass Spectrometry, Analytical Chemistry, 2000,72(15):3573~3580
    [121]Wang HY, Guo YL, Lu LJ. Studies of rearrangement reactions of protonated and lithium cationized 2-pyrimidinyloxy-N-arylbenzylamine derivatives by MALDI-FT-ICR mass spectrometry, Journal of the American Society for Mass Spectrometry,2004,15(12):1820~1832
    [122]Wang HY, Zhang X, Guo YL, et al. Using Tandem Mass Spectrometry to Predict Chemical Transformations of 2-Pyrimidinyloxy-N-Arylbenzyl Amine Derivatives in Solution, Journal of the American Society for Mass Spectrometry,2006,17(2):253~263
    [123]Alberto L, Moraes B, Eberlin MN. Acyclic distonic acylium ions:dual free radical and acylium ion reactivity in a single molecule, Journal of the American Society for Mass Spectrometry,2000,11(8):697~704
    [124]Pasquali G, Porto DD, Fett-Neto AG. Metabolic engineering of cell cultures versus whole plant complexity in production of bioactive monoterpene indole alkaloids:Recent progress related to old dilemma, Journal of Bioscience and Bioengineering,2006,101(4):287~296
    [125]Gul W, Hamann MT. Indole alkaloid marine natural products:An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases, Life Sciences,2005,78(5):442-453
    [126]Narine LL, Maxwell AR. Monoterpenoid indole alkaloids from Palicourea crocea, Phytochemistry Letters,2009,2(1):34~36
    [127]丛铺珠,李笋生.天然物有机质谱学[M].北京:中国医药科技出版社,2003:18-25
    [128]蒋明谦,戴萃辰.诱导效应指数及其在分子结构与化学活性间定量关系中的应用[M].北京:科技出版社,1963:5-7,18-25
    [129]聂长明,夏良树.基团共轭效应参数[J].有机化学,2000,20(2):237-242
    [130]杨金瑞,余尚先.从13C化学位移分析取代基的诱导效应、共轭效应和亲电取代反应活性间的关系[J].化学通报,2006,69(5):331-336
    [131]Zeng YX, Zhao CX, Liang YZ, et al. Comparative analysis of volatile components from Clematis species growing in China, Analytica Chimica Acta, 2007,595(1-2):328~339
    [132]Kissin YV, Feulmer GP. Gas Chromatographic Analysis of Alkyl-Substituted Paraffins, Journal of Chromatographic Science,1986,24(2):53~59
    [133]Turpin BJ, Saxena P, Andrews E. Measuring and simulating particulate organics in the atmosphere:problems and prospects, Atmospheric Environment,2000,34 (18):2983~3013
    [134]Ho SSH, Yu JZ, Chow JC, et al. Evaluation of an in-injection port thermal desorption-gas chromatography/mass spectrometry method for analysis of non-polar organic compounds in ambient aerosol samples, Journal of Chromatography A,2008,1200 (2):217~227
    [135]Sihabuta T, Raya J, Northcrossa A, et al. Sampling artifact estimates for alkanes, hopanes, and aliphatic carboxylic acids, Atmospheric Environment,2005,39 (37):6945~6956
    [136]Nelson DR, Dillwith JW, Blomquist GJ. Cuticular hydrocarbons of the house fly, Musca domestica, Insect Biochemistry,1981,11 (2):187~197
    [137]Nelson DR, Nunn NJ, Jackson L. Re-analysis of the methylalkanes of the grasshoppers, Melanoplus differentialis, M. packardi and M. sanguinipes, Insect Biochemistry,1984,14 (6):677~683
    [138]Bernier UR, Carlson DA, Geden CJ. Gas Chromatography/Mass Spectrometry Analysis of the Cuticular Hydrocarbons from Parasitic Wasps of the Genus Muscidifurax, Journal of the American Society for Mass Spectrometry,1998,9 (4):320~332
    [139]Coudron TA, Nelson DR. Characterization and distribution of the hydrocarbons found in diapausing pupae tissues of the tobacco hornworm, Manduca sexta (L.). The Journal of Lipid Research,1981,22 (1):103~112
    [140]Dapporto L, Fondelli L, Turillazzi S. Nestmate recognition and identification of cuticular hydrocarbons composition in the swarm founding paper wasp Ropalidia opifex, Biochemical Systematics and Ecology,2006,34 (8):617~625
    [141]Nelson DR. Discovery of novel trimethylalkanes in the internal hydrocarbons of developing pupae of Heliothis virescens and Helicoverpa zea, Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2001, 128 (4):647~659
    [142]Lin JJ, Lee LC. Characterization of n-alkanes in urban submicron aerosol particles (PM1), Atmospheric Environment,2004,38 (19):2983~2991
    [143]Phillips M, Cataneo RN, Cummin ARC, et al. Detection of Lung Cancer with Volatile Markers in the Breath, Chest,2003,123 (6):2115~2123
    [144]Velde SVD, Quirynen M, Hee PV, et al. Differences between Alveolar Air and Mouth Air, Analytical Chemistry,2007,79 (9):3425~3429
    [145]Phillips M, Cataneo RN, Greenberg J, et al. Effect of age on the breath methylated alkane contour, a display of apparent new markers of oxidative stress, Journal of Laboratory and Clinical Medicine,2000,136 (3):243~249
    [146]Phillips M, Greenberg J, Cataneo RN. Effect of age on the profile of alkanes in normal human breath, Free Radical Research,2000,33 (1):57~63
    [147]Mitsui T, Kondo Inadequacy of theoretical basis of breath methylated alkane contour for assessing oxidative stress, T. Clinica Chimica Acta,2003,333 (1):91
    [148]Phillips M, Cataneo RN, Cheema T, et al. Increased breath biomarkers of oxidative stress in diabetes mellitus, Clinica Chimica Acta,2004,344 (1-2): 189~194
    [149]Phillips M, Cattaneo RN, Greenberg J, et al. Increased oxidative stress in younger as well as in older humans, Clinica Chimica Acta,2003,328 (1-2): 83~86
    [150]Cao WQ, Duan YX. Breath Analysis:Potential for clinical diagnosis and exposure assessment, Clinical Chemistry,2006,52 (5):800~811
    [151]Phillips M, Herrera J, Krishnan S, et al. Variation in volatile organic compounds in the breath of normal humans, Journal of Chromatography B,1999,729 (): 75~88
    [152]Phillips M. Method for the Collection and Assay of Volatile Organic Compounds in Breath, Analytical Biochemistry,1997,247 (2):272~278
    [153]Phillips M, Cataneo RN, Greenberg J. Response:scientific basis of the breath methylated alkane contour, Clinica Chimica Acta,2003,333 (1):93~94
    [154]Phillips M, Boehmer JP, Cataneo RN, et al. Heart allograft rejection:detection with breath alkanes in low levels (the HARDBALL study), The Journal of Heart and Lung Transplantation,2004,23 (6):701~708
    [155]Miekisch W, Schubert JK. From highly sophisticated analytical techniques to life-saving diagnostics:Technical developments in breath analysis, Trends in Analytical Chemistry,2006,25 (7):665~673
    [156]Carlson DA, Bernier UR, Sutton BD. Elution patterns from capillary GC for methyl-branched alkanes, Journal of Chemical Ecology,1998,24 (11): 1845~1865
    [157]Krkosova Z, Kubinec R, Sojak L, et al. Temperature-programmed gas chromatography linear retention indices of all C4-C30 monomethylalkanes on methylsilicone OV-1 stationary phase:Contribution towards a better understanding of volatile organic compounds in exhaled breath, Journal of Chromatography A,2008,1179 (1):59~68
    [158]Katritzky AR, Chen K, Maran U, et al. QSPR Correlation and predictions of GC retention indexes for methyl-branched hydrocarbons produced by insects, Analytical Chemistry,2000,72 (1):101~109
    [159]Krkosova Z, Kubinec R, Addova G, et al. Gas chromatographic-mass spectrometric characterization of monomethylalkanes from fuel diesel, Petroleum & Coal,2007,49 (3):51~62
    [160]Gong F, Liang YZ, Fung YS, et al. Correction of retention time shifts for chromatographic fingerprints of herbal medicines, Journal of Chromatography A, 2004,1029(1-2):173-183
    [161]Nelson DR. Long-Chain Methyl-Branched hydrocarbons:occurrence, biosynthesis, and function, Advances in Insect Physiology,1978,13:1~33
    [162]Kuhn F, Oehme M, Schleimer M. Performance and reliability of splitless microliter gradient pumps in a metabolic stability study using cytochrome P450/3A4 and capillary liquid chromatography-mass spectrometry, Journal of Chromatography A,2003,1018 (2):203~212
    [163]Gunawan S, Vali SR, Ju YU. Purification and identification of rice bran oil fatty acid steryl and wax esters, Journal of the American Oil Chemists' Society,2006, 83 (5):449~456
    [164]Trnovall U, Hatti-kaul R. Specialty chemicals from vegetable oils: achievements within the Greenchem research program, Lipid Technology,2007, 17 (4):84~87
    [165]Tada A, Jin ZL, Sugimoto N, et al. Analysis of the Constituents in Jojoba Wax Used as a Food Additive by LC/MS/MS, Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi),2005,46 (5):198~204
    [166]Adhikari P, Hwang KT, Park JN, et al. Policosanol Content and Composition in Perilla Seeds, The Journal of Agricultural and Food Chemistry 2006,54 (15): 5359~5362
    [167]Biedermann M, Haase-Aschoff P, Grob K. Wax ester fraction of edible oils: Analysis by on-line LC-GC-MS and GC×GC-FID, European Journal of Lipid Science and Technology,2008,110 (12):1084~1094
    [168]Sindhu Kanya TC, Jaganmohan Rao L, Shamanthaka Sastry MC. Characterization of wax esters, free fatty alcohols and free fatty acids of crude wax from sunflower seed oil refineries, Food Chemistry,2007,101 (4): 1552~1557
    [169]Isbell TA, Carlson KD, Abbott TP, et al. Isolation and characterization of wax esters in meadowfoam oil, Industrial Crops and Products,1996,5 (3):239~243
    [170]Moldovan Z, Jover E, Bayona JM. Systematic characterisation of long-chain aliphatic esters of wool wax by gas chromatography-electron impact ionisation mass spectrometry, Journal of Chromatography A,2002,952 (1-2):193~204
    [171]Szafranek BM, Synak EE. Cuticular waxes from potato (Solanum tuberosum) leaves, Phytochemistry,2006,67 (1):80~90
    [172]Santos S, Schreiber L, Graca J. Cuticular waxes from Ivy leaves (Hedera helix L.):analysis of high-molecular-weight esters, Phytochemical Analysis,2007,18 (1):60~69
    [173]Zhang Y, Wang ZZ. Comparative analysis of essential oil components of three Phlomis species in Qinling Mountains of China, Journal of Pharmaceutical and Biomedical Analysis,2008,47 (1):213~217
    [174]Jimenez JJ, Bernal JL, Aumente S, et al. Quality assurance of commercial beeswax:Part I. Gas chromatography-electron impact ionization mass spectrometry of hydrocarbons and monoesters, Journal of Chromatography A, 2004,1024(1-2):147~154
    [175]Patel S, Nelson DR, Gibbs AG. Chemical and physical analyses of wax ester properties, Journal of Insect Science,2001,1 (1):4~12
    [176]Amelio M, Rizzo R, Varazini F. Separation of stigmasta-3,5-diene, squalene Isomers, and wax esters from olive oils by single high-performance liquid chromatography run, Journal of the American Oil Chemists' Society,1998,75 (4): 1109-1113
    [177]Amelio M, Rizzo R, Varazini F. Characterization of Archaeological Beeswax by Electron Ionization and Electrospray Ionization Mass Spectrometry, Analytical Chemistry,2002,74 (19):4868~4877
    [178]Zhang LX, Liang YZ. Dissimilarity analysis and automatic identification of monomethylalkanes from gas chromatography mass spectrometry data 1. Principle and protocols, Journal of Chromatography A,2009,1216 (27): 5272-5283
    [179]Stransky K, Zarevucka M, Valterova I, et al. Gas chromatographic retention data of wax esters, Journal of Chromatography A,2006,1128~(1-2):208-219
    [180]Horai H, Arita M, Kanaya S, et al. MassBank:a public repository for sharing mass spectral data for life sciences, Journal of Mass Spectrometry,2010,45 (7): 703~714
    [181]Wishart DS, Knox C, Guo AC, et al. HMDB:a knowledgebase for the human metabolome. Nucleic Acids Research,2009,37 (Database issue):D603-610
    [182]Aitzetmuller K, Matthaus B, Friedrich H. A new database for seed oil fatty acids-the database SOFA, European Journal of Lipid Science and Technology,2003, 105 (2):92~103
    [183]Bicalho B, David F, Rumplel K, et al. Creating a fatty acid methyl ester database for lipid profiling in a single drop of human blood using high resolution capillary gas chromatography and mass spectrometry, Journal of Chromatography A,2008,1211 (1-2):120~128
    [184]Wagner C, Sefkow M, Kopka J. Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles, Phytochemistry,2003,62 (6):887~900
    [185]Kopka J, Schauer N, Krueger S, et al. GMD@CSB.DB:the Golm Metabolome Database, Bioinformatics,2005,21 (8):1635~1638
    [186]Babushok VI, Linstrom PJ, Reed JJ, et al. Development of a database of gas chromatographic retention properties of organic compounds, Journal of Chromatography A,2007,1157 (1-2):414~421
    [187]Kadokami K, Tanada K, Taneda K, et al. Novel gas chromatography-mass spectrometry database for automatic identification and quantification of micropollutants, Journal of Chromatography A,2005,1089 (1-2):219~226
    [188]Hartig C. Rapid identification of fatty acid methyl esters using a multidimensional gas chromatography-mass spectrometry database, Journal of Chromatography A,2008,1177 (1):159~169
    [189]Sud M, Fahy E, Cotter D, et al. LMSD:LIPID MAPS structure database, Nucleic Acids Research,2007,35 (Database issue):D527-D532
    [190]Miwa TK, Mikolajczak, KL, Earle FR, et al. Gas chromatographic characterization of fatty acids:Identification constants for mono-and dicarboxylic methyl esters, Analytical Chemistry,1960,32 (13):1739-1742
    [191]Christie WW. Equivalent chain-lengths of methyl ester derivatives of fatty acids on gas chromatography, a reappraisal, Journal of Chromatography,1988,447 (): 305~314
    [192]Yi LZ, Yuan DL, Che ZH, et al. Plasma fatty acid metabolic profile coupled with uncorrelated linear discriminant analysis to diagnose and biomarker screening of type 2 diabetes and type 2 diabetic coronary heart diseases, Metabolomics,2008,4 (1):30~38
    [193]Yi LZ, He J, Liang YZ, et al. Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GUMS and PLS-LDA, FEBS Letters,2006,580 (30):6837-6845
    [194]Ma CJ, Ma MH, Zhang YK, et al. Comparison of Eucommia key fruit seed oil and kiwi fruit seed oil, Journal of Jishou University (Natural ScienceEdition), 2005,26(4):66~69
    [195]Xie WZ, Fan CS, Zhu ZY. National compilation of Chinese herbs, Beijing: People's Medical Publishing House,1996:423~424
    [196]Deyama T, Nishibe S, Nakazawa Y. Constituents and pharmacological effects of Eucommia and Siberian ginseng, Acta Pharmacologica Sinica,2001,22 (12): 1057~1070
    [197]Yaqoob P. Monounsaturated fatty acids and immune function, European Journal Clinical Nutrition,2002,56 (Suppl 3):S9-S13
    [198]Zhao DY, Xu AX, Zhang BY, et al. Comparison of fatty acid component between Eucommia ulmoides seed oil and Perilla frutescens seed oil. Acta Botanica Boreal-Occident Sinica,2005,25(1):191~193
    [199]Svetashev VI, Li HF, Cai YF, et al. Fatty acid composition and total lipid content in the lancelet Branchiostoma belcheri tsingtaoense (Tchang et Koo), Comparative Biochemistry and Physiology Part A:Physiology,1994,108 (1-2): 325~329
    [200]Mj(?)s SA. Two-dimensional fatty acid retention indices, Journal of Chromatography A,2004,1061 (2):201~209
    [201]Mj(?)s SA, Meier S, Grahl-Nielsen O. Geometrical isomerisation of double bonds in acid-catalysed preparation of fatty acid methyl esters, European Journal of Lipid Science and Technology,2006,108 (4):315~322
    [202]Mj(?)s SA. Spectral transformations for deconvolution methods applied on gas chromatography-mass spectrometry data, Analytica Chimica Acta,2003,488 (2): 231-241
    [203]Mj(?)s SA,Pettersen J. Determination of trans double bonds in polyunsaturated fatty acid methyl esters from their electron impact mass spectra, European Journal of Lipid Science and Technology,2003,105 (3-4):156~164
    [204]Mj(?)s SA. The prediction of fatty acid structure from selected ions in electron impact mass spectra of fatty acid methyl esters, European Journal of Lipid Science and Technology,2004,106 (8):550~560
    [205]Dobson G, Christie WW. Mass spectrometry of fatty acid derivatives, European Journal of Lipid Science and Technology,2002,104(1):36~43
    [206]Hejazi L, Ebrahimi D, Guilhaus M, et al. Discrimination among Geometrical Isomers of a-Linolenic Acid Methyl Ester Using Low Energy Electron Ionization Mass Spectrometry, Journal of the American Society for Mass Spectrometry,2009,20 (7):1272~1280
    [207]Brakstad F. Accurate determination of double bond position in mono-unsaturated straight-chain fatty acid ethyl esters from conventional electron impact mass spectra by quantitative spectrum-structure modelling, Chemometrics and Intelligent Laboratory Systems,1993,19 (1):87~100
    [208]Feudale RN, Woody NA, Tan HW. Transfer of multivariate calibration models: a review, Chemometrics and Intelligent Laboratory Systems,2002,64 (2): 181~192
    [209]Myles AJ, Zimmerman TA, Brown SD. Transfer of Multivariate classification models between laboratory and process near-infrared spectrometers for the discrimination of green arabica and robusta coffee beans, Applied Spectroscopy, 2006,60(10):1198~1203
    [210]Wang YD, Veltkamp DJ, Kowalski BR. Multivariate instrument standardization, Analytical Chemistry,1991,63 (23):2750-2756
    [211]Alam TM, Alam MK, McIntyre SK, et al. Investigation of chemometric instrumental transfer methods for high-Resolution NMR, Analytical Chemistry, 2009,81 (11):4433~4443
    [212]Gislason J, Chan H, Sardashti M. Calibration transfer of chemometric models based on process nuclear magnetic resonance spectroscopy, Applied Spectroscopy,2001,55(11):1553~1560
    [213]Goodcare R, Timmins EM, Jones A, et al. On mass spectrometer instrument standardization and interlaboratory calibration transfer using neural networks, Analytica Chimica Acta,1997,348 (1-3):511~532
    [214]Goodcare R, Kell DB. Correction of mass spectral drift using artificial neural networks, Analytical Chemistry,1996,68 (2):271~280
    [215]Tomic O, Ulmer H, Haugen JE. Standardization methods for handling instrument related signal shift in gas-sensor array measurement data, Analytica Chimica Acta,2002,472 (1-2):99~111
    [216]Wang Z, Dean T, Kowalski BR. Additive background correction in multivariate instrument standardization, Analytical Chemistry,1995,67 (14):2379~2385
    [217]Gemperline PJ, Cho J, Aldridge PK, et al. Appearance of discontinuities in spectra transformed by the piecewise direct instrument standardization procedure, Analytical Chemistry,1996,68 (17):2913~2915
    [218]Anderson CE, Kalivas JH. Fundamentals of calibration transfer through procrustes analysis, Applied Spectroscopy,1999,53 (10):1268~1276
    [219]Keller HR, Massart DL. Peak purity control in liquid chromatography with photodiode-array detection by a fixed size moving window evolving factor analysis, Analytica Chimica Acta,1991,246 (2):379~390
    [220]Paulo AM, Do Nascimento MC, Mors, WB et al. Inhibition of the myotoxic and hemorrhagic activities of crotalid venoms by Eclipta prostrata (Asteraceae) extracts and constituents, Toxicon,1994,32 (5):595-603
    [221]Wang ZG, Chen ZP, Gong F, et al. Inner chromatogram projection (ICP) for resolution of GC-MS data with embedded chromatographic peaks, the Analyst, 2002,127 (5):623~628

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700