用户名: 密码: 验证码:
分析化学多维数据解析的化学计量学新算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着联用分析仪器的大量涌现,分析化学工作者常可轻而易举地获得大量的分析数据,这些数据包括了有关化学体系的丰富信息,如体系内组份数、各组份的含量以及特征光谱等。从这些大量的数据中提取有用的化学信息是传统的数据处理手段所难以胜任的,借助化学计量学算法可能解决许多问题。化学计量学是上个世纪七十年代发展起来的一门新兴的化学分支学科,它运用数学、统计学与计算机科学的方法来设计或选择最优化的量测方案,并通过解析化学量测数据最大限度地获取化学及相关信息。化学计量学理论与方法的发展,丰富了现代分析化学的基础理论。
    化学计量学理论与方法中,分析化学中的多维数据的解析方法是研究最为活跃的领域之一。目前,多组份体系分辨与校正领域的研究主要集中在二维数据和三维数据的解析。多维数据解析理论和方法的发展使人们对复杂化学体系的分析能力有了质提高; 使传统分析化学难以处理的“灰色”与“黑色”体系的直接分析成为可能。由于化学数据具有其内在特点,利用这些特点发展能够适用复杂体系的化学计量学算法业已成为多维数据解析研究领域的一个重要趋势。
    本文作者通过仔细分析当前化学计量学发展的方向,及其研究的热点,选取了二维化学数据分析及三维化学数据分析中的几个较为重要的问题进行了研究。主要涉及以下几个方面:
    一、二维化学数据解析的基本理论和算法(第一章一第三章):当一个色谱峰完全位于另一个色谱峰的流出区间内的时候,我们把里面的色谱峰称为内层色谱,相应的组份称为内层组份。相对地,外面的色谱峰称为外层色谱,其对应的组份称为外层组份。相对于紫外等宽带吸收谱,质谱具有离散性的特点。对于色谱包含峰体系,若其内层组份与外层组份在质谱检测通道上给出不同的信号,就意味着质谱方向上可能存在选择性的检测通道给出纯色谱。利用这一化学先验知识,我们设计提出了解析色谱包含峰的内层色谱投影法。该方法对色谱峰形状及内层色谱与外层色谱的相对位置没有特殊要求,适用于质谱检测的各种色谱包含峰的解析。在二维数据中,纯光谱又被称为纯变量。经过归一化,二维数据点在空间中都位于以纯变量为顶点的超球体内,这是二维数据的几何模型。我们充分利用了这一模型,提出了二维色谱数据分辨的顶点矢量顺序投影法。由于色谱方向上普遍存在选择性区域,即在几何空间中存在位于顶点的纯变量,顶点矢量顺序投影法可以逐个确定存在的纯变量,并通过迭代算法优化所获得的纯变量。
With the emergence of many hyphenated instruments, analysts can easily obtain very large volume of analytical data matrices, which consist of hundreds and even thousands data points. These data matrices or data arrays contain abundant chemical information including the number of chemical components, the pure spectra, chromatograms and contents of these components. However, it is a hard task to extract the above information from the data matrices composed of vast data points just by conventional data processing techniques. Analysts have to resort to chemometrics, which is a new sub-branch of chemistry and came forth 70’s last century. As an interface of chemistry with mathematics, statistics and computer science, chemometrics designs and selects optimal schemes for chemical measurements and maximally extracts chemical information from the data. With the evolution of chemometrics, its methodologies enrich comprehensively the fundamental theory of modern analytical chemistry.
    Among the bulk of chemometric methodologies, multi-way data analysis in analytical chemistry is one of the most active areas with practical significance. Two-way and three-way data analysis has gained a wide interest in the resolution and calibration of multi-component systems. These multi-way data analysis approaches provide a promising tool for the direct analysis of the so-called “grey” and “black” analytical systems. Since the chemical data characterize chemical systems, incorporating priori chemical information into the chemometric algorithm has become an important trend in multi-way data analysis. The present thesis primarily involves the following aspects of multi-way data analysis in analytical chemistry:
    1. Two-way data analysis (Chapter 1 to Chapter 3): A chromatographic peak located inside another peak in time direction is called an embedded or inner peak in distinction with the embedding peak, which is called an outer one. The chemical components corresponding to inner and outer peaks are called inner and outer components respectively. The ultraviolet-visible and near infrared spectra of chemical compounds are band spectra, while the mass spectra possess the feature of discreteness. If the inner and outer components give different signals on different measuring channels, it is possible that there exist selective channels that represent pure chromatograms. Based on this priori chemical information, the inner
    chromatogram projection (ICP) method is proposed for resolution of GC-MS data with embedded chromatographic peaks. ICP is capable of achieving satisfactory performance not affected by the shapes of chromatograms and the relative position of two components. It could be utilized to resolve any pattern of embedded chromatograms with mass spectroscope as a detector. In two-way data analysis, pure spectra are also referred to as pure variables. Subjected to any form of normalization, the two-way data points are located on a certain hyper-“spherical” surface with the vertices constituted by the pure variables. A rational resolution procedure, named vertex vector sequential projection (VVSP), for determining pure variables in two-way data is developed by making full use of the above geometry of two-way data. Since there commonly exist selective regions in the time direction, VVSP would definitely ascertain the pure variables one by one, and then refine them through an iterative optimization procedure. The proposed method is approved to be a competent tool for the resolution of two-way data. Additionally, VVSP does not require the ascertainment of feature regions and its principle and implementation are straightforward. For the determination of elution windows and patterns, the pure spectrum evolving projection (PSEP) method is proposed. PESP tries to find pure spectra or pure projected spectra and utilizes the evolving projection method to find the elution windows of the overlapping chromatograms component by component. PESP could locate the starting and ceasing elution points of all components; more importantly, it gives a direct indication of elution patterns. PSEP has been approved to be a useful tool in discovering the elution windows in two-way data. 2. Three-way data analysis (Chapter 4 to Chapter 8): The most important prerequisite for the three-way data analysis is that the data arrays should strictly follow the trilinear model. In order to improve the accuracy and reliability of the decomposition of three-way data contaminated by nonlinear data or outliers, the iterative reweighted parallel factor analysis (IRPARAFAC) is proposed. The basic assumption of the proposed method is that the residues corresponding to the data entities contaminated with large deviation are larger than those of others. Cosine function is used to decide the weight for each entity. The IRPARAFAC algorithm iteratively updates the weights with the improvement of the unmodeled residues. During the iterative procedure, the data entities with large deviations will be discovered gradually and assigned with small or even zero weights. Hence their influence on the chemical loading parameters can be gradually mitigated. The
    IRPARAFAC algorithm provides a promising tool to qualitative and quantitative analysis of trilinear data array containing nonlinear data or outliers. The chromatographic shifting could hardly be avoided because the stability of both operator and the state of the instrument could not always be guaranteed from run to run. If the shifting is severe, the trilinearity is no longer satisfied. Aiming at solving the problem, the VVSP method is utilized to the analysis of three-way chromatographic data. The three-way data array is unfolded along a certain direction into one matrix and a multi-bilinear model is obtained. Then the VVSP method is utilized to select the pure variables and iteratively improve the fit of the data to the multi-bilinear model. The multi-bilinear model guarantees that the chromatograms in each sample could be resolved separately, which circumvents the difficulty of model deficiency caused by retention time shifts. The results of both simulated and real chemical data sets have demonstrated that the proposed method is more efficient than PARAFAC when the chromatographic shifts are very severe. If the chromatographic shifts are slight or subjected to adjustment, the three-way data could be regarded to be decomposable in trilinear domain. Thus the trilinear evolving factor analysis (TEFA) is proposed by making use of the trilinearity of three-way data and the evolving nature of chromatography. Comparing with the two-way matrix, the three-way data arrays provide a matrix on each point along the time direction. The superiority of higher dimension of three-way data arrays supplies one with the possibility of conducting the singular value decomposition (SVD) on each elution detection point, while a number of neighboring profiles are needed to perform SVD in two-way resolution. So the rank map of three-way data could be obtained by direct rank analysis of matrices on each time point. Provided the trilinearity is guaranteed, accurate eluting information could be obtained from the rank map. Additionally this method need not consider the selection of window size, which affects the selectivity and sensitivity in two-way case. From rank maps, selective regions could be determined as well as spectral and concentration profiles, then the coupled vector resolution (COVER) method can be utilized to resolve the chromatograms. The COVER method needs pure variables of two dimensions or at least one calibration sample to achieve the resolution. This requisite could be met by the information acquired from the trilinear rank map. TEFA-COVER realized the idea of resolving profiles component by component through the deduction of resolved components. As a result, it achieves the direct resolution of a “black” system.
    The number of components is also called the chemical rank of the three-way data. The determination of chemical rank is crucial to the decomposition of three-way data arrays. Thus the chemical subspace projection (CSP) method is proposed for the determination of chemical rank in three-way data arrays. The proposed method projects the unfolded three-way data to the chemically meaningful subspaces and determines the chemical rank by checking the length of the projected vectors. The proposed method is simple to use and can give accurate estimate of the component number in an ordinary three-way data array.
引文
[1] 俞汝勤. 化学计量学导论. 长沙:湖南教育出版社,1991.
    [2] 高鸿. 分析化学前沿. 北京:科学出版社,1991.
    [3] 梁逸曾. 白灰黑复杂多组份分析体系及其化学计量学算法. 长沙:湖南科学技术出版社,1996.
    [4] 梁逸曾,俞汝勤. 分析化学手册 第十分册,化学计量学. 第 2 版. 北京:化学工业出版社,2000
    [5] 许禄,化学计量学方法. 北京:科学出版社,1994
    [6] Ramos L S,Beebe K R,Carey W P,et al. Chemometrics:fundamental review. Anal. Chem.,1986,58 (12):294R-314R
    [7] Brown S D,Barker T Q,Larivee R A,et al. Chemometrics:fundamental review. Anal. Chem.,1988,60 (12):252R-274R
    [8] Brown S D Chemometrics:fundamental review. Anal. Chem.,1990,62 (12):84R-101R
    [9] Brown S D,Bear Jr R S,Blank T B. Chemometrics:fundamental review. Anal. Chem.,1992,64 (12):22R-49R
    [10] Brown S D,Blank T B,Sum S T,Weyer L G. Chemometrics:fundamental review. Anal. Chem.,1994,66 (12):315R-359R
    [11] Brown S D,Sum S T,Despagne F,et al. Chemometrics:fundamental review. Anal. Chem.,1996,68 (12):21R – 62R
    [12] Lavine B K. Chemometrics:fundamental review. Anal. Chem.,1998,70 (12):209R-228R
    [13] Lavine B K. Chemometrics:fundamental review. Anal. Chem.,2000,72 (12):91R-97R
    [14] Lavine B K,Workman Jr J. Chemometrics:fundamental review. Anal. Chem.,2002,74 (12):2763-2769
    [15] Lavine B,Workman,J. J.,Jr. Chemometrics:fundamental review. Anal. Chem.,2004,76 (12):3365-3372
    [16] Sanchez F. C.,Vandeginste B. G. M,Hancewicz,T. M. et al. Resolution of Complex Liquid Chromatography-Fourier Transform Infrared Spectroscopy Data. Anal. Chem.,1997,69 (8):1477-1484
    [17] Lilley K. A.,Wheat T. E.,Drug identification in biological matrices using capillary electrophoresis and chemometric software. J. Chromatogr.,B:Biomed. Appl.,1996,683 (1):67-76
    [18] Statheropoulos M.,Smaragdis E.,Tzamtzis N. et al. Principal component analysis for resolving coeluting substances in gas chromatography-mass spectrometry doping control analysis. Analytica Chimica Acta,1996,331 (1-2):53-61.
    [19] Thurston T J.,Brereton R G,Foord D J,et al. Monitoring of a second-order reaction by electronic absorption spectroscopy using combined chemometric and kinetic models. J. Chemometrics,2003,17 (6):313-322.
    [20] Joaquim C. G.,Esteves da Silva,Adélio A. S. C. Machado,et al. Simultaneous use of evolving factor analysis of fluorescence spectral data and analysis of pH titration data for comparison of the acid-base properties of fulvic acids. Analytica Chimica Acta,1996,318 (3):365-372.
    [21] Koons J. M.,Ellis P. D,Applicability of Factor Analysis in Solid State NMR. Anal. Chem.,1995,67 (23):4309-4315.
    [22] Grabaric B. S.,Grabaric Z.,Tauler R.,et al. Application of multivariate curve resolution to the voltammetric data Factor analysis ambiguities in the study of weak consecutive complexation of metal ion with ligand. Analytica Chimica Acta,1997,341 (2-3):105-120.
    [23] Bijlsma S,Boelens H. F. M.,Hoefsloot H. C. J., et al. Constrained least squares methods for estimating reaction rate constants from spectroscopic data. J. Chemometrics,2002,16 (1):28-40
    [24] Diaz-Cruz. MS.,Tauler R.,E. Casassas,et al. Application of multivariate curve resolution to voltammetric data. Part 1. Study of Zn (II) complexation with some polyelectrolytes. J. Electroanal. Chem.,1995,393 (1-2):7-16
    [25] Mendieta J.,Diaz-Cruz MS.,Tauler R,et al. Application of multivariate curve resolution to voltammetric data. II. Study of metal-binding properties of the peptides. Anal. Biochem.,1996,240 (1):134-141
    [26] Esteves da Silva JCG. , Machado AASC. , Angeles Ramos M. , et al. Quantitative Study of Be (II) Complexation by Soil Fulvic Acids by Molecular Fluorescence Spectroscopy. Environ. Sci. Technol.,1996,30 (11):3155-3160
    [27] Darj M. M,Malinowski E. R.,Complexation between Copper (II) and Glycine in Aqueous Acid Solutions by Window Factor Analysis of Visible Spectra. Anal. Chem.,1996,68 (9):1593-1598
    [28] S. X Ren,L. Gao. The speciation of COPPER (II) / ETHYLENEDIAMINE / OXALATE system by evolving factor analysis J. Autom. Chem.,1995,17 (5):17-177
    [29] Grung B,Kvalheim O. M. Detection and quantification of embedded minor analytes in three-way multicomponent profiles by evolving projections and internal rank annihilation. Chemom. Intell. Lab. Syst.,1995,29 (2):213-221
    [30] Chen Z. P., Morris J., Martin E., et al. Recursive evolving spectral projection for revealing the concentration windows of overlapping peaks in two-way chromatographic experiments. Chemom. Intell. Lab. Syst.,2004,72 (1):9-19
    [31] Kudrev A.,Gargallo R.,Izquierdo-Ridorsa A.,et al. Study of the acid–base equilibria and conformational changes of double stranded polyadenylic– polyuridylic acid in aqueous solution. Analytica Chimica Acta,1998,363 (2-3):119-132
    [32] Tauler R.,Gargallo R.,Vives M,et al. Resolution of temperature dependent conformational multiequilibria processes. Chemom. Intell. Lab. Syst.,1999,46 (2):275-295
    [33] Furusjooe E.,Danielsson L. G.,Koenberg E. .,et al. Evaluation Techniques for Two-Way Data from in Situ Fourier Transform Mid-Infrared Reaction Monitoring in Aqueous Solution. Anal. Chem.,1998,70 (9):1726-1734
    [34] Esteban M.,Harlyk C,Rodriguez A. R. Cadmium binding properties of the C-terminal hexapeptide from mouse metallothionein:study by linear sweep voltammetry and multivariate curve resolution analysis. J. Electroanal. Chem.,1999,468 (2):202-212
    [35] Diaz-Cruz M. S.,Mendieta J.,Tauler R,et al. Multivariate Curve Resolution of Cyclic Voltammetric Data:Application to the Study of the Cadmium-Binding Properties of Glutathione. Anal. Chem.,1999,71 (20):4629-4636
    [36] Keesey R. L, Ryan M. D. Use of Evolutionary Factor Analysis in the Spectroelectrochemistry of Escherichia coli Sulfite Reductase Hemoprotein and a Mo/Fe/S Cluster. Anal. Chem.,1999,71 (9):1744-1752.
    [37] Bijlsma S.,Smilde A. K. Application of curve resolution based methods to kinetic data. Analytica Chimica Acta,1999,396 (2-3):231-240
    [38] Winding W , Antalek B , Sorriero L. J. , et al. Applications and new developments of the direct exponential curve resolution algorithm (DECRA). Examples of spectra and magnetic resonance images. J. Chemometrics,1999,13 (2):95-110
    [39] Winding W.,Hornak J. P,Antalek B. Multivariate Image Analysis of Magnetic Resonance Images with the Direct Exponential Curve Resolution Algorithm (DECRA):Part 1:Algorithm and Model Study. J. Magn. Reson.,1998,132 (2),298-306
    [40] Antalek B,Hornak J P,Windig W. Multivariate Image Analysis of Magnetic Resonance Images with the Direct Exponential Curve Resolution Algorithm (DECRA):Part 2:Application to Human Brain Images. J. Magn. Reson.,1998,132 (2):307-315
    [41] Andrew J. J.,Hancewicz T. M. Rapid Analysis of Raman Image Data Using Two-Way Multivariate Curve Resolution. Appl. Spectroc.,1998,52 (6):797-804
    [42] Gampp H.,Maeder M.,Meyer C. J,Calculation of equilibrium constants from multiwavelength spectroscopic data—III : Model-free analysis of spectrophotometric and ESR titrations. Talanta,1985,32 (12):1133-1139.
    [43] Maeder M.,Zuberbühler A. D. The resolution of overlapping chromatographic peaks by evolving factor analysis. Analytica Chimica Acta,1986,181,287-291
    [44] Maeder M , Evolving factor analysis for the resolution of overlapping chromatographic peaks. Anal. Chem.,1987,59 (3):527-530
    [45] Malinowski E.R. Window factor analysis : Theoretical derivation and application to flow injection analysis data. J. Chemom.,1992,6 (1):29-40.
    [46] Kvalheim O. M,Liang Y. Z. Heuristic evolving latent projections:resolving two-way multicomponent data. 1. Selectivity , latent-projective graph ,datascope,local rank,and unique resolution. Anal. Chem.,1992,64 (8):936-946.
    [47] Liang Y. Z.,Kvalheim O. M.,Keller H. R. et al. Heuristic evolving latent projections : resolving two-way multicomponent data. 2. Detection and resolution of minor constituents. Anal. Chem.,1992,64 (8):946-953
    [48] Liang Y. Z.,Kvalheim O. M.,Heuristic evolving latent projections:Resolving hyphenated chromatographic profiles by component stripping. Chemon. Intell. Lab. Syst.,1992,64,20 (2):115-125
    [49] Manne R.,Shen H. L.,Y. Z. Liang. Subwindow factor analysis. Chemon. Intell. Lab. Syst.,1999,45 (1-2):171-176
    [50] Shen H. L.,Manne R.,Liang Y. Z.,et al. Local resolution of hyphenated chromatographic data. Chemom. Intell. Lab. Syst.,1999,45 (1-2):323-328
    [51] Jiang J.H,Ozaki Y.,Kleimann M,et al. Resolution of two-way data from on-line Fourier-transform Raman spectroscopic monitoring of the anionic dispersion polymerization of styrene and 1,3-butadiene by parallel vector analysis (PVA) and window factor analysis (WFA) Chemon. Intell. Lab. Syst.,2004,70 (1):83-92
    [52] Jiang J.H,Sasic S.,Yu R.Q.,et al. Resolution of two-way data from spectroscopic monitoring of reaction or process systems by parallel vector analysis (PVA) and window factor analysis (WFA):inspection of the effect of mass balance,methods and simulations. J. Chemom.,2003,17 (3):186-197
    [53] Sánchez F. C.,Bogaert B,Rutan S. C.,et al. Multivariate peak purity approaches. Chemon. Intell. Lab. Syst.,1996,34 (2):139-171
    [54] Karjalainen E. The spectrum reconstruction problem: Use of alternating regression for unexpected spectral components in two-dimensional spectroscopies. Chemon. Intell. Lab. Syst.,1989,7 (1-2):31-38
    [55] Tauler R,Casassas E.. Spectroscopic resolution of macromolecular complexes using factor analysis:Cu (II) -polyethyleneimine system. Chemon. Intell. Lab. Syst.,1992,14 (1-3):305-317
    [56] Windig W,Guilment J. Interactive self-modeling mixture analysis. Anal. Chem.,1991,63 (14):1425-1432
    [57] Gemperline P. J. A priori estimates of the elution profiles of the pure components in overlapped liquid chromatography peaks using target factor analysis. Chem. Info. Computer Sci.,1984,24 (4)4:206-212
    [58] Vandeginste B. G. M,Derks W,Kateman G. Multicomponent self-modelling curve resolution in high-performance liquid chromatography by iterative target transformation analysis. Analytica Chimica Acta,1985,173:253-264
    [59] Paatero P. Least squares formulation of robust non-negative factor analysis. Chemon. Intell. Lab. Syst.,1997,37 (1):23-35
    [60] Jiang J H,Liang Y Z,Ozaki Y. On simplex-based method for self-modeling curve resolution of two-way data. Chemon. Intell. Lab. Syst.,2003,65 (1):51-65
    [61] Wang J. H.,Liang Y. Z.,Yu R. Q. et al. Local chemical rank estimation of two-way data in the presence of heteroscedastic noise:A morphological approach. Chemom. Intell. Lab. Syst.,1996,32 (2):265-272
    [62] Juan A.,Bogaert B,Sanchez F. C. et al. Application of the needle algorithm for exploratory analysis and resolution of HPLC-DAD data. Chemom. Intell. Lab. Syst.,1996,33 (2):133-145.
    [63] Juan A.,Vander Heyden Y.,Taule R,et al. Assessment of new constraints applied to the alternating least squares method. Analytica Chimica Acta,1997,346 (3):307-318
    [64] Malinowski E. R.,Automatic window factor analysis -A more efficient method for determining concentration profiles from evolutionary spectra. J. Chemometrics,1996,10 (4):273-279
    [65] Gargallo R., Tauler R., Sanchez F. C, et al. Validation of alternating least-squares multivariate curve resolution for chromatographic resolution and quantitation. Trac Trends Anal. Chem.,1996,15 (7):279-286
    [66] Elbergali A. K.,Brereton R. G,Rahmani A. Influence of the method of calculation of noise thresholds on wavelength selection in window factor analysis of diode array high-performance liquid chromatography Analyst,1996,121 (5):585-590
    [67] Sanchez F. C. , Rutan S. C. , Gil Garcia M. D. et al. Resolution of multicomponent overlapped peaks by the orthogonal projection approach,evolving factor analysis and window factor analysis. Chemom. Intell. Lab. Syst.,1997,36 (2):153-164
    [68] Ritter C.,Gilliard J. A.,Cumps J.,et al. Corrections for heteroscedasticity in window evolving factor analysis. Analytica Chimica Acta,1996,318 (2):125-136
    [69] Elbergali A.,Nygren J,Kubista M.. An automated procedure to predict the number of components in spectroscopic data. Analytica Chimica Acta,1999,379 (1-2):143-158
    [70] Xie Y. L.,Hopke P. K,Paatero P. J. Positive matrix factorization applied to a curve resolution problem. J. Chemometrics,1998,12 (6):357-364
    [71] Shao X. G,Cai W. S. Resolution of multicomponent chromatograms by window factor analysis with wavelet transform preprocessing. J. Chemometrics,1998,12 (2):85-93
    [72] Lohnes M. T.,Guy R. D,Wentzell P. D. Window target-testing factor analysis:theory and application to the chromatographic analysis of complex mixtures with multiwavelength fluorescence detection Analytica Chimica Acta,1999,389 (1-3):95-113
    [73] Liang Y. Z.,Leung A. K. M,Chau F. T. A roughness penalty approach and its application to noisy hyphenated chromatographic two-way data J. Chemometrics,1999,13 (5):511-524
    [74] Xu Q. S,Liang Y. Z. On the equivalence of window factor analysis and orthogonal projection resolution. Chemom. Intell. Lab. Syst.,1999,45 (1-2):335-338
    [75] Knorr F J,Futrell J. H. Separation of mass spectra of mixtures by factor analysis. Anal. Chem.,1979,51 (8):1236-1241.
    [76] Malinowski E.R. Obtaining the key set of typical vectors by factor analysis and subsequent isolation of component spectra. Anal. Chim. Acta.,1982,134:129-137.
    [77] Borgen O.S.,Kowalski B.R. An extension of the multivariate component-resolution method to three components. Anal. Chim. Acta,1985,174:1-26.
    [78] Wise B. M.,Gallagher N. B,Butler S. W,et al. A comparison of principal component analysis , multiway principal component analysis , trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process. J. Chemometrics,1999,13 (3-4):379-396
    [79] Beltran J. L.,J. Guiteras,R. Ferrer. Three-Way Multivariate Calibration Procedures Applied To High-Performance Liquid Chromatography Coupled with Fast-Scanning Fluorescence Spectrometry Detection. Determination of Polycyclic Aromatic Hydrocarbons in Water Samples. Anal. Chem.,1998,70 (9):1949-1955
    [80] Beltran J. L.,Guiteras J.,Ferrer R. Parallel factor analysis of partially resolved chromatographic data : Determination of polycyclic aromatic hydrocarbons in water samples. J. Chromatogra. (A),1998,802 (2):263-275
    [81] Windig W,Antalek B. Resolving nuclear magnetic resonance data of complex mixtures by three-way methods:Examples of chemical solutions and the human brain. Chemom. Intell. Lab. Syst.,1999,46 (2):207-219
    [82] Bijlsma S.,Louwerse D. J,Smilde A. K. Estimating rate constants and pure UV-vis spectra of a two-step reaction using trilinear models. J. Chemometrics,1999,13 (3-4):311-329
    [83] Geladi P. Analysis of multi-way (multi-mode) data. Chemom. Intell. Lab. Syst.,1989,7 (1-2):11-30
    [84] Smilde A. K. Three-way analyses problems and prospects. Chemom. Intell. Lab. Syst.,1992,15 (2-3):143-157
    [85] Sanchez E,Kowalski B R. Generalized rank annihilation factor analysis. Anal.Chem.,1986,58 (2):496-499
    [86] Millican D W , McGrown L B. Fluorescence lifetime selectivity in excitation-emission matrices for qualitative analysis of a two-component system. Anal.Chem.,1989,61 (6):580-583
    [87] Millican D W,McGown L B. Fluorescence lifetime resolution of spectra in the frequency domain using multiway analysis. Anal.Chem.,1990,62 (20):2242-2247
    [88] Scarmino I. Kubista M. Analysis of correlated spectral data. Anal.Chem.,1993,65 (4):409-416
    [89] Wilson B E,Sanchez E,Kowalski B R. An improved algorithm for the generalized rank annihilation method. J.Chemom.,1989,3:493-498
    [90] Li S,Hamilton C,Gemperline P J. Generalized rank annihilation method using similarity transformations. Anal.Chem.,1992,64 (6):599-607
    [91] Faber K,Lorber A,Kowalski B R. Generalized rank annihilation method:standard errors in the estimated eigenvalues if the instrumental errors are heteroscedastic and correlated . J.Chemom.,1997,11 (2):95-109
    [92] Sánchez E , Kowalski B R. Tensorial resolution : a direct trilinear decomposition. J. Chemom.,1990,4 (1):29-45
    [93] Li S,Gemperline P J. Eliminating complex eigenvectors and eigenvalues in multiway analyses using the direct trilinear decomposition method. J.Chemom.,1993,7 (1):77-88
    [94] Lin Z,Booksh K S,Burgess L W,et al. A second-order fiber optic heavy metal sensor employing second-order tensorial calibration. Anal. Chem.,1994,66 (15):2552-2560
    [95] Booksh K S,Lin Z,Wang Z ,et al. Extension of trilinear decomposition method with an application to the flow probe sensor. Anal.Chem.,1994,66 (15):2561-2569
    [96] Henshow J M,Burgess L W,Booksh K S,et al. Multicomponent determination of chlorinated hydrocarbons using a reaction-based chemical sensor. 1. Multivariate calibration of fujiwara reaction products. Anal.Chem.,1994,66 (20):3328-3336
    [97] Gui M,Rutan S C,Agbodian A. Kinetic detection of overlapped amino acids in thin-layer chromatography with a direct trilinear decomposition method. Anal.Chem.,1995,67 (18):3293-3299
    [98] Saurina J,Hemandez-Cassou S,Tauler R. Multivariate curve resolution and trilinear decomposition methods in the analysis of stopped-flow kinetic data for binary amino acid mixtures. Anal.Chem.,1997,69 (13):2329-2336
    [99] Juan A,Rutan S C,Tauler R,et al. Comparison between the direct trilinear decomposition and the multivariate curve resolution-alternating least squares methods for the resolution of three-way data sets. Chemo,Intell. Lab. Syst.,1998,40 (1):19-32
    [100] Appelolof C J,Davidson E R. Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents. Anal.Chem.,1981,53(13):2053-2056
    [101] Smilde A K,Doornbos D A. Three-way methods for the calibration of chromatographic systems : Comparing PARAFAC and three-way PLS. J.Chemom.,1991,5(3):345-360
    [102] Smilde A K,Doornbos D A. Simple validatory tools for judging the predictive performance of PARAFAC and three-way PLS. J.Chemom.,1992,6(1):11-28
    [103] Mitchell B C,Burdick D S. Slowly converging PARAFAC sequences:Swamps and two-factor degeneracies. J. Chemom.,1994,8(2):155-168
    [104] Bro R. Tutorial:PARAFAC.Tutorial and applications. Chemom. Intell. Lab. Syst.,1997,38(2):149-171
    [105] Rayens W S,Mitchell B C. Two-factor degeneracies and a stabilization of PARAFAC. Chemom. Intell. Lab.Syst.,1997,38(2):173-181
    [106] Krijnen W P. The Analysis of three-way Arrays by Constrained PARAFAC Methods,Leiden:Dswo Press,1993
    [107] Harshman R A. Foundations of the PARAFAC procedure : Models and conditions for an ‘explanatory’ multi-modal factor analysis. UCLA Working Papers in Phonetics,1970,16 (1):1-84
    [108] Carroll J D,Chang J J. Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition. Psychometrika,1970,35:283-319
    [109] Jiang J H, Wu H L, Chen Z P, Yu R Q. Coupled vectors resolution method for chemometric calibration with three-way data. Anal.Chem., 1999, 71(19): 4254-4262
    [110] Jiang J H, Wu H L, Li Y, Yu R Q. Alternating coupled vectors resolution (ACOVER) method for trilinear analysis of three-way data. J.Chemom., 1999, 13(6): 557-578
    [111] Jiang J H, Wu H L, Li Y, Yu R Q. Three-way data resolution by alternating slice-wise diagonalization (ASD) method. J.Chemom., 2000, 14(1): 15-36
    [112] 蒋健晖. 三阶数据分析与多元校正及化学模式识别的化学计量学方法研究: [博士学位论文]. 长沙:湖南大学化学化工学院,1999
    [113] Li Y, Jiang J H, Wu H L, Chen Z P, Yu R Q. Alternation coupled matrics resolution method for three-way array analysis, Chemom.Intell.Lab.Syst., 2000, 52(1): 33-43.
    [114] Chen Z P, Wu H L, Yu R Q. On the self-weighted alternating trilinear decomposition algorithm -the property of being insensitive to excess factors used in calculation. J.Chemom., 2001, 15(5): 439-453
    [115] Chen Z P, Li Yang, Yu R Q. Pseudo alternating least squares algorithm for trilinear decomposition. J.Chemom,. 2001, 15(3): 149-167
    [116] Chen Z P, Wu H L, Li Y, Yu R Q. A Novel constrained PARAFAC algorithm for second-order linear calibration. Anal. Chem. Acta, 2000, 423(1): 187-196
    [117] Cao Y Z, Chen Z P, Mo C Y, Wu H L, Yu R Q. A PARAFAC algorithion using penalty diugonalization error (PDE) for three-way data array resolution. Analyst, 2000,125: 2303-2310
    [118] Wu H L, shibukawa M, Oguma K. An alternating trilinear decomposition method with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbous. J. Chemom., 1998,12(1):1-26
    [119] Nomikos P.,MacGregor J. F. Monitoring of batch processes using multi-way principal component analysis. AIChE Journal, 1994,40 (8):1361-1375
    [120] Nomikos P.,MacGregor J. F. Multivariate SPC charts for monitoring batch processes. Technometrics, 1995,37 (1):41-59
    [121] Wold S.,Geladi P.,Esbensen K.,et al. Multi-way principal components-and PLS-analysis J. Chemometrics, 1987,1 (1):41-56
    [122] Harshman R A, Lundy M E. The PARFAC model for three-way factor analysis and multi-dimensional scaling, in Law H G, Snyder C W, Hattie J A, McDonald R P(Eds.), Research Methods for Multi-mode Data Analysis. New York: Praeger,1984
    [123] Louwerse D. J.,Smilde A. K.,Kiers H. A. L. Cross-validation of multiway component models. J. Chemometrics.,1999,13 (5):491-540
    [124] Durell S R, Lee C H, Ross R T, et al. Factor analysis of the near-ultraviolet absorption spectrum of plastocyanin using bilinear, trilinear, and quadrilinear models. Arch.Biochem.Biophys., 1990,278(1):148-160
    [125] Bro R. Multi-way analysis in the food industry, Ph.D. Thesis, 1998.
    [126] Chen Z P,Liu Z,Yu R Q,et al. Efficient way to estimate the optimum number of factors for trilinear decomposition. Analytica Chimica Acta,2001,444 (2):295-307
    [127] Xie H P, Jiang J H, Yu R Q,et al. Estimation of the chemical rank for the three–way data:a principal norm vector orthogonal projection approach. Computers & Chemistry, 2002, 26(2): 183-190
    [128] Xie H P, Jiang J H, Yu R Q,et al. Estimation of chemical rank of a three-way array using a two-mode subspace comparison approach. Chemometrics and Intelligent Laboratory Systems, 2003,66 (2):101-115
    [129] Booksh K. S.,Kowalski B. R. Anal. Chem., 1994,66:782A
    [130] Anderson G. G., Dable B. K.,Booksh K. S., Weighted parallel factor analysis for calibration of HPLC-UV/Vis spectrometers in the presence of Beer's law deviations. Chemom. Intell. Lab. Syst.,1999,49 (2):195-213
    [131] Paatero P., A weighted non-negative least squares algorithm for three-way ‘PARAFAC’ factor analysis. Chemom. Intell. Lab. Syst., 1997,38 (2):223-242
    [132] Bro R., Jong S. D. A fast non-negativity-constrained least squares algorithm. J. Chemom., 1997,11(5): 393-401
    [133] Bro R. Sidiropoulos N. D. Least squares algorithms under unimodality and non-negativity constraints. J. Chemom., 1998, 12(4):223-247
    [134] Kiers H. A. L,Ten Berge J. M. F.,Bro R. PARAFAC2 -Part I. A direct fitting algorithm for the PARAFAC2 model. J. Chemom. 1999,13 (3-4):275-294
    [135] Bro R., Andersson C. A., Kiers H. A. L. PARAFAC2 -Part II. Modeling chromatographic data with retention time shifts. J. Chemom. 1999,13 (3-4):295-309
    [136] Manne. R. On the resolution problem in hyphenated chromatography. Chemom. Intell. Lab. Syst.,1995,27 (1):89-94
    [137] Liang Y.Z.,Kvalheim O.M. Unique resolution of hidden minor peaks in multidetection chromatography by first-order differentiation and orthogonal projections. Anal. Chim. Acta, 1993,276 (2):425-440
    [138] Gong F.,Liang Y.Z.,Xu Q.S.,et al. Gas chromatography–mass spectrometry and chemometric resolution applied to the determination of essential oils in Cortex Cinnamomi. J. Chroma. A, 2001,905 (1-2):193-205
    [139] 中国药典委员会. 中国药典. 北京:人民卫生出版社,1995,附录 62
    [140] Keller H. R.,Massart D. L. Peak purity control in liquid chromatography with photodiode-array detection by a fixed size moving window evolving factor analysis. Analytica Chimica Acta,1991,246 (2):379-390.
    [141] 沈海林,梁逸曾,俞汝勤 et al.香港大气颗粒物中多环芳烃的 HELP 法解析 中国科学 B,1997, 27 (6): 556-563;
    [142] Shen H.L.,Liang Y.Z.,Yu R.-Q.,et al. Analysis of PAHs in air-borne particulates in Hong Kong City by heuristic evolving latent projection. Sci. China, Ser B,1998,41:21–29.
    [143] Tauler R.,Smilde A.K.,Kowalski B.R. Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution. J. Chemom. 1995,9 (1):31-58
    [144] Tauler R. Multivariate curve resolution applied to second order data. Chemom. Intell. Lab. Syst. 1995,30 (1):133-146
    [145] Juan A., Casassas E., Tauler R. Encyclopedia of analytical chemistry: instrumentation and applications, Soft-modeling of Analytical Data, Wiley, NY, 2000.
    [146] Grung B.,Kavlheim M. Rank mapping of three-way multicomponent profiles. Chemom. Intell. Lab. Syst., 1995,29 (2):223-232.
    [147] Whitson A.C.,Maeder M. Exhaustive evolving factor analysis (E-EFA) J. Chemom. 2001,15 (5):475-484
    [148] Zeng Z.D.,Xu C.J.,Liang Y.-Z.,et al. Sectional moving window factor analysis for diagnosing elution chromatographic patterns. Chemom. Intell. Lab. Syst., 2003,69 (1-2):89-101
    [149] Xu C.J.,Liang Y.-Z.,Gong F.,et al. Incorporating the prior information of spectra into identification of elution region in hyphenated chromatography Analytica Chimica Acta,2001,428 (2):235-244

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700