用户名: 密码: 验证码:
基于并联机构的高效多维振动筛设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振动筛是广泛应用于农业、化工、采矿等部门的机械设备,它直接影响机器的整体工作性能。本文以清选筛为对象,以筛面运动形式对筛分效率的影响为重点,在忽略气流、筛孔型式等因素的情况下,研究具有高效筛分能力的多维振动筛。研究成果对提高振动筛这类机器的工作效率都具有实际意义,可应用于农业中谷物的清选及化工、采矿、冶金等领域中颗粒状物料的筛分。
     目前谷物清选筛多采用平面连杆机构,其筛面运动形式为平面运动,筛分效率受到一定的限制。本文采用并联机构作为振动筛的主体机构,使筛面获得空间多维运动来提高筛分效率,研究内容包括:为提高筛分效率的筛面运动形式探索;以实现探索所得筛面运动的多维振动筛主机构分析。
     文中通过研究籽粒运动情况来探索有利于提高筛分效率的筛面运动形式。利用LS-DYNA软件对平面往复式和几种多维振动筛面上籽粒的运动情况进行研究。研究中建立了籽粒与筛面的几何模型,设置了籽粒与筛面的材料性质,考虑了籽粒与筛面和籽粒间的摩擦、碰撞作用,得出籽粒的运动规律曲线。结合籽粒的运动规律曲线,根据概率理论提出了一个籽粒分散性衡量指标用来分析筛分效率,从而探索得出三种有利于提高筛分效率的筛面运动形式。
     对多维振动筛主机构进行结构学、运动学、动力学分析和筛分效率仿真评测。一、运用单开链单元综合法初选三种并联机构,并对各机构的结构组成和结构特性进行分析,最终确定一种一平移两转动的并联机构作为多维振动筛的主体机构,该机构由混合支链(?)及空间支链(P-s-s)组成,具有紧凑的结构。二、对主机构进行运动学和动力学分析。运动学分析包括机构的位置正反解、速度、加速度和工作空间等。文中利用解析法分析位置正、反解,并借助MATLAB软件编制程序进行计算验证;对位置正、反解进行一、二次求导得出速度、加速度正、反解。基于Lagrange法建立机构的动力学方程,对其三个平衡驱动力矩进行分析。三、完成了多维振动筛主机构的筛分效率仿真评测。利用ADAMS软件对机构进行运动学仿真,获得筛面的运动输出曲线;运用LS-DYNA软件求解出籽粒的运动规律曲线;利用籽粒分散性衡量指标将多维振动筛的筛分效率与平面往复式振动筛的筛分效率进行对比,结果表明多维振动筛的筛分效率有较大的提高。
Vibrating screen is widely used for agricultural, chemical industry, mining and other departments, which directly influences the working performance of the machine. This paper took cleaning screen as target, researched on efficient vibrating screen on condition that airflow and type of sieve pore were neglected. Fruits of the research have a practical significance to improve the efficiency of such machines, and can be applied to agricultural, chemical industry, mining and other departments to cleaning grain or screening granular materials.
     Most of the current vibrating screen use of planar linkages, and their efficiencies are restricted because of screening surface moving in a plane. This paper looked on parallel mechanism as the main body of the vibrating screen, and screening efficiency improved with screening surface had multi-dimensional motion. They were two main contents of the research, one was to seeking for motion modes of the screening surface to improve screening efficiency, and the other was to analyze the main body of the multi-dimensional vibrating screen.
     By researching movements of grains while vibrating screen working in reciprocal and multi-dimensional motion, motion modes of screening surface which conducive to improve screening efficiency were studied with software LS-DYNA. The analytical model was established according to the structure and material characteristic of screening surface and grains. Taking effect of friction and collision of screen to grains and grain to grain into consideration, it solved out the law curve of grains' movements. On this basis, a dispersancy index was presented to analyze screening efficiency, so that three kinds of motion modes of screening surface wereobtained.
     This paper did the structural, kinematics, dynamics analysis and efficiency evaluation of the main body of the multi-dimensional vibrating screen. Firstly, the paper selected three kinds of parallel mechanisms based on the single open-chain element method. After analyzing the composition as well as the characteristics of structure of three mechanisms, one of the mechanisms was determined. The determined mechanism was composed of mixed branch(-P~((3R-2P))(?)-) and space branch(P-S-S), andhad a compact structure. Secondly, this paper did the kinematics, dynamics analysis of the main body. Kinematics analysis includes analyzing of forward and inverse position, velocity and acceleration. The forward and inverse position analyses were done with analytic method, and the calculations were done by programming with MATLAB to verify forward and inverse position analysis. Velocity and acceleration were first derivative and second derivative of the position. The dynamic equations of the main body were established with Lagrange method, which mainly studied three balance moments of driving forces. Thirdly, this paper evaluated screening efficiency of the multi-dimensional by simulation method. Kinematics performance of the main body was simulated with software ASAMS, as a result, the motion curves of the screening surface was gained. After solving the law curve of grains'movements of this multi-dimensional vibrating screen by using software LS-DYNA, the screening efficiency of this multi-dimensional vibrating screen was evaluated. The screening efficiency of this muti-dimensional vibrating screen was comparsed with reciprocal vibrating screen by using dispersancy index, and results show that this multi-dimensional vibrating screen has higher screening efficiency.
引文
[1] 张中元.提高振动筛处理能力的途径[J].黄金.2000,26(7):36-38
    [2] 镇江农业机械学院.农业机械学[M].北京:中国农业机械出版社.1981
    [3] 张曙,Hesiel U.并联运动机床[M].北京:机械工业出版社.2003
    [4] Stewart D. A Platform with 6-DOF[A]. Proc. On Institution of Mechanical Engineering [Z]. 1965, 18(l):371-386
    [5] VARIAX-the Machine Tool of the Future-Today. Giddings & Lewis Inc. Printed in USA.1994
    [6] 黄真,孔令富,方跃法.并联机器人机构学理论及控制(M).北京:机械工业出社.1997
    [7] 朱思俊,少自由度并联机构运动学及五自由度并联机构的相关理论.燕山大学博士学位论文.2007
    [8] 汪劲松,段广洪,杨向东等.VAMITW虚拟轴机床.制造技术与机床,1998(2):42-43
    [9] 尚晓江,苏建宇等.ANSYS10.0/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2006
    [10] 石振东,刘国庆.实验数据处理与曲线拟合技术[M].哈尔滨:哈尔滨船舶工程学院出版社.1991:23-29
    [11] 刘初生,赵跃民.振动筛面上单颗粒运动的非线性特性研究[J].矿山机械,1999(1):45-46
    [12] 李耀明,赵湛等,风筛式清选装置上物料的非线性运动规律[J],农业工程学报,2007,23(11):142-147
    [13] 张文斌,李耀明等,应用高速摄像技术研究清选筛面上物料的运动[J].农机化研究,2007,(5):21-24
    [14] 许静,陈平灵.谷物横向振动平面清选筛动力学仿真分析[J].农机化研究,2007,(2):44-46
    [15] 何涛,杨竞,金鑫等.ANSYS10.0/LS-DYNA非线性有限元分析实例指导[M].北京:机械工业出版社,2007
    [16] 华南农学院农机教研室.水稻联合收割机原理与设计[M].北京:农业机械出版社.1981:78-94
    [17] 黄润生,黄浩.混沌及其应用[M].武汉:武汉大学出版社.2000:112-123
    [18] 康国政,大型有限元程序的原理、结构与使用[M].成都:西南交通大学出版社.2004:181-198
    [19] 吴守一,农业机械学[M].北京:中国农业机械出版社.1987:123-145
    [20] 周祖锷.农业物料学[M].北京:北京农业出版社,1994:4-29
    [21] 丁林峰,李耀明,徐立章.稻谷压缩试验的接触力学分析[J].农机化研究.2007,12:112-115
    [22] 马天愚,雷得天,赵淑红等.东北地区大豆与小麦籽粒的力学-流变性质研究[J].农业工程学报.1999,15(3):70-75
    [23] 邓春香.谷物清选风车运动学和动力学特性研究及参数优化[D].长沙:湖南农业大学,2005
    [24] 尹守仁,筛分效率与概率筛面长度的研究[J].煤矿机械.1998,7:11-12
    [25] 刘增善,余跃庆,杜兆才等.并联机器人的研究进展与现状[J].组合机床与自动化加工技术.2007,7:4-10
    [26] 沈惠平,杨廷力,马履中.一种新型六自由度并联机构及其结构分析[J].中国机械工程,2008,19(6):721-723
    [27] 杨廷力,金琼,刘安心等.基于单开链单元的欠秩并联机器人机构型综合的一般方法.2001,20(3):321-325
    [28] 杨廷力,机器人机构拓扑结构学[M].北京:机械工业出版社.2003:55-178
    [29] 刘阳,冯宝富,蔡光起.并联机器人的研究现状与展望[J].机床与液压.2004,3:7-9
    [30] 沈惠平,张会芳,何宝祥等.一种新型并联运动振动筛及其运动学研究与研制[J].机械设计.2007,24(6):34-36
    [31] 李惠良,金琼,杨廷力.一类一平移两转动解耦并联机构及其位移分析[J].机械制造研究.2002,1:9-12
    [32] 沈守范,张纪元,万金保.机构学的数学工具[M].上海:上海交通大学出版社.1999
    [33] 熊有伦.机器人技术基础[M].武汉:华中科技大学出版社.1996:72-92
    [34] 邱志成,谈大龙,赵明扬.并联机器人研究现状[J].机械制造,2000,38(428):27-29
    [35] 谢存禧,张铁.机器人技术及其应用[M].北京:机械工业出版社.2005
    [36] 马承文,邹慧君.平面闭链五杆机构动力学的研究[J].机械设计与研究.2001,18(1):
    [37] 张国伟,宋伟刚.并联机器人动力学问题的Kane方法[J].系统仿真学报.2004,16(7):1386-1391
    [38] 李丽,王振领.MATLAB工程计算及应用[M].北京:人民邮电出版社.2001
    [39] 董海薇,李平康,国内并联机器人研究现状及未来进展[J].自动化博览,2005,4:86-88
    [40] 李增刚.ADAMS入门详解与实例[M].北京:国防工业出版社.2006.
    [41] Alfio Quarteroni,Fausto Saleri.MATLAB科学计算[M].北京:清华人学出版社.2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700