用户名: 密码: 验证码:
用定量遥感方法计算地表蒸散
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统分析总结了遥感计算地表蒸散的意义和目的、研究历史和现状、以及面临的主要困难。遥感替代点上的蒸发测量,实现大范围地表能量和水分动态监测,可以在气候、生态、农业、水文等领域中发挥重要作用,过去几十年的研究虽然取得了许多重要成果,但依然面临很多有待突破的重要问题。本文的主要特色是方法研究,对遥感计算地表蒸散的方法和模型做了较多的理论分析,数据验证,以及改进和创新,并对其空间和时间尺度问题做了一定的探讨。
     针对遥感中最常用的单层模型做了深入的理论探讨,在学术关键问题——遥感表面温度与空气动力学温度的关系上,提出了新思路和新方法,为理解这个复杂的问题增添了新的视角。该方法利用表面热辐射方向性和显热通量都是源于土壤和植被温度的贡献这一共同点,发现在一定倾斜角度的观测下,视场中植被与土壤的比例可以较好地反映植被和土壤与大气进行湍流热交换的贡献率,所以称该方法为最佳组分面积比法,用最佳组分面积比可以将任意角度下观测到的辐射温度订正为空气动力学温度,经过地面和遥感数据验证表明,用该方法计算的通量精度高于普通的单层模型。
     双层模型虽然提出很多年了,但在应用中一直存在信息不足,求解困难的问题,本文用最新多角度热红外遥感数据———AMTIS系统反演的组分温度,首次实现了双层模型在遥感中的应用,结果表明,在输入参数精度相近的情况下,双层模型模拟的通量误差远小于单层模型,尤其在土壤干旱,表面温度较高的地表,双层模型的理论优势在计算中表现得更加突出。在组分温度的帮助下,实现了土壤蒸发和植被蒸腾的准确分离,并且用植被蒸腾速率反算出冠层气孔阻抗、二氧化碳通量、以及作物群体水分利用效率等农田关键参数,是遥感获得此类参数的新思路。本文还提出了一种新的双层模型的简化求解方法,在没有组分温度信息的情况下,可以利用经验参数和表面温度实现双层模型计算。
     针对遥感基于像元计算的特点,提出一种全新的通量计算方法,模型的结构和思路专为遥感像元面上计算的特点而设计,主要考虑由地表非均匀和不连续性引起的像元内部热量交换——局地微平流对显热和潜热通量的影响,验证表明,这种考虑平流的非均匀模型可以较好地模拟地表非均匀状态下的热量通量。
     论文还分析了蒸散模型的空间尺度效应,通过一系列的模拟实验检验了双层模型
    
    中国科学院遥感应用研究所博士学位论文
    在不同地表非均匀状态下的尺度误差,并且根据通量尺度扩展的基本法则推导了双层
    模型参数的尺度扩展公式。结果表明亚像元状态和结构是像元尺度误差的主导因素,
    风速变化对尺度误差有明显的影响,不论何种形式的非均匀性,都须遵循相同的尺度
    扩展步骤,以达到消除误差的目的。将AMTIS和ASTER图像降低分辨率后计算通
    量,检验其尺度误差,结果表明,在不同覆盖类型的交界处通量误差比较明显,由于
    算法本身的不连续性,其误差规律较为复杂,另外,道路、建筑等对通量计算无用的
    信息也是造成大像元尺度误差的原因之一。
     论文的最后部分讨论了从瞬时蒸散速率推算日蒸散量的方法,介绍了简化法和蒸
    发比率法的基本思路,分析了存在的主要问题,并用地面数据和遥感数据验证了蒸发
    比率法中以长波上行辐射作为分母的方法,结果表明方法可行,精度基本可以满足要
    求。风速变化和云的干扰依然是时间尺度扩展中遇到的主要问题,由于难度较大,这
    方面的研究还需要更多,更细致的工作。
Remote sensing provides an approach to monitor land surface energy and water balance over a large area simultaneously, which is very important and useful in researches and applications in global climate change, hydrology, ecology and agriculture etc. In this paper, methodologies and models on remote sensing of land surface evapotranspiration were investigated in details and validated using field and remotely sensed data, several novel concepts and models were proposed as the center part of this paper, and spatial as well as temporal scale problems were discussed in the second half of the paper.
    Single-layer model is convenient to apply but the unclear relationship between radiative and aerodynamic temperatures is still a bottleneck in this field. A new method was developed to derive reliable surface heat fluxes from radiative temperature viewed from arbitrary zenith angle. Aerodynamic and radiative temperatures are connected through a so-called Optimum Component Fraction (OCF) parameter-The fraction of vegetation in the field of view when the two temperatures are equivalent in oblique viewing. Heat fluxes estimated from radiative temperature by this model is more accurate than other regular corrective methods.
    Two-layer model has been proposed for many years but was difficult to apply in remote sensing because component temperature were unavailable in traditional thermal sensors. A new airborne multi-angular thermal sensor system and retrieved soil and canopy temperatures were used to solve two-layer model, and the simulated heat fluxes show much better accuracy than the results from one-layer model especially above dry surfaces. And this is the first full application of two-layer model in remote sensing. From separated evaporation and transpiration through the model some important field parameters can be
    
    
    derived, such as canopy resistance, CO2 flux and crop water use efficiency. A simplified two-layer model was also presented in case of that only radiative temperature is available.
    A very much different fluxes model was suggested for remote sensing estimation, which takes account of the effects of advections in vertically or horizontally anisothermal vegetations. The inter-exchange of heat can result in lower total sensible heat flux and higher total latent heat flux of the considered areas. This method is designed technically for the simulations of pixel, is a try of new generation effluxes model.
    Scaling-up of patch model is necessary in the calculation of surface energy fluxes and evapotranspiration from remote sensing data. The simulation error of two-layer model caused by sub-pixel heterogeneity and discontinuity of surface geometry and physics were investigated using a number of data experiments. It is shown that the error could be rather remarkable in some extreme situations and could be neglected in the others. The variance of parameters inside pixel, contexture of the pixel and the surface wind speed are the controlling factors of the scaling error. AMTIS and ASTER images were scaled up using pixel aggregation algorithm to find scaling error of surface flux estimation. The results show that the largest error appears at the interface of different coverage types, and the error show much complexity because of the discontinuity of algorithms at these boundaries. Additionally, the contamination of building, highway and other ground information also add some error in the estimation of land surface e
    vapotranspiration.
    To derive the accumulated daily evapotranspiration from remotely sensed instantaneous evaporation rate is a key step to use this kind of information in other domains. So-called Simplified Methods and Self-Preservation Methods were introduced and compared, and a Self-Preservation Method was validated using field and remote sensing data. The estimated daily evapotranspiration is mostly affected by diurnal variations of surface wind speed and overpass of clouds, and more detailed and intensive research works are to be carried out to obtain more reliable daily water evaporation loses.
引文
[1] Alvenas, G, and Jansson, P.-E., 1997. Model for evaporation, moisture and temperature of bare soil: calibration and sensitivity analysis. Agric. For. Meteorol. 88:47-56.
    [2] Anderson, M.C., Norman, J.M., Diak, G.R., Kustas, W.P., and Mecikalski, J.R., 1997. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ. 60: 195-216.
    [3] Arain, A.M., Michaud, J.D., Shuttleworth, W.J., and Dolman, A.J., 1996. Testing of vegetation parameter aggregation rules applicable to the Biosphere-Atmosphere Transfer Scheme (BATS) at the FIFE site. J. Hydrol. 177: 1-22.
    [4] Avissar, R., 1998. Which type of SVAT is needed for GCMs. J. Hydrol. 50: 3751-3774.
    [5] Bastiaansen, W.GM., Menenti, M., Feddes, R.A., and Holtslag, A.A.M., 1998. A remote sensing surface energy balance algorithm for land (Sebal). J. Hydrol. 212-213: 198-212.
    [6] Becker, F., and Li, Z.-L., 1990. Temperature-independent spectral indices in thermal infrared bands. Remote Sens. Environ. 32: 17-33.
    [7] Bella, C.M.D., Rebella, C.M., and Paruelo, J.M., 2000. Evapotranspiration estimates using NOAAAVHRR imagery in the Pampa region of Argentina. Int. J. Remote Sens. 21: 791-797.
    [8] Blumel, K., 1999. A simple formula for estimation of the roughness length for heat transfer over partly vegetated surfaces. J. Appl. Meteorol. 38: 814-829.
    [9] Blyth, E.M., and Harding, R.J., 1995. Application of aggregation model to surface heat flux from the Sahelian tiger bush. Agric. For. Meteorol. 72: 213-235.
    [10] Bouguerzaz, F.A., Olioso, A., and Raffy, M., 1999. Modeling radiative and energy balance on heterogeneous areas from remotely sensed radiances. Canadian J. Remote Sens. 25: 412-424.
    [11] Boulet, G, Chehbouni, A., and Braud, I. Mosaic versus dual source approaches for modeling the surface energy balance of a semi-arid land. In Proc. American Meteorological Society Special Symposium on Hydrology, Phoenix, Arizona, USA, Jan. 11-16, 1998.
    [12] Brown, K.W., 1974. Calculations of evapotranspiration from crop surface temperature. Agric. Meteorol. 14: 199-209.
    [13] Brutsaert, W., 1982. Evaporation into the Atmosphere. Reidel, Dordrecht, Netherlands, 299 pp.
    [14] Brutsaert, W., and Sugita, M., 1992. Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation. J. Geophys. Res. 97: 18377-18382.
    [15] Brutsaert, W., and Sugita, M., 1996. Sensible heat transfer parameterization for surfaces with
    
    anisothermal dense vegetation. J. Atmos. Sci. 53,209-216.
    [16] Businger, J.A., 1988. A note on the Businger-Dyer profiles. Bound. Lay. Meteorol. 42: 145-151.
    [17] Camillo, P.J., and Gumey, R.J., 1986. A resistance parameter for bare-soil evaporation models. Soil Sci. 141,95-105.
    [18] Campbell, GS., 1985. Soil physics with BASIC, Transport models for soil-plant systems. Elsevier, Amsterdam.
    [19] Campbell, GS., and Norman, J.M., 1998. An Introduction to Evaporation Biophysics. Springer, New York, 286 pp.
    [20] Carlson, T.N., Capehart, W.J., and Gillies, R.R., 1995. A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sens. Environ. 54:161-167.
    [21] Chamberlain, A.C., 1968. Transport of gases to and from surfaces with bluff and wave-like roughness elements. Quart. J. Roy. Meteorol. Soc. 34: 583-585.
    [22] Chehbouni, A., Lo Seen, D., Njoku, E.G, and Monteny, B., 1996. Examination of the difference between radiative and aerodynamic surface temperatures over sparsely vegetated surface. Remote Sens. Environ. 58: 177-186.
    [23] Chehbouni, A., Lo Seen, D., Njoku, E.G, Lhomme, J.P., Monteny, B.M., and Kerr, Y.H., 1997a. Estimating of sensible heat flux using radiative surface temperature. J. Hydrol. 188: 855-868.
    [24] Chehbouni, A., Nichols, W.D., Njoku, E.G, Qi, J, Kerr, Y.H., and Cabot, F., 1997b. A three-component model to estimate sensible heat flux over sparse shrubs in Nevada. Remote Sens. Rev. 15:99-112.
    [25] Chehbouni, A., Watts, C., Kerr, Y.H., Dedieu, G, Rodriguez, J.-C., Santiago, E, Cayrol, P., Boulet, G, and Goodrich, D., 2000. Methods to aggregate turbulent fluxes over heterogeneous surface: application to SALSA data set in Mexico. Agric. For. Meteorol. 105: 133-144.
    [26] Chehbouni, A., Nouvellon, Y., Lhomme, J.P., Watts, C., Boulet, G, Kerr, Y.H., Moran M. S., and Goodrich, D. C., 2001. Estimation of surface sensible heat flux using dual angle observations of radiative surface temperature. Agric. For. Meteorol. 108: 55-65.
    [27] Chen, J., Pan, L.L., Mitsuta, Y, Sahashi, K., and Hu, Y.Q. The heat budget in mixed layer over transitional area between Gobi and oasis. In Proc. International symposium on HEIFE, Kyoto University, Kyoto, Japan, Nov. 8-11, 1993,412-423.
    [28] Choudhury, B.J., Reginato, R.J., and Idso, S.B., 1986. An analysis of infrared temperature observations over wheat and calculation of latent heat fluxes. Agric. For. Meteorol. 37: 75-88.
    [29] Choudhury, B.J., Idso, S.B., and Reginato, R.J., 1987. Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation. Agric. For. Meteorol. 39: 283-297.
    [30] Choudhury, B.J., and Monteith, J.L., 1988. A four-layer model for the heat budget of
    
    homogeneous land surfaces. Quart. J. Roy. Meteorol. Soc. 114: 373-398.
    [31] Choudhury, B.J., 1989. Estimating evaporation and carbon assimilation using infrared temperature data: vistas in modeling. In: Asrar, G (Ed.), Theory and Applications of Remote Sensing, John Wiley, New York, pp. 628-690.
    [32] Daamen, C.C., 1997. Two source model of surface fluxes for millet fields in Niger. Agric. For. Meteorol. 83, 205-230.
    [33] Dickinson, R.E., 1984. Modeling evapotranspiration for three-dimensional global climate models. In: J.E. Hanson, T. Takahashi (Eds.), Climate Processes and Climate Variability. Am. Geophys. Union, pp. 58-72.
    [34] Ellingson, R., 1995. Surface longwave fluxes from satellite observations: a critical review. Remote Sens. Environ. 51: 89-97.
    [35] Francois, C., Ottle, C., and Prevot, L., 1997. Analytical parameterization of canopy directional emissivity and directional radiance in the thermal infrared. Int. J. Remote Sens. 18: 2587-2621.
    [36] Franfois, C., 2002. The potential of directional radiometer temperatures for monitoring soil and leaf temperature and soil moisture status. Remote Sens. Environ. 80: 122-133.
    [37] Friedl, M.A., 1995. Modeling land surface fluxes using a sparse canopy model and radiometric surface temperature measurements. J. Geophys. Res. 100: 25435-25446.
    [38] Friedl, M.A., 1997. Examining the effects of sensor resolution and subpixel heterogeneity on spectral vegetation indices: Implications for biophysical modeling. In Scale in Remote Sensing and GIS (D. A. Quattrochi and M.F. Goodchild, Eds.), CRC Lewis, New York, pp. 113-139.
    [39] Garratt, J.R., and Hicks, B.B., 1973. Momentum, heat and water vapour transfer to and from natural and artificial surfaces. Q. J. R. Meteorol. Soc. 99:680-687.
    [40] Gottsche, F.M., and Olesen, F.S., 2001. Modeling of diurnal cycles of brightness temperature extracted from METEOSAT data. Remote Sens. Environ. 76: 337-348.
    [41] Hall, F.G, Huemmrich, K.F., Goetz, S.J., Sellers, P.J., and Nickeson, J.M., 1992. Satellite remote sensing of surface energy balance: success, failures, and unresolved issues in FIFE. J. Geophys. Res. 97: 19061-19089.
    [42] Hatfield, J.L., 1983. Evapotranspiration obtained from remote sensing methods. In: D.E. Hilled (Editor), Advances in Irrigation. Academic Press, New York, pp395-416.
    [43] Hemakumara, H.M., Chandrapala, L., and Moene, A.F., 2003. Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer. Agric. Water Manage. 58: 109-122.
    [44] Hipps, L.E., Cooper, D., and Eichinger, W, 1998. Estimation of evaporation rates for riparian vegetation. In Proc. American Meteorological Society Special Symposium on Hydrology, Phoenix, Arizona, USA, Jan. 11-16, 1998.
    
    
    [45] Huband, N.D.S., and Monteith, J.L., 1986. Radiative surface temperature and energy balance of a wheat canopy: I. Comparison of radiative and aerodynamic canopy temperature. Bound. Lay. Meteorol. 36: 1-17.
    [46] Hunt, L.A., Kuchar, L., and Swanton, C.J., 1998. Estimation of solar radiation for use in crop modeling. Agric. For. Meteorol. 91: 293-300.
    [47] Hurtado, E., and Sobrino, J.A., 2001. Daily net radiation estimated from air temperature and NOAA-AVHRR data: a case study for Iberian Peninsula. Int. J. Remote Sens. 22: 1521-1533.
    [48] Idso, S.B., 1981. A set of equations for full spectrum and 8 to 14 μm and 10. 5 to 12. 5 μm thermal radiation from cloudless skies. Water Resour. Res. 17: 295-304.
    [49] Jackson, R.D., Reginato, R.J., and Idso, S.B., 1977. Wheat canopy temperature: a practical tool for evaluating water requirements. Water Resour. Res. 13: 651-656.
    [50] Jackson, R.D., Hatfield, J.L., Reginato, R.J., Idso, S.B., and Pinter, P.J. Jr., 1983. Estimation of daily evapotranspiration from one time-of-day measurement. Agric. Water Manage. 7: 351-362.
    [51] Jackson, R., 1985. Evaluating evapotranspiration at regional and global scales. Proc. IEEE. 73: 1086-1096.
    [52] Jacobs, A.F.G, Ronda, R.J., and Holtslag, A.A.M., 2003. Water vapour and carbon dioxide fluxes over bog vegetation. Agric. For. Meteorol. 1 16:103-1 12.
    [53] Jia, L., Su, Z., van den Hurk, B., Menenti. M., et al, 2003. Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements. Physics and Chemistry of the Earth 28: 75-88.
    [54] Jupp, D.L.B., Tian, G, McVicar, T.R., Qin, Y., and Li, F., 1998. Soil moisture and drought monitoring using remote sensing I: Theoretical background and methods. EOC Report 1, pp16-21.
    [55] Justice, C.O., Vermote, E., Townshend, J.R.G, Defries, R., Roy, D.P., Hall, D.K., et al., 1998. The moderate imaging spectroradiometer (MODIS): land remote sensing for global research summary. IEEE Trans. Geosci. Remote Sens. 36: 1228-1249.
    [56] Kim, J., and Verma, S.B., 1991. Modeling canopy stomotal conductance in a temperate grassland ecosystem. Agric. For. Meteorol. 55, 149-166.
    [57] Kimes, D.S., 1980. Effect of vegetation canopy structure on remotely sensed canopy temperature. Remote Sens. Environ. 10: 165-174.
    [58] Kustas, W.P., Choudhury, B.J., Moran, M.S., Reginato, R.J., Jackson, R.D., Gay, L.W., and Weaver, H.L., 1989. Determination of sensible heat flux over sparse canopy using thermal infrared data. Agric. For. Meteorol. 44: 197-216.
    [59] Kustas, W.P., Choudhury, B.J., Inoue, Y., Pinter, P.J., Moran, M.S., Jackson, R.D., and Reginato, R.J., 1990a. Ground and aircraft infrared observations over a partially vegetated area. Int. J. Remote Sens. 3: 409-428.
    
    
    [60] Kustas, W.P., 1990b. Estimates of evapotranspiration with a one-or two-layer model of heat transfer over partial canopy cover. J. Appl. Meteorol. 29: 704-715.
    [61] Kustas, W. P., and Goodrich, D. C., 1994a. Preface. Water Resource. Res. 30: 1211-1226.
    [62] Kustas, W.P., Perry, E.M., Doraiswamy, PC., and Moran, M.S., 1994b. Using satellite remote sensing to extrapolate evapotranspiration estimation in time and space over a semiarid rangeland basin. Remote Sens. Environ. 49: 275-286.
    [63] Kustas, W.P., Zhan, X., and Schmugge, T.J., 1998. Combining optical and microwave remote sensing for mapping energy fluxes in a semiarid watershed. Remote Sens. Environ. 64: 116-131.
    [64] Kustas, W.P., and Norman, J.M., 1999. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agric. For. Meteorol. 94: 13-29.
    [65] Kustas, W.P., and Norman, J.M., 2000. Evaluating the effects of subpixel heterogeneity on pixel average fluxes. Remote Sens. Environ. 74: 327-342.
    [66] Lagouarde, J.P., and McAneney, K.J., 1992. Daily sensible heat flux estimation from a single measurement of surface temperature and maximum air temperature. Bound. Lay. Meteorol. 59: 341-362.
    [67] Lagouarde, J.P., and Brunet, Y., 1993. A simple model for estimating the daily upward longwave surface radiation flux from NOAA-AVHRR data. Int. J. Remote Sens. 14: 907-925.
    [68] Leuning, R., Kelliher, F.M., de Pury, D.GG, and Schulze, E.D., 1995. Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaf to canopies. Plant, Cell Environ. 18:1183-1200.
    [69] Lhomme, J.P., Monteny, B., Chehbouni, A., and Troufleau, D., 1994a. Determination of sensible heat flux over Sahelian fallow savannah using infrared thermometer. Agric. For. Meteorol. 68: 93-105.
    [70] Lhomme, J.P., Monteny, B., and Amadou, M., 1994b. Estimating sensible heat flux from radiometric temperature over sparse millet. Agric. For. Meteorol. 68: 77-91.
    [71] Lhomme, J.P., Troufleau, D., Monteny, B., Chehbouni, A., and Bauduin, S., 1997. Sensible heat flux-radiometric surface temperature over sparse Sahelian vegetation. II. A model for the kB-1 parameter. J. Hydrol. 188-189, 839-854.
    [72] Lhomme, J.P., and Chehbouni, A., 1999. Comments on dual-source vegetation-atmosphere transfer models. Agric. For. Meteorol. 94, 269-273.
    [73] Lhomme, J.P., Chehbouni, A., and Monteny, B., 2000. Sensible heat flux-radiometric surface temperature relationship over sparse vegetation: parameterizing B" . Bound. Lay. Meteorol. 97: 431-457.
    [74] Li, X.W., and Strahler, A.H., 1988. Modeling the gap probability of a discontinuous vegetation canopy. IEEE Trans. Geosci. Remote Sens. 26: 161-170.
    
    
    [75] Liang, S.L., 2000a. Narrowband to broadband conversions of land surface albedo: I Algorithms. Remote Sens. Environ. 76: 213-238.
    [76] Liang, S.L., Stroeve, J.C., Grant, I.F., Strahler, A.H. and Duvel, J.P, 2000b. Angular Corrections to Satellite Data for Estimating Earth Radiation Budget. Remote Sens. Rev. 18: 103-136.
    [77] Liu, Q.H., Li, X.W., Chen, L.F., and 973 Project Members, 2002. Field Campaign for Quantitative Remote Sensing in Beijing. J. Remote Sens. 6(Supple.): 43-49.
    [78] Malhi, Y., 1996. The behaviour of the roughness length for temperature over heterogeneous surfaces. Q. J. R. Meteorol. Soc. 122:1095-1125.
    [79] Massman, W.J., 1999. A model study of kB-1 for vegetated surfaces using "localized near-field" Lagrangian theory. J. Hydrol. 223: 27-43.
    [80] Matsushima, D., and Kondo, J., 1997. A proper method for estimating sensible heat flux above a horizontal-homogeneous vegetation canopy using radiometric surface observations. J. Appl. Meteorol. 36: 1696-1711.
    [81] Monteith, J.L, 1965. Evaporation and environment. Symp. Soc. Exp. Biol. 19:205-234.
    [82] Moran, M.S., Jackson, R.D., Raymond, L.H., Gay L.W., and Slater, P.N., 1989. Mapping surface energy balance components by combining Landsat thematic mapper and ground-based meteorological data. Remote Sens. Environ. 30: 77-87.
    [83] Moran, M.S., Kustas, W.P., Vidal, A., Stannard, D.I., Blanford, J.H., and Nichols, W.D., 1994. Use of ground-based remotely sensed data for surface energy balance evaluation of a semi-arid rangeland. Water Resour. Res. 30: 1339-1349.
    [84] Nieuwenhuis, G.J.A., Smidt, E.H., and Thunnissen, H.A.M., 1985. Estimation of regional evapotranspiration of arable crops from thermal infrared images. Int. J. Remote Sens. 8: 1319-1334.
    [85] Nieveen, J.P., 1999. Eddy covariance and scintillation measurements of atmospheric exchange processes over different types of vegetation. Ph.D. Thesis, Department of Meteorology, Wageningen University, 122pp.
    [86] Njoku, E.G., and Patel, I.R., 1986. Observations of the seasonal variability of soil moisture and vegetation cover over Africa using satellite microwave radiometer, ISLSCP, Proceedings of an International Conference held in Rome, Italy. ESA, SP-248, Paris, pp. 349-356.
    [87] Norman, J.M., and Campbell, G.S., 1983. Application of a plant-environment model to problems in irrigation. In: D.I. Hillel (Editor), Advances in Irrigation. Academy Press, New York, pp. 155-188.
    [88] Norman, J.M., Garcia, R., and Verma, S.B., 1992. Soil surface CO2 fluxes and the carbon budget of a grassland. J. Geophys. Res., 97(D17) : 18845-18853.
    [89] Norman, J. M., Kustas, W. P., and Humes, K. S., 1995a. Source approach for estimating soil and
    
    vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 77: 263-293.
    [90] Norman, J.M., and Becker, F., 1995b. Terminology in thermal infrared remote sensing of natural surfaces. Remote Sens. Rev. 12: 159-173.
    [91] Olioso, A., 1995. Estimating the difference between brightness and surface temperatures for a vegetal canopy. Agric. For. Meteorol. 82: 237-242.
    [92] Olioso, A., Taconet, O., and Mehrez, M.B., 1996. Estimation of heat and mass fluxes from IR brightness temperature. IEEE Trans. Geosci. Remote Sens. 34: 1184-1190.
    [93] Olioso, A., Chauki, H., Courault, D., and Wigneron, J. P., 1999. Estimating of evapotranspiration and photosynthesis by assimilation of remote sensing data into SVAT modes. Remote Sens. Environ. 68: 341-356.
    [94] Paulson, C.A., 1970. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol. 9: 857-861.
    [95] Paw U, K.T., and Gao, W., 1988. Applications of solutions to non-linear energy budget equations. Agric. For. Meteorol. 43:121-145.
    [96] Penman, H.L., 1948. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. Roy. Soc. London, A193: 120-146.
    [97] Pinker, R.T., Frouin, R., and Li, Z., 1995. A review of satellite methods to derive surface shortwave irradiance. Remote Sens. Environ. 51: 108-124.
    [98] Raupach, M.R., 1995. Vegetation-atmosphere interaction and surface conductance at leaf, canopy and regional scales. Agric. For. Meteorol. 73: 151-179.
    [99] Reicosky, D.C., Brown, P.W., and Moran M.S., 1994. Diurnal trends in wheat canopy temperature, photosynthesis, and evapotranspiration. Remote Sens. Environ. 49: 235-245.
    [100] Sandholt, I., and Andersen, H.S., 1993. Derivation of actual evapotranspiration in the Senegalese Sahel, using NOAA-AVHRR data during the 1987 growing season. Remote Sens. Environ. 46: 164-172.
    [101] Schmugge, T.J., and Jackson, T.J., 1994. Mapping surface soil moisture with microwave radiometers. Meteorol. Atmos. Phys. 54: 213-223.
    [102] Seguin, B., and Itier, B., 1983. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data. Int. J. Remote Sens. 4: 371-383.
    [103] Sellers, P.J., Heiser, M.D., and Hall, F.G, 1992. Relations between surface conductance and spectral vegetation indices at intermediate (100m to 15m) length scale. J. Geophys. Res. 97: 19033-19059.
    [104] Sellers, P.J., Bounoua, L., Collatz, GJ., Randall, D.A., Dalzlich, D.A., Los, S.O., Berry, J.A., Fung, I., Tucker, C.J., Field, C.B., and Jensen, T.G, 1996a. Comparison of radiative and
    
    physiological effects of doubled atmospheric CO2 on climate. Science 271: 1402-1406.
    [105] Sellers, P.J., Randall, D.A., Collatz, GJ., Berry, J.A., Field, C.B., Dalzlich, D.A., Zhang, C., Collelo, GD., and Bounoua, L., 1996b. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I. Model formulation. J. Climate 9: 676-705.
    [106] Shaw, R.H., and Pereira, A.R., 1982. Aerodynamic roughness of a plant canopy: a numerical experiment. Agric. For. Meteorol. 26: 51-65.
    [107] Shuttleworth, W.J., and Wallace, J.S., 1985. Evaporation from sparse crops-an energy combination theory. Q. J. R. Meteorol. Soc. 111: 839-855.
    [108] Shuttleworth, W.J., and Gurney, R.J., 1990. The theoretical relationship between foliage temperature and canopy resistance in sparse crop. Quart. J. Roy. Meteorol. Soc. 116:497-519.
    [109] Sinclare, T.R., Murphy, C.E., and Knoerr, K.R., 1976. Development and evaluation of simplified models for simulating canopy photosynthesis and transpiration. J. Appl. Ecol. 13: 813-830.
    [110] Stewart, J.B., 1988. Modeling surface conductance of pine forest. Agric. For. Meteorol. 30: 111-127.
    [111] Stewart, J.B., Kustas, W.P., Humes, K.S., Nichols, W.D., Moran, M.S., and De Bruin, H.A.R., 1994. Sensible heat flux-radiometric surface temperature relationship for eight semi-arid areas. J. Appl. Meteorol. 33: 1110-1117.
    [112] Su, H.B., Paw, U.K.T., and Shaw, R.H., 1996. Development of a coupled leaf and canopy model for simulation of plant-atmosphere interaction. J. Appl. Meteorol. 35: 733-748.
    [113] Su, Z., Schmugge, T., Kustas, W.P., and Massman, W.J., 2001. An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J. Appl. Meteorol. 40: 1933-1951.
    [114] Su, Z, 2002. The surface energy balance system (SEBS) for estimation of turbulence heat fluxes. Hydrology and Earth System Sciences, 6: 85-99.
    [115] Sugita, M., and Brutsaert, W. 1991. Daily evaporation over a region from lower boundary layer profiles measured with radiosondes. Water Resour. Res. 27: 747-752.
    [116] Sugita, M., and Kubota, A., 1994. Radiometrically determined skin temperature and scalar roughness to estimate surface flux. Part II. Performance of parameterized scalar roughness for the determination of sensible heat. Bound. Lay. Meteorol. 70: 1-12.
    [117] Sugita, M., and Brutsaert, W, 1996. Optimal measurement strategy for surface temperature to determine sensible heat flux from anisothermal vegetation. Water Resour. Res. 32: 2129-2134.
    [118] Sun, J. 1999. Diurnal variation of thermal roughness height over a grassland. Bound. Lay. Meteorol. 92: 407-427.
    [119] Sun, S., 1982. Moisture and heat transport in a soil layer forced by atmospheric conditions. M. Sc. Thesis, Univ. of Conn., Stons.
    
    
    [120] Thunnissen, H.A.M., and Nieuwenhuis, G.J.A., 1990. A simplified method to estimate regional 24-h evapotranspiration from thermal infrared data. Remote Sens. Environ. 31: 211-225.
    [121] Tourula, T., and Heikinheimo, M., 1998. Modeling evapotranspiration from a barley field over the growing season. Agric. For. Meteorol. 91: 237-250.
    [122] Tournebize, R., Sinoquet, H., and Bussière, F., 1996. Modeling evapotranspiration partitioning in a shrub/grass alley crop. Agric. For. Meteorol. 81: 255-272.
    [123] Troufleau, D., Lhomme, J.P., Monteny, B., and Vidal, 1997. A. Sensible heat fluxes and radiometric temperature over sparse Sahelian vegetation: Ⅰ. An experimental analysis of the kB~1 parameter. J. Hydrol. 188-189: 815-838.
    [124] Tucker, C.J., Holben, B.N., Elgin, J.H., and Mcmurtrey, E., 1981. Remote sensing of total dry matter accumulation in winter wheat. Remote Sens. Environ. 11: 171-190.
    [125] van de Griend, A. A., and J. H. van Boxel, 1989. Water and surface energy balance model with a multi-layer canopy representation for remote sensing purposes. Water Resour. Res. 25: 949-972.
    [126] Verhoef, A., de Bruin, H.A.R., and van den Hurk, B.J.J.M, 1997. Some practical notes on the parameter kB~(-1) for sparse vegetation. J. Appl. Meteorol. 36: 560-572.
    [127] Watts, C.J., Chehbouni, A., Rodriguez, J.C., Kerr, Y.H., Hartogensis, O., and De Bruin, H.A.R., 2000. Comparison of sensible heat flux estimates using AVHRR with scintillometer measurements over semi-arid grassland in northwest Mexico. Agric. For. Meteorol. 105:81-89.
    [128] Zhan, X., Kustas, W. P., and Humes, K.S., 1996. An intercomparison study on models of sensible heat flux over partial canopy surfaces with remotely sensed surface temperature. Remote Sens. Environ. 58: 242-256.
    [129] Zhan, X., and Kustas, W. P., 2001. A coupled model of land surface CO_2 and energy fluxes using remote sensing data. Agric. For. Meteorol. 107:131-152.
    [130] Zhang, L., Lemeur, R. and Goutorbe, J. P. 1995a. A one-layer resistance model for estimating regional evapotranspiration using remote sensing data. Agric. For. Meteorol. 77:241-261.
    [131] Zhang, L., and Dawes, W.R., 1995b. Atmospheric stability influence upon evapotranspiration estimates—Tests using HAPEX-MOBILHY data and the WAVES model. CSIRO, Division of WATER Resources. Tech. Memo. 95/1.
    [132] 蔡旭辉,陈家宜,2000.水平非均匀对流边界层热量平衡和平流输送作用的大涡模拟.大气科学24:95-102.
    [133] 陈镜明,1988.现用遥感蒸散模式中的一个重要缺点及改进.科学通报33:454-458.
    [134] 陈良富,1999.非同温混合像元热辐射方向性模型.北京大学博士学位论文.
    [135] 邓孺孺,2002.青藏高原地表反照率反演及冷热源分析.中国科学院遥感应用研究所博士学位论文.
    [136] 季劲钧,胡玉春,1999.一个植物冠层物理传输和生理生长过程的多层模式.气候与环境研
    
    究4:152-164.
    [137]李小文,王锦地著,1995.植被光学遥感模型与植被结构参数化.科学出版社.
    [138]李召良,Stoll,M.P,张仁华,贾立,苏中波.2000.利用ATSR数据分解土壤和植被温度的研究.中国科学(E辑)30(增刊):27-38.
    [139]刘昌明,王会肖等著,1999.土壤-作物-大气界面水分过程与节水调控.科学出版社.
    [140]刘强,2002a.地表组分温度反演方法及遥感像元的尺度结构.中国科学院遥感应用研究所博士学位论文.
    [141]刘强,柳钦火,肖青,田国良,2002b.机载多角度遥感图像的几何校正方法研究.中国科学(D)32:299—306.
    [142]吕建华,季劲钧,2000.大气—生物圈相互作用的层次性.地球科学进展15:434-441。
    [143]莫兴国,1993.土壤-植被-大气系统水分能量传输模拟与试验。中国科学院地理研究所博士学位论文.
    [144]莫兴国,1995.用平流-干旱模型估算麦田潜热及平流.中国农业气象16:1-4.
    [145]苏红波,张仁华,唐新斋,孙晓敏,朱治林,2000.像元尺度离散植被的热模型及其数字图像解.中国科学(E)30(增刊):61-65.
    [146]苏理宏,李小文,黄裕霞,2001.遥感尺度问题研究进展.地球科学进展16:544-548.
    [147]夏卫生,雷廷武,杨文治,邵明安,2002.蒸发条件下土壤水分再分布的动力学研究.水利学报2002(7):37-41.
    [148]肖青,2002.机载遥感数据的定量化研究.中国科学院遥感应用研究所博士学位论文.
    [149]徐兴奎,1999.基于遥感和地理信息系统的中国地表能量特征分析.中国科学院遥感应用研究所博士学位论文.
    [150]余涛,1996.NOAA卫星遥感监测黄淮海地区土壤水分展布规律研究.中国科学院遥感应用研究所硕士学位论文.
    [151]张仁华,孙晓敏,刘纪远,苏红波等,2001.定量遥感反演作物蒸腾和土壤水分利用率的区域分异.中国科学(D)31:959-968.
    [152]钟强,1996.地面辐射气候学研究进展——从卫星反演地面辐射能收支的若干问题.地球科学进展11:238-244.
    [153]朱岗崑编著,2000.自然蒸发的理论及应用.气象出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700