用户名: 密码: 验证码:
00Cr18Ni10N钢高温持久与疲劳性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
00Cr18Ni10N奥氏体不锈钢是在不含氮的18-8型不锈钢基础上发展起来的新钢种,因其具有高强度和高韧性以及耐蚀性优良等特点,在航空领域广泛用于制造飞机的液压系统导管、卡箍、壳体、螺母和角盒等构件。由于这些构件在服役时受到高温和交变载荷的作用,长时间运行后容易发生突然断裂,严重影响了飞机的飞行安全。因此,很有必要对00Cr18Ni10N钢的高温持久性能和疲劳性能进行详细的研究。
     本文采用高温拉伸试验、高温持久强度试验和疲劳裂纹扩展试验对00Cr18Ni10N钢的高温持久性能和疲劳性能进行了研究,并在扫描电镜下对高温瞬时拉伸试样、高温持久强度试样和CT试样的断口形貌进行观察。研究结果表明:
     在Larson-Miller方程基础上所建立的00Cr18Ni10N钢高温抗拉强度与持久强度之间数学模型,可以很好地预测其持久强度,预测值和实测值之间的最大相对误差小于4.3%。
     通过高温持久强度试验分别测定了00Cr18Ni10N钢在550℃,600℃和700℃下的持久强度σ100、σ200和σ500。结果表明:在同一温度下,持久时间越长,持久强度越低:在同一持久时削下,试验温度越高,持久强度越低。
     不同应力比下00Cr18Ni10N钢疲劳裂纹扩展性能研究结果显示:应力幅度越小,疲劳裂纹扩展速率越慢。
     SEM断口分析表明:高温瞬时拉伸试样宏观断口有明显的纤维区,放射区和剪切唇;微观断口可观察到大量的韧窝、孔洞及第二相粒子,属于微孔聚集型韧性断裂。高温持久强度试样的宏观断口表面比较粗糙,低倍照片呈现出冰糖状;微观断口可见典型的楔形裂纹,晶界空洞是该材料断裂的主要原因。疲劳断口的微观形貌呈现准解理断裂特征,裂纹扩展区主要以疲劳条带扩展机制为主。应力幅度越大,疲劳条带越宽;应力幅度越小,疲劳条带相对密集。在瞬时破断区可以看到二次裂纹和大量的韧窝以及撕裂棱。
OOCr18NilON steel is the new kind of steel which has been developed on 18-8 nickelless stainless steel. Because of the good property of high strength, high toughness and corrosion resistance, it has been widely used in the aircraft industry for the airplane parts, such as the hydraulic system catheters, clamps, shells, nuts, angle boxes and etc. For suffering from high temperatures and alternating load in the flight, these components will unpredictably break after long term service and seriously threaten the aircraft's safety. Therefore, it is very necessary to study its high-temperature enduring properties and fatigue performance.
     In this paper, the enduring properties and fatigue performance of 00Cr18Ni10N steel have been studied by high-temperature tensile test, high-temperature enduring test and fatigue crack growth rate test and the fracture morphology of the samples has been observed by scanning electron microscope. The main results are as follows.
     Based on the Larson-miller parameter equation, the mathematical model in the given temperature of 00Cr18Ni10N steel is established with the relationship between the enduring strength and the high temperature tensile strength. The enduring strength can be accurately predicted by the high-temperature tensile strength, and the maximum relative error between the predicted value and the measured value is less than 4.3%.
     Theσ100,σ200, andσ500 enduring strength at 550℃,600℃and 700℃of 00Cr18Ni10N steel was measured and the results indicated that under the same temperature, the enduring strength decreases with the increasing of the enduring time and for a given enduring time there is the same variation tendency for the enduring strength with the test temperature.
     The results of fatigue crack propagation rate test show that the fatigue crack growth rate decreases with the decreasing of the stress ratio.
     SEM fracture analysis shows that the macro-fracture surface of the high temperature tensile has the obvious fibrous zone, radical zone and shears lips. Micro-fracture observation reveals that thers are a large number of dimples, holes and the second phase particles in the fracture and its fracture mechanism belongs to ductile fracture with microvoid aggregation. The macro-fracture surface of enduring samples looks very rough and appears the rock candy shape. The typical wedge-shaped cracks and the grain boundary voids have been observed in the micro-fracture and it reveals that the the grain boundary void is the main reason for the enduring fracture of 00Cr18Ni10N steel. Fatigue fracture morphology showed the characteristics of quasi-cleavage fracture. Fatigue mode in crack propagation region was mainly strip propagation mechanism and the width of the fatigue stripe increases with the increasing of the stress ratio. Moreover, secondary cracks, a number of shallow dimples and some lacerate ribs are observed in the instantaneous breaking zone.
引文
[1]李晶,曹春晓.大型飞机选材问题[J].新材料产业,2007,9(10):9-13.
    [2]杜善义,关志东.我国大型客机先进复合材料技术应对策略思考[J].复合材料学报,2008,(1):1-4.
    [3]李长胜.新型奥氏体不锈钢磨损、腐蚀性能研究[D].江苏大学硕士论文,2007.
    [4]陈曦.一种新型奥氏体不锈钢疲劳性能的研究[D].江苏大学硕士论文,2007.
    [5]李万鹏.超低碳奥氏体不锈钢导流壳的研制[J].大型铸锻件,2011,16(10):41-44.
    [6]李君,赵春华.VOD工艺在不锈钢冶炼上的应用[J].一重技术,2007,8(2):27-30.
    [7]Prevention of burn-on defect on surface of hydroturbine blade casting of ultra-low-carbon refining stainless steel [J]. China Foundry,2008,(03):125-127.
    [8]赵进刚,张宝伟,王明林.高强度奥氏体不锈钢的发展[J].材料开发与应用,2005,38(04):40-43.
    [9]唐黎磊,不锈钢耐蚀性钯系膜层的制备与应用研究[D].北京化工大学硕士论文,2010.
    [10]黄文克,孔凡亚.热处理对高强00Cr18Ni1ON不锈钢丝组织与性能的影响[J].热加工工艺,2009,38(18):127-130.
    [11]杜存臣.奥氏体不锈钢在工业中的应用[J].化工设备与管道,2003,40(2):54-58.
    [12]V.G.Gavriljuk, B.D.Shanina, H.Berns. Ab initio development of a high strength corrosion resistant austenitic steel [J].Acta Materialia,2008,56:5071-5082.
    [13]秦丽雁.不锈钢应用中的几个腐蚀问题研究[D].天津大学硕士论文,2006.
    [14]李良碧,王自力.潜艇结构疲劳强度研究综述[J].华东船舶工业学院学报:自然科学版,2004,18(3):15-19.
    [15]Da Rocha M Rde.Oliveira C A S. Evaluation of the martensitic transfor-mations in austenitic stainless steels [J].Materials Science andEngineering:A,2009,517(12):281-285.
    [16]罗辉.焊接工艺参数与晶间腐蚀关系的研究[J].汽车研究与开发,2003,(4):79-82.
    [17]张连业.1 Crl 8Ni9Ti油管在酸化作业环境下的腐蚀研究[J].钻采工艺,2011,34(6):93-96.
    [18]Kolman D G, Ford D K, Butt D P, et al. Corrosion of 304stainless steel exposed to nitric acid chloride environment [J].Corrosion Soc.1997,39:2067-2071.
    [19]Standard Test Method for Measure-ment of Fracture Toughness [S].ASTM E1820-01. 2001.
    [20]程鹏辉,贺东风,田乃媛.我国不锈钢发展现状及展望[J].特殊钢,2007,28(3):50-54.
    [21]李勇,寇宏超,柳木桐,等.热处理对奥氏体不锈钢00Crl8Ni10N组织和性能的影响[J]. 科技导报,2011,29(05):37-41.
    [22]杨书志.提速货车转向架下交叉支撑装置制造工艺与疲劳寿命研究[D].大连交通大学硕士论文,2007.
    [23]杜存臣.奥氏体不锈钢在工业中的应用[J].化工设备与管道,2003,40(02):54-57.
    [24]段汉桥.铸造不锈钢精炼技术及机理研究[D].华中科技大学硕士论文,2005.
    [25]崔大伟,曲选辉,李科.高氮低镍奥氏体不锈钢的研究进展[J].材料导报,2005,19,(12):64-67.
    [26]黄亚敏.基于电子背散射衍射和纳米压痕技术的奥氏体不锈钢微结构与性能关系研究[D].武汉大学硕士论文,2010.
    [27]J. C. Rawers, J. S. Dunning, G. Asai,R. P. Reed. Characterization of stainless steels melted under high nitrogen pressure [J]. Metallurgical Transactions A,1992,23 (7):88-91.
    [28]John W. Simmons. Mechanical properties of isothermally aged high-nitrogen stainless steel [J]. Metallurgical and Materials Transactions A,1995,26 (8):79-82.
    [29]Mudali U K, Shankar P, Ningshen S.Corrosion Science [D].Mat.Sci.Eng.A,2002.
    [30]马玉喜.高氮奥氏体不锈钢组织结构及韧脆转变机制的研究[D].昆明理工大学硕士论文,2008.
    [31]王印培,陈进,孙晓明,等.SUS347不锈钢长期服役后的高温持久强度[J].机械工程材料,2004,28(09):26-30.
    [32]刘瑜.奥氏体不锈钢24Mn18Cr3Ni0.62N疲劳性能研究[D].江苏大学硕士论文,2009.
    [33]Kota SAWADA, Hideaki KUSHIMA, and Kazuhiro KIMURA. Z-phase Formation during Creep and Aging in 9-12% Cr Heat Resistant Steels [J].ISIJ International, 2006,46(5):769-775.
    [34]F.Abe. Coarsening Behavior of Lath and Its Effect on Creep Rates in Tempered Martensitic 9Cr-W steels[J].Mat.Sci.Eng.A.2004,(78):387-389.
    [35]Kostka A, Tak K G, Hell mig RJ,et al. On the Contribu-tion of Carbides and Micrograin Boundaries to the CreepStrength of Tempered Martensite Ferritic Steels [J].ActaMater, 2007,55 (2):539-542.
    [36]Rodak K, Hernas A, Kielbus A. Substructure stability ofhighly alloyed martensitic steels for power industry [J].Ma-terials Chemistry and Physics.2003,81 (5):483-485.
    [37]张建强,赵海燕,鹿安理,等.耐热钢持久强度的统计特性及其在寿命评估中的应用[J].机械强度,2004,26(06):701-705.
    [38]崔朝英,黄晓荣,贺红梅.火电厂高温锅炉管道寿命评估方法的可靠性[J].锅炉技术,2008,39(1):56-60.
    [39]宋余九10Cr2MoVNb系耐热钢的蠕变持久强度与组织研究[J].机械工程材料,1983,(5):117-120.
    [40]纪冬梅,轩福贞,涂善东,等.基于支持向量机的P91钢蠕变-疲劳寿命预测[J].压力容器,2011,28(10):65-67.
    [41]乔艳江,赵剑峰,杨尊袍,等.一种新的多轴疲劳寿命预测模型[J].空军工程大学学报:自然科学版.2008,42(06):1225-1227.
    [42]张赟,鲁春朋,芮执元.低周疲劳下45钢的寿命预测[J].机械工程材料,2007,31(06):26-28.
    [43]郝玉龙.P91钢蠕变特性及蠕变疲劳交互作用研究[D].西南交通大学博士论文,2005.
    [44]魏峰.P91钢蠕变—疲劳交互作用损伤模型研究及寿命评估[D].西南交通大学博士论文,2009.
    [45]朱敏.主蒸汽管道失效分析与寿命预测[D].武汉理工大学硕士论文,2002.
    [46]刘长虹,轩福贞.一种用于蠕变损伤失效概率计算的分层抽样方法[J].力学季刊,2009,30(4):607-609.
    [47]Glasserman,P.,Heidelberger,P.,Shahabuddin,P. Asymptotically optimal importance sampling and stratification for pricing path-dependent options [J].Mathematical Finance, 1999,20(9):147-152.
    [48]Buhler, A.Deutler, M.Optimum stratification and grouping by dynamic programming [J].Metrika,1975,22 (7):161-175.
    [49]Espejo R M, et al. Opti mal esti mation of population variance using equilibrated stratified sampling frominfinite populations [J] Journal of the Korean Statistical Society,2008,(03):123-127.
    [50]Manfred Schirra.Creep rupture and creep behaviour of martensitic X18CrMoVNb 11.1 type steel at elevated temperatures and after a temperature transient [J]. Steel Research,1986,64 (6):322-330.
    [51]张晓昱,欧阳杰,柯浩,等.长时高温运行后火力发电机组T91钢受热面管寿命评价[J],锅炉技术,2011(4).47-50.
    [52]杨瑞成,傅公维,王凯旋,等.15CrMo耐热钢Larson-Miller参数值的确定与应用[J].兰州理工大学学报,2004,(3),152-156.
    [53]Stefan Straub, Tomas Henige, Peter Polcik, et al. Micro structure and deformation rate during long-term cyclic creep of the martensitic steel X22CrMoV12-1 [J].Steel Research, 1995,66(9):394-401.
    [54]Spigarelli S, Kloc L, Bontempi P. Analysis of creep curves in 9Cr-1Mo modified steel by means of simple constitutive equations [J].Scripta Materialia,1997,37 (4):399-404.
    [55]章燕谋.锅炉与压力容器用钢[M].西安:西安交通大学出版社,1984.
    [56]陈雷,杜晓建,刘晓,等.新型奥氏体耐热不锈钢的高温持久性能[J].钢铁研究学 报,2010(10):112-115.
    [57]宛农.谢锡善,张家福,等.基于Larson-Miller参数的蠕变持久性能[J].机械强度,2004,26(4):410-413.
    [58]赵庆权.国产化Super304H钢管组织性能及持久强度研究[D].兰州理工大学硕士论文,2008.
    [59]武灿明,李保成,武煌.奥氏体钢中裂纹尖端塑性区结构及其扩展方式[J].太原机械学院学报,1988,(4):36-38.
    [60]朱宗元,李邦俊,李玉青.潜油电泵轴断裂失效分析[J].理化检验.物理分册,2000,25(2):45-47.
    [61]郑连泽,齐丽娜,牟占文,等.合金钢制件加工断裂失效分析[J].热加工工艺,2011,40(2):193-195.
    [62]秦东,余德河,王立君.钢材断裂的原因分析[J].冶金标准化与质量,2009,(3):36-39.
    [63]张哲峰,张鹏,田艳,等.金属材料疲劳损伤界面效应[J].金属学报,2009,45(7):780-783.
    [64]余德河,董昌兴,王立君,等.影响钢材断裂的因素[J].莱钢科技,2008,(6):56-58.
    [65]李贵军,王乐勤,郑传祥.高温设备和构件的蠕变损伤和断裂研究进展[J].化工机械,2004,31(2):119-123.
    [66]王仁智.工程金属材料/零件的表面完整性及其断裂抗力[J].中国表面工程,2011,24(5):55-57.
    [67]胥聪敏.典型石化设备局部腐蚀特征及腐蚀机理研究[D].西安交通大学博士论文,2007.
    [68]H. Smith,D. R. F. West. The reversion of martensite to austenite in certain stainless steels [J]. Journal of Materials Science,1973,8(10):79-82.
    [69]闫英杰.一种高强钢在不同温度下的断裂行为研究[J].兰州理工大学硕士论文,2008.
    [70]Pat L. Mangonon, Gareth Thomas. Structure and properties of thermal-mechanically treated 304 stainless steel [J]. Metallurgical Transactions,1970,1 (6),463-467.
    [71]Ritchie R 0, Knott J F, Rice J R. On the relationship between critical tensile stress and fracture toughness in mild steel[J].J. Mech. Phys. Solids,1973,21 (5):395-410.
    [72]Neville D J. On the distance criterion for failure at the tips of cracks, minimum fracture toughness, and implication for fracture [J].Mech. Phys. Solids,1988,36 (7):443-457.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700