用户名: 密码: 验证码:
高频地波雷达阵列优化与校正算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高频地波雷达利用高频电波(3~30MHz)在海洋表面绕射传播衰减小的特点,采用垂直极化天线辐射电波,能超视距探测海面流场、风场和浪场参数分布,实现对海洋环境大范围、高精度和全天候的实时监测。经过40多年的发展,海流探测已达到可用于常规业务化观测的要求,但对于风、浪的探测,还处于研究和发展阶段。在高频地波雷达实际应用中,不同的布阵形式使得测向性能不一致,实际阵列复杂的背景环境使得天线阵列对来自不同方位信号的响应产生畸变,会导致多重信号分类算法(MUSIC算法)等超分辨测向算法性能严重下降,为此需要进行阵列优化与校正。
     本文就雷达阵列进行了分析和优化,对阵列误差进行了分类并研究了误差校正的方法。论文主要分为以下几个方面的内容:
     第一、阵列的误差分析
     对阵列信号处理进行数学建模,分析了阵列误差产生的机理并且通过建模介绍了以MUSIC为代表的子空间类高分辨算法的原理,对阵列误差进行了分类,并通过仿真数据分析,直观地给出了阵列误差对雷达测向性能的影响,对DOA估计误差给出了一个直观的理解和认识。
     第二、基于阵列方向图和阵列测向灵敏度的阵列优化问题
     针对MUSIC算法存在模型误差时测向性能降低的问题,分析了MUSIC算法测向的误差,通过泰勒展开分析,定义了误差的灵敏度,并且详细分析了直线阵和圆形阵的阵列灵敏度特性。通过计算机仿真,对理论分析进行了验证。将测向灵敏度的分析应用到雷达的接收阵列,得到雷达阵列灵敏度的规律,应用于雷达阵列的优化。雷达阵列的优化从方向图的波束主瓣旁瓣控制和灵敏度控制两个方面进行,通过给定不同的权值,进行多目标的阵列优化,并采用了遗传优化算法达到寻优的目的。
     第三、阵列的误差校正
     对阵列的校正算法进行了分析,对以AIS为代表的有源校正进行了初步分析;针对阵列的无源校正问题,提出了基于海洋回波的无源校正算法,通过仿真证实了该方法的有效性,并将这个方法应用到阵列误差和互耦误差的校正。针对阵列的互耦误差校正问题,分别进行了循环迭代方法和特征分解方法的研究,并对两种方法的性能进行了比较。针对多种误差联合估计,给出了利用MUSIC子空间正交特性进行循环迭代寻优的无源校正方法,并对仿真性能进行了分析。
     第四、雷达实测数据的校正分析
     对雷达的实测试验数据进行了误差校正分析,分别以十一五国家863课题——多频率雷达阵列和分布式雷达阵列为例,介绍了高频地波雷达阵列校正的分析过程,提出了基于智能算法结合海洋回波的阵列误差无源校正方法。阵列幅相误差和互耦误差的校正结果表明了文中算法的有效性。
High frequency surface wave radar (HFSWR) operated in the HF band (3-30MHz), as the name suggests, employs the ground wave mode of radio wave propagation where the radar signal is guided by a good conducting surface such as the ocean surface to follow a path that essentially matches the earth's curvature. It is capable of all-weather remote sensing of large area ocean surface dynamics with relatively high precision. After more than40years' development, its capability of currents detection has been considered satisfying the requirements for routine marine observations while its wind and wave outputs have not reached the matched status.
     In the application of HFSWR, DOA performance is different with the different array pattern. Besides, the complicated environment of the antenna array will distort the array directional response, and the distortion will weaken the performance of various super-resolution methods, such as Multiple Signal Classification. Therefore, it is necessary to optimize and calibrate the array.
     This thesis analyzes and optimizes the radar array. The array errors were classified and the methods of error correction were studied. The thesis is divided into the following aspects:
     First, Based on the analysis of array error. Mathematical model of array signal process is founded to introduce the spatial spectrum estimation algorithm (e.g. MUSIC etc.).In order to comprehend the DOA (Direction of Arrival) estimate error, the impacts to radar direction finding from different kinds of array error are also introduced by simulation.
     Second, array optimization based on the array pattern and the array direction finding sensitivity. For the problem of performance degradation about direction estimation of multiple signal classification algorithm (MUSIC algorithm) considering the model error, the error of direction estimation of MUSIC algorithm is discussed. Through the Taylor expansion analysis, error sensitivity is defined, detailed analysis about the array sensitivity characteristics of the linear array and circular array are also presented. The analysis of theory is validated by the computer simulation. When the analysis of the sensitivity to direction is applied to the radar receiver array, the law of radar array sensitivity is drawn, which can be used in the optimization of radar array. The radar array is optimized based on the control of beam main disc and side-lobe and sensitivity. Given different weights, multi-objective array optimization is carried out, and the genetic optimize algorithm is used to achieve finding optimization.
     Third, Calibration of Array Errors. The method of array calibration is analyzed here, and AIS, as a typical method of active calibration, is discussed; In the area of passive calibration, this paper addresses a method based on sea echo, which is proved to be efficiency by simulation and applied in calibration of array error and mutual coupling error. For the problem of mutual coupling error calibration, two methods 'loop iteration' and 'characteristic decomposition'are discussed and compared by their performance. A loop iteration optimization method based on MUSIC subspace orthogonal characteristics is used here, as a passive calibration method solving the problem of error joint estimation, which is demonstrate by simulation.
     Fourth, Error Calibration Analysis for the Measured Data of HFSWR. Error calibration analysis is done for the measured data of HFSWR, taking the array of multi-frequency Radar for the11th Five-Year Plan and the array of distributed radar for the12th Five-Year Plan as examples respectively, this paper gives the analysis processing of array calibration for the HFSWR. Intelligent algorithm, combined with the passive calibration algorithm using sea echo, is proposed. The results for both the gain-phase error calibration and the mutual couplings error calibration show that the validity of algorithm of this paper.
引文
[1]Barrick D E. EEZ Surveillance-The Compact HF Radar Alternative. EEZ Technology (3th ed.). ICG Publishing Ltd. [Z].1998.
    [2]Wait. J R. Theory of HF Ground Wave Backscatter from Sea Waves[Z],1966:71,3842-4839.
    [3]Barrick D. First-order theory and analysis of MF/HF/VHF scatter from the sea[J]. Antennas and Propagation, IEEE Transactions on.1972,20(1):2-10.
    [4]D. E. Barrick W H P. A Review of Scattering from Surfaces With Different Roughness Scales[Z]. 1968:3,865-868.
    [5]Barrick D E. Remote sensing of sea state by radar[J]. Remote sensing of the troposphere.1972, 12:1-46.
    [6]D. M. Fernandez J F V C. Ship Detection with High-Frequency Phased-Array and Direction-Finding Radar Systems[Z].1998:1,204-206.
    [7]R. Khan B G D P. Target Detection and Tracking with a High Frequency Ground Wave Radar[Z]. IEEE J. OC. Eng.,1994:OE-19,540-548.
    [8]侯杰昌,吴世才,杨子杰,等.海洋表面流的高频雷达遥感[J].地球物理学报.1997,40(1):18-26.
    [9]Xiongbin W, Yan L, Lun L, et al. HFSWR Observation of the Severe Tropical Storm Lionrock Landing Process[J].
    [10]李伦,吴雄斌,李炎,等.“凤凰”台风期间海面风、浪的高频地波雷达OSMAR071遥感[J].遥感学报.2012(1):154-165.
    [11]Barrick D. History, present status, and future directions of HF surface-wave radars in the US[C]. IEEE,2003.
    [12]刘春阳,王义雅.高频地波超视距雷达述评[J].现代防御技术.2002,6:38-46.
    [13]Gurgel K W, Antonischki G, Essen H H, et al. Wellen Radar (WERA):a new ground-wave HF radar for ocean remote sensing[J]. Coastal Engineering.1999,37(3):219-234.
    [14]Liu Y, Xu R, Zhang N. Progress in HFSWR research at Harbin Institute of Technology[C]. IEEE, 2003.
    [15]Wu S, Yang Z, Wen B, et al. Test of HF ground wave radar OSMAR2000 at the eastern China sea[J], Wuhan University Journal (Natural Science Edition).2001.
    [16]陈伯孝,许辉,张守宏.舰载无源综合脉冲/孔径雷达及其若干关键问题[J].电子学报.2003,31(12):1776-1779.
    [17]Huang X, Wen B, Ding F. Ship detection and tracking using multi-frequency HFSWR[J]. IEICE Electronics Express.2010,7(6):410-415.
    [18]Bin L, Xiongbin W, Lun L, et al. Array calibration method for gain-phase errors based on asynchronous interstation direct wave interference[J]. IEICE Electronics Express.2012,9(6):450-457.
    [19]Teague C. Multifrequency HF radar observations of currents and current shears[J]. Oceanic Engineering, IEEE Journal of.1986,11(2):258-269.
    [20]Barrick D E, Headrick J M, Bogle R W, et al. Sea backscatter at HF:Interpretation and utilization of the echo[J]. Proceedings of the IEEE.1974,62(6):673-680.
    [21]Lo Y T, Lee S W. Antenna Handbook:theory, applications, and design[M]. Van Nostrand Reinhold Company,1988.
    [22]Schelkunoff S A. A mathematical theory of linear arrays[J]. Bell Syst. Tech. J.1943,22(1): 80-107.
    [23]Kurup D G, Himdi M, Rydberg A. Design of an unequally spaced reflectarray[J]. Antennas and Wireless Propagation Letters, IEEE.2003,2:33-35.
    [24]Murino V. Simulated annealing approach for the design of unequally spaced arrays[C].1995.
    [25]Kumar B P, Branner G R. Design of unequally spaced arrays for performance improvement[J]. Antennas and Propagation, IEEE Transactions on.1999,47(3):511-523.
    [26]Kazemi S, Hassani H R, Dadashzadeh G R, et al. Performance improvement in amplitude synthesis of unequally spaced array using least mean square method[J]. Progress In Electromagnetics Research.2008,1:135-145.
    [27]Unz H. Linear arrays with arbitrarily distributed elements[J]. Antennas and Propagation, IRE Transactions on.1960,8(2):222-223.
    [28]Skolnik M, Nemhauser G, Sherman Iii J. Dynamic programming applied to unequally spaced arrays[J]. Antennas and Propagation, IEEE Transactions on.1964,12(1):35-43.
    [29]Ishimaru A. Theory of unequally-spaced arrays[J]. Antennas and Propagation, IRE Transactions on.1962,10(6):691-702.
    [30]陈客松,何子述,韩春林.最佳稀疏直线阵列的分区穷举综合法[J].电子与信息学报.2006,28(11).
    [31]Kumar B P, Branner G R. Generalized analytical technique for the synthesis of unequally spaced arrays with linear, planar, cylindrical or spherical geometry[J]. Antennas and Propagation, IEEE Transactions on.2005,53(2):621-634.
    [32]张玉洪,保铮.最佳非均匀间隔稀布阵列的研究[J].电子学报.1989,17(4):81-87.
    [33]Chen K, He Z, Han C. A modified real GA for the sparse linear array synthesis with multiple constraints[J]. Antennas and Propagation, IEEE Transactions on.2006,54(7):2169-2173.
    [34]Haupt R L. Thinned arrays using genetic algorithms[J]. Antennas and Propagation, IEEE Transactions on.1994,42(7):993-999.
    [35]Goldberg D E. Genetic algorithms in search, optimization, and machine learning[M]. Addison-wesley,1989.
    [36]Trucco A, Murino V. Stochastic optimization of linear sparse arrays[J]. Oceanic Engineering, IEEE Journal of.1999,24(3):291-299.
    [37]Ares F, Rengarajan S R, Villaneuva E, et al. Application of genetic algorithms and simulated annealing technique in optimising the aperture distributions of antenna array patterns[J]. Electronics Letters.1996,32(3):148-149.
    [38]Murino V, Trucco A, Regazzoni C S. Synthesis of unequally spaced arrays by simulated annealing[J]. Signal Processing, IEEE Transactions on.1996,44(1):119-122.
    [39]焦永昌,杨科,陈胜兵,等.粒子群优化算法用于阵列天线方向图综合设计[J].电波科学学报.2006,21(1):16-20.
    [40]低副瓣,边莉.基于遗传算法的低副瓣阵列天线综合边莉车向前杨国辉孟繁义吴群哈尔滨工业大学电子与信息技术研究院;黑龙江科技学院电气与信息工程学院[J].
    [41]刘源,邓维波,许荣庆.高频段超方向性天线阵列设计[J].微波学报.2004(4):72-75.
    [42]Doles J H I, Benedict F D. Broad-band array design using the asymptotic theory of unequally spaced arrays[J]. Antennas and Propagation, IEEE Transactions on.1988,36(1):27-33.
    [43]王玲玲,方大纲.运用遗传算法综合稀疏阵列[J].电子学报.2008(z1):2135-2138.
    [44]Krim H, Viberg M. Two decades of array signal processing research:the parametric approach[J]. Signal Processing Magazine, IEEE.1996,13(4):67-94.
    [45]P. B J. Maximum entropy spectral analysis.[Z].37th Annual International Meeting,1967.
    [46]Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE Proceedings of the IEEE DOI-10.1109/PROC.1969.7278 Proceedings of the IEEE.1969,57(8):1408-1418.
    [47]Schmidt R. Multiple emitter location and signal parameter estimation [J]. Antennas and Propagation, IEEE Transactions on.1986,34(3):276-280.
    [48]Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on.1989,37(5):720-741.
    [49]B Ottersten M V P S. Exact and large sample ML techniques for parameter estimation and detection in array processing[Z].199399-151.
    [50]Cadzow J A. A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on.1988,36(7): 965-979.
    [51]Clergeot H, Tressens S, Ouamri A. Performance of high resolution frequencies estimation methods compared to the Cramer-Rao bounds[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on.1989,37(11):1703-1720.
    [52]Hamza R, Buckley K. An analysis of weighted eigenspace methods in the presence of sensor errors[J]. Signal Processing, IEEE Transactions on.1995,43(5):1140-1150.
    [53]Li F, Vaccaro R J. Sensitivity analysis of DOA estimation algorithms to sensor errors [J]. Aerospace and Electronic Systems, IEEE Transactions on.1992,28(3):708-717.
    [54]Swindlehurst A L, Kailath T. A performance analysis of subspace-based methods in the presence of model errors. I. The MUSIC algorithm[J]. Signal Processing, IEEE Transactions on.1992,40(7): 1758-1774.
    [55]Friedlander B. A sensitivity analysis of the MUSIC algorithm[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on.1990,38(10):1740-1751.
    [56]Friedlander B. Sensitivity analysis of the maximum likelihood direction-finding algorithm[J]. Aerospace and Electronic Systems, IEEE Transactions on.1990,26(6):953-968.
    [57]苏卫民,顾红,倪晋麟,等.通道幅相误差条件下MUSIC空域谱的统计性能[J].电子学报.2000(6):105-107.
    [58]苏卫民,倪晋麟,刘国岁,等.通道失配对MUSIC空间谱及分辨率的影响[J].电子学报.1998(9):142-145.
    [59]Swindlehurst A L, Kailath T. A performance analysis of subspace-based methods in the presence of model error. Ⅱ. Multidimensional algorithms[J]. Signal Processing, IEEE Transactions on.1993, 41(9):2882-2890.
    [60]Schmidt R O. Multilinear array manifold interpolation[J]. Signal Processing, IEEE Transactions on.1992,40(4):857-866.
    [61]Weiss A J, Friedlander B. Manifold interpolation for diversely polarised arrays[J]. Radar, Sonar and Navigation, IEE Proceedings-.1994,141(1):19-24.
    [62]王布宏,王永良,陈辉,等.均匀线阵互耦条件下的鲁棒DOA估计及互耦自校正[J].中国科学E辑.2004,34(2):229-240.
    [63]王布宏,王永良,陈辉,等.方位依赖阵元幅相误差校正的辅助阵元法[J].中国科学:E辑.2004,34(8):906-918.
    [64]Fuhrmann D R. Estimation of sensor gain and phase using known field covariance [C].1991.
    [65]吴洹贾永康保铮.一种阵列天线阵元位置、幅度及相位误差的有源校正方法[J].电子学报.1996(3):47-52.
    [66]Ng B C, See CMS. Sensor-array calibration using a maximum-likelihood approach[J]. Antennas and Propagation, IEEE Transactions on.1996,44(6):827-835.
    [67]章宏,陈荆花.阵列天线阵元位置误差,通道不一致性和互耦的校正[J].上海交通大学学报.2002,36(9):1284-1287.
    [68]Bourdillon A, Delloue J. Phase correction of an HF multireceiver antenna array using a radar transponder[C].1994.
    [69]Hung E K L. A critical study of a self-calibrating direction-finding method for arrays[J]. Signal Processing, IEEE Transactions on.1994,42(2):471-474.
    [70]Ming Z, Zhaoda Z. A method for direction finding under sensor gain and phase uncertainties[J]. Antennas and Propagation, IEEE Transactions on.1995,43(8):880-883.
    [71]Rockah Y, Messer H, Schultheiss P M. Localization performance of arrays subject to phase errors[J]. Aerospace and Electronic Systems, IEEE Transactions on.1988,24(4):402-410.
    [72]Friedlander B, Weiss A J. Eigenstructure methods for direction finding with sensor gain and phase uncertainties[J]. Proc. Int. Conf. Acoust., Speech, New York, May.1988, May(1988): 2681-2684.
    [73]Wylie M P, Roy S, Messer H. Joint DOA estimation and phase calibration of linear equispaced (LES) arrays[J]. Signal Processing, IEEE Transactions on.1994,42(12):3449-3459.
    [74]Solomon I S D, Gray D A, Abramovich Y I, et al. Receiver array calibration using disparate sources[J]. Antennas and Propagation, IEEE Transactions on.1999,47(3):496-505.
    [75]Wahlberg B, Ottersten B, Viberg M. Robust signal parameter estimation in the presence of array perturbations[C].1991.
    [76]Jansson M, Swindlehurst A L, Ottersten B. Weighted subspace fitting for general array error models[J]. Signal Processing, IEEE Transactions on.1998,46(9):2484-2498.
    [77]Huang T, Mohan A S. Effects of array mutual coupling on near-field DOA estimation[C].2003.
    [78]Minghui L, Yilong L. Maximum likelihood DOA estimation in unknown colored noise fields[J]. Aerospace and Electronic Systems, IEEE Transactions on.2008,44(3):1079-1090.
    [79]Weiss A J, Friedlander B. Array shape calibration using eigenstructure methods[J]. Signal Processing.1991,22(3):251-258.
    [80]Biao W, Hui C. Performance analysis of self-calibration algorithm for Y-shaped array in the presence of mutual coupling[C]. IEEE,2009.
    [81]Karamalis P D, Kanatas A G, Constantinou P. A genetic algorithm applied for optimization of antenna arrays used in mobile radio channel characterization devices[J]. Instrumentation and Measurement, IEEE Transactions on.2009,58(8):2475-2487.
    [82]Elahi E, Naeem A, Elahi I. A Genetic Algorithm based solution to three dimensional Direction of Arrival (DOA) problem[C]. IEEE,2008.
    [83]Hung J C, Yu C L. Combining genetic algorithm and first order Taylor series iterative searching DOA estimation for the CDMA system[C]. IEEE,2010.
    [84]Roy R, Paulraj A, Kailath T. ESPRIT--A subspace rotation approach to estimation of parameters of cisoids in noise[J].1986.
    [85]Bohme J F. Estimation of spectral parameters of correlated signals in wavefields[J]. Signal Processing.1986,11(4):329-337.
    [86]Viberg M, Ottersten B. Sensor array processing based on subspace fitting[J]. Signal Processing, IEEE Transactions on.1991,39(5):1110-1121.
    [87]Viberg M, Stoica P, Ottersten B. Maximum likelihood array processing in spatially correlated noise fields using parameterized signals[J]. Signal Processing, IEEE Transactions on.1997,45(4): 996-1004.
    [88]Eriksson J, Viberg M. Data reduction in spatially colored noise using a virtual uniform linear array[C]. IEEE,2000.
    [89]Swindlehurst A L, Kailath T. A performance analysis of subspace-based methods in the presence of model errors. I. The MUSIC algorithm[J]. Signal Processing, IEEE Transactions on.1992,40(7): 1758-1774.
    [90]Weiss A J, Friedlander B. Effects of modeling errors on the resolution threshold of the MUSIC algorithm[J]. Signal Processing, IEEE Transactions on.1994,42(6):1519-1526.
    [91]Svantesson T. Mutual coupling compensation using subspace fitting[Z].2000494-498.
    [92]Effect of mutual coupling on the performance of adaptive arrays 1983[J].
    [93]Schmidt R, Franks R. Multiple source DF signal processing:An experimental system[J]. Antennas and Propagation, IEEE Transactions on.1986,34(3):281-290.
    [94]Friedlander B, Weiss A J. Eigenstructure methods for direction finding with sensor gain and phase uncertainties[C].1988.
    [95]Wu X, Cheng F, Yang Z, et al. Broad Beam HFSWR Array Calibration Using Sea Echoes[C]. 2006.
    [96]蔡树群,张文静,王盛安.海洋环境观测技术研究进展[J].热带海洋学报.2007,26(3):76-81.
    [97]Dolph C L. A Current Distribution for Broadside Arrays Which Optimizes the Relationship between Beam Width and Side-Lobe Level[J]. Proceedings of the IRE.1946,34(6):335-348.
    [98]Barrick D E. EEZ surveillance-The compact HF Radar altemative[C]. London ICG Publishing LTD,1998.
    [99]King R. Linear arrays:currents, impedances, and fields, I[J]. Antennas and Propagation, IRE Transactions on.1959,7(5):440-457.
    [100]Skolnik M I. Nonuniform arrays[M]. New York:McGraw-Hill,1969.
    [101]Unz H. Nonuniformly spaced arrays:The orthogonal method[J]. Proceedings of the IEEE.1966, 54(1):53-54.
    [102]Abramovich Y I, Gray D A, Gorokhov A Y, et al. Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. I. Fully augmentable arrays[J]. Signal Processing, IEEE Transactions on.1998,46(9):2458-2471.
    [103]Feng C, Wu X. Passive channel calibration method based on non-linear antenna array[P]. 11/859,746. September 22,2007[February 23].
    [104]吴雄斌,程丰.一种利用海洋回波进行阵列通道校正的方法[P].03128238.2005/01/19.
    [105]Mathews C P, Zoltowski M D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays[J]. Signal Processing, IEEE Transactions on.1994,42(9):2395-2407.
    [106]陈永倩,顾建峰,肖先赐.用禁忌搜索实现DOA估计[J].电波科学学报.2005(1):55-58.
    [107]邹小波,赵杰文,吴守一.气体传感器阵列中特征参数的提取与优化[J].传感技术学报.2002(004):282-286.
    [108]Hong J S. Genetic approach to bearing estimation with sensor location uncertainties[J]. Electronics letters.1993,29(23):2013-2014.
    [109]Zhang M, Zhao S, Wang X. A hybrid self-adaptive genetic algorithm based on sexual reproduction and Baldwin effect for global optimization[C].2009.
    [110]周明,运筹学,孙树栋,等.遗传算法原理及应用[M].国防工业出版社,1999.
    [111]Ming Z, Zhao-Da Z. DOA estimation with sensor gain, phase and position perturbations[Z]. Dayton:199367-69.
    [112]Friedlander B. A sensitivity analysis of the MUSIC algorithm[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on.1990,38(10):1740-1751.
    [113]Weiss A J, Friedlander B. Manifold interpolation for diversely polarised arrays[C]. IET,1994.
    [114]Ming Z, Zhaoda Z. Array shape calibration using sources in known directions[C].1993.
    [115]Ng B C, Wee S. Array shape calibration using sources in known locations[Z].1992836-840.
    [116]Zhang M, Zhu Z D. Array shape calibration using sources in known locations[C]. NAECO 1993: IEEE,1993.
    [117]Nav I.48/16,28 January 2002[J]. Requirements for the display and use of AIS information on Shipborne Navigational Displays.
    [118]http://www.imo.org[Z].
    [119]http://www.marinetraffic.com[Z].
    [120]Hart E, Timmis J. Application areas of AIS:The past, the present and the future[J]. Applied Soft Computing.2008,8(1):191-201.
    [121]Pokrajac D, Filjar R, Desic S. Provision of generalais functionalities in internet AIS[C]. IEEE, 2005.
    [122]Goldberg D E. Genetic Algorithms in Search[D].1989.
    [123]Holland J H. Adaptation in Natural and Artificial Systems[J]. University of Michigan Press, Ann Ardor, Michigan.1975.
    [124]Matsui K. New selection method to improve the population diversity in genetic algorithmsfC].1999.
    [125]Liu X, Liu Y. Adaptive Genetic Algorithm Based on Population Diversity[C].2009.
    [126]Rong-Chang C, Shiue-Shiun L, Chih-Chiang L, et al. Application of Self-Adaptive Genetic Algorithm on Allocating International Demand to Global Production Facilities[C].2006.
    [127]Xianghui D. Application of Adaptive Genetic Algorithm in Inversion Analysis of Permeability Coefficients[C].2008.
    [128]Liu S, Fu H, Wang Y. Parameters selection algorithm for LS-SVM based on adaptive genetic algorithm and application on camera calibration[C].2008.
    [129]Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. Systems, Man and Cybernetics, IEEE Transactions on.1994,24(4):656-667.
    [130]Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. Systems, Man and Cybernetics, IEEE Transactions on.1994,24(4):656-667.
    [131]Yeh C C, Leou M L, Ucci D R. Bearing estimations with mutual coupling present[J]. Antennas and Propagation, IEEE Transactions on.1989,37(10):1332-1335.
    [132]Hong J S. Genetic approach to bearing estimation with sensor location uncertainties[J]. Electronics letters.1993,29(23):2013-2014.
    [133]Weiss A J, Friedlander B. Array shape calibration using sources in unknown locations-a maximum likelihood approach[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on. 1989,37(12):1958-1966.
    [134]Rockah Y, Schultheiss P. Array shape calibration using sources in unknown locations--Part Ⅱ: Near-field sources and estimator implementation[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on.1987,35(6):724-735.
    [135]Rockah Y, Schultheiss P. Array shape calibration using sources in unknown locations--Part I: Far-field sources[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on.1987,35(3): 286-299.
    [136]Friedlander B, Weiss A J. Direction finding in the presence of mutual coupling[J]. Antennas and Propagation, IEEE Transactions on.1991,39(3):273-284.
    [137]See C, Poh B K. Parametric sensor array calibration using measured steering vectors of uncertain locations[J]. Signal Processing, IEEE Transactions on.1999,47(4):1133-1137.
    [138]连小华,周建江.双L型阵列DOA估计的PM算法的性能分析与改进[J].航空学报.2007,28(5):1122-1129.
    [139]Swindlehurst A L, Kailath T. A performance analysis of subspace-based methods in the presence of model error. Ⅱ. Multidimensional algorithms[J]. Signal Processing, IEEE Transactions on.1993, 41(9):2882-2890.
    [140]董志飞,柯亨玉,董晓辉.基于海洋回波的高频地波雷达阵列幅相误差校准[J].电子与信息学报.2007,29(6):1437-1440.
    [141]陈皇进,田建生.基于海洋回波的雷达阵列通道校准新方法[J].信号处理.2010(8):1169-1173.
    [142]Holland J H. Adaptation in natural and artificial systems[M]. University of Michigan press,1975.
    [143]Tiesong Z J H. Adaptive Genetic Algorithm Based on Population Diversity[J]. Computer Engineering and Applications.2002:9.
    [144]Deng X. Application of adaptive genetic algorithm in inversion analysis of permeability coefficients[C]. IEEE,2008.
    [145]Hua-Fu D, Xiao-Lu L, Xue L. An improved genetic algorithm for combinatorial optimization[C]. IEEE,2011.
    [146]Barrick D. First-order theory and analysis of MF/HF/VHF scatter from the sea[J]. Antennas and Propagation, IEEE Transactions on.1972,20(1):2-10.
    [147]Barrick D. First-order theory and analysis of MF/HF/VHF scatter from the sea[J]. Antennas and Propagation, IEEE Transactions on.1972,20(1):2-10.
    [148]Matsui K. New selection method to improve the population diversity in genetic algorithms[C]. IEEE,1999.
    [149]A robust adaptive hybrid genetic simulated annealing algorithm for the global optimization of multimodal functions[J].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700