用户名: 密码: 验证码:
独立信号与相干信号并存的测向算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波达方向(Direction of arrival, DOA)估计是阵列信号处理的重要研究方向之一,在雷达、被动声纳以及移动通信等军事和民用领域都有着广阔的应用前景。经过国内外学者多年来针对这一领域问题的研究,先后提出了一系列经典的超分辨率测向算法,在参数估计性能方面取得了重大的突破。但是,随着现代电磁技术的不断发展和应用,实际环境中的信号密度越来越大,且独立信号与相干信号交错并存。因此,经典的DOA估计算法大都不能满足实际应用背景的需求。尤其是针对独立信号与相干信号并存背景下的测向问题,在阵列利用率以及DOA估计性能等方面尚有很多实际问题亟待解决。本文针对这一问题展开了深入地研究和探讨,并提出了一系列性能优良的DOA估计算法。
     独立信号与相干信号并存的测向问题,其核心思想是将一个阵列虚拟等效为两个阵列,用于分别对独立信号与相干信号进行DOA估计,进而可有效地提高阵列利用率。该思想涉及到独立信号的DOA估计、相干信号信息的分离和相干信号的DOA估计三个核心环节。针对独立信号与相干信号并存的测向问题,本文所做的主要工作如下:
     首先,研究了相干信号测向问题。针对均匀线阵,通过利用大特征值对应的特征矢量及其反向矢量来构造解相干数据矩阵,提出了改进矢量重构方法。该方法在秉承传统算法解相干性能的同时,有效地提高了信号不完全相干时的测向性能。针对任意阵列,利用信号子空间作为测量矢量,提出了基于压缩感知理论的信号子空间测量模型。该方法有效地改善了已有单测量矢量模型和多测量矢量模型在低信噪比时的测向性能。理论分析和实验仿真验证了所提方法的优良性能。
     其次,研究了独立信号与相干信号并存的一维测向问题。针对均匀线阵,利用Toeplitz矩阵特性分离法、root-MUSIC算法和改进矢量重构解相干方法,提出了均匀线阵的测向算法。该算法能够扩展阵列孔径,相比同类算法具有更高的阵列利用率和更好的估计性能。针对均匀圆阵列,采用模式空间变换技术,并结合所提均匀线阵的测向算法,提出了均匀圆阵列的测向算法。该算法能够弥补模式空间变换带来的阵列孔径损失,提高了估计性能,有效地降低了均匀圆阵列进行相干信号测向时的计算量。针对任意阵列,通过采用斜轴投影技术和基于压缩感知理论的信号子空间模型,提出了任意阵列的测向算法。该算法具有计算简便,可扩展阵列孔径等优良性能,且更适于工程实际应用,具有重要的实际意义。
     再次,研究了独立信号与相干信号并存的二维DOA估计问题。针对L型阵列,在一维均匀线阵测向算法的基础上,通过选取计算简便的高性能测向算法,并分别提出高效的参数配对方法和解相干方法,分别提出了基于L型电磁矢量传感器阵列和L型标量传感器阵列的测向算法。这两种算法相对已有算法具有更高的阵列利用率和更好的估计性能。针对任意阵列,通过采用空时处理技术构造旋转不变关系,并巧妙地构造数据矩阵,提出了任意阵列的二维测向算法。该算法利用信号自身的特性即可分离出独立信号和相干信号的信息,且参数自动配对。与传统的任意阵列测向算法相比,该算法具有更小的计算量,且实际应用价值高。理论分析和实验仿真均表明该算法具有极大的阵列扩展潜能。
     最后,研究了冲击噪声背景下的DOA估计问题。针对均匀线阵,采用去冲击预处理方法,提出了冲击噪声背景下的测向新算法。由于冲击噪声不具备二阶及其以上的矩,现有冲击噪声背景下的测向算法都是基于分数低阶统计量提出的。通过对阵列接收数据中信号成分的振幅进行估计,并采用归一化处理限定冲击噪声的最高振幅,冲击噪声强度被有效地削弱,则前面所提出的测向算法也可以适用于冲击噪声背景。理论分析和实验仿真表明,所提算法优于基于分数低阶统计量的测向算法,且具有计算简便,抗冲击性强等优点。
Direction of arrival (DOA) estimation is an important area in array signal processing,and has widely application in the field of military and civilian, such as radar, passive sonar,radio astronomy, communication, etc. During the past five decades, scholars at home andabroad have proposed a series of high resolution direction finding algorithms. And they havemade significant achievement in improving the performance of parameter estimation. Withthe development and application of electromagnetic technology, the density of signalsincrease greatly, and the uncorrelated and coherent signals always coexist. In this situation,the traditional DOA estimation algorithms fail or degrade since they can’t make full use of thearray aperture. In this paper, we focus on the direction finding issue for coexisted uncorrelatedand coherent signals, aiming to exploit the array aperture efficiently, and improving theperformance of estimation.
     The main idea of DOA estimation for coexisted uncorrelated and coherent signals is toestimate the DOAs of the uncorrelated and coherent signals separately. In this way, the arrayaperture could be fully ultilized, and the performance of estimation will be improved. DOAestimation for coexisted uncorrelated and coherent signals is comprised of three key parts: theestimation of uncorrelated signals, the separation of coherent information, and the estimationof coherent signals. In this paper, we concentrate on investigating new methods to separatethe coherent information and estimate the coherent signals. The main work of this paper islisted as follows.
     Firstly, we study the direction finding problem for coherent signals. For uniform lineararray, by exploiting the eigenvector corresponding to the big eigenvalues as well as itsbackward vector to construct the decorrelation data matrix, the improved vectorreconstruction method is proposed. It has better performance than the common methods forboth incompletely and completely coherent signals. For arbitrary array, we present a signalsubspace measurement model by regarding the signal subspace as compressed sensingmeasured vector. It can improve the DOA estimation performance of the single measurementvector model and multiple measurement vectors model greatly at low signal to noise ratio.Theoretical analysis and simulation results illustrate the good performance of the proposedmethods.
     Secondly, we discuss the one-dimensional DOA estimation problems for coexisteduncorrelated and coherent signals. For uniform linear array, a new derection finding algorithm is proposed using the Toeplitz property separation method, the root-MUSIC algorithm as wellas the improved vector reconstruction method. Comparing with the similar algorithms, theproposed algorithm has higher array aperture and better performance of estimation. Foruniform circular array, the mode space transform technique is adopted, so that the algorithmfor uniform linear array could be implemented. This algorithm can cut down the computationcomplexity for coherent signals greatly and make up for the loss of array aperture. Forarbitrary array, the oblique projection technology and signal subspace measurement model areemployed to separate the coherent information and estimate the DOAs, respectively. Theproposed algorithm can expand the array aperture, and has much smaller computational loadthan the common DOA estimation algorithms for arbitrary array. Moreover, this algorithm ismore suitable for the practical application of engineering, which is of great practicalsignificance.
     Thirdly, we research on the two-dimensional DOA estimation algorithms for coexisteduncorrelated and coherent signals. For L shape array, direction finding algorithms based onthe eletromagnetic vector sensor array and the scalar sensor array are proposed, respectively.Based on the one-dimensional DOA estimation algorithms of uniform linear array, the twoalgorithms make the following improvement. DOA estimation algorithms with smallcomputational complexity and good performance are chosen. Effective parameter pairmatching methods are proposed respectively. New decorrelation methods are proposedrespectively. Comparing with the similar algorithms, these two algorithms have higher arrayaperture and better performance. For arbitrary array, the space-time processing technology isimplemented, so that the rotational invariant relationship could be constructed to simplify theprocess of estimation. Moreover, by constructing the data matrix skillfully, the information ofthe uncorrelated and coherent signals could be separated according to their characteristics, andthe parameters are paired automatically. This algorithm cut down the computation load for thearbitrary array greatly. Theoretical analysis and simulation results illustrate that this algorithmhas great potential in expanding the array aperture.
     Finally, we consider the DOA estimation in impulsive noise. And new direction findingalgorithms are proposed based on the second order statistics by employing the preprocessingmethod to weaken the impulsive noise. Since the impulsive noise doesn’t have second or highorder moment, the DOA estimation algorithms in impulsive noise are mostly based on thefractional lower order statistics. By estimating the amplitude of the signals and normalizingthe amplitude of the array received data, the strength of impulsive is weakened. In this way,the algorithms proposed before could be applied to impulsive noise. Simulation results illustrate that the proposed algorithms have small computation complexity and betterperformance than the algorithms based on the fractional lower order statistics, and is effectivein strong impulsive noise, too.
引文
[1] Greco M, Gini F, Farina A. Joint use of sum and delta channels for multiple Radar targetDOA estimation, IEEE Transactions on Aerospace and Electronic Systems,2007,43(3):1146-1154.
    [2] Cao Y, Zhang Z, Dai F, Xie R. Direction of arrival estimation for monostaticmultiple-input multiple-output radar with arbitrary array structures[J]. IET Radar, Sonar&Navigation,2012,6(7):679-686.
    [3]赵光辉,陈伯孝,董玫.基于交替投影的DOA估计方法及其在米波雷达中的应用[J].电子与信息学报,2008,30(1):224-227.
    [4]杨雪亚.米波雷达阵列超分辨和测高方法研究[D].西安电子科技大学,2011.
    [5] Rajagopal R, Rao P R. Generalised algorithm for DOA estimation in a passive sonar[J].IEE Proceedings F. Radar&Signal Processing,1993,140(1):12-20.
    [6]袁领峰,陈觉之,罗斌凤,杭义会.一种基于双台的测向测时差导航定位方法[J].航海技术,2005,02:29-31.
    [7]郭莉,郭艳,李宁.适用于Ad hoc网络移动终端的超分辨波束形成算法[J].北京邮电大学学报,2006,29(5):19-23.
    [8]王华力,甘仲民.空间谱估计方法在卫星干扰源定位中的应用[J].宇航学报,2001,22(1):53-58.
    [9]冯大政,郑春弟,周祎.一种利用信号特点的实值MUSIC算法[J].电波科学学报,2007,22(2):331-335.
    [10] Rao B D, Hari K V S. Performance analysis of ESPRIT and TAM in determining thedirection of arrival of plane waves in noise[J]. IEEE Transactions on Acoustics, Speechand Signal Processing,1989,37(12):1990-1995.
    [11] Krim H, Viberg M. Two decades of array signal processing research: the parametricapproach[J]. IEEE Signal Processing Magazine,1996,13(4):67-94.
    [12] Zhang Yufeng, Ye Zhongfu. Efficient method of DOA estimation for uncorrelated andcoherent signals[J]. IEEE Antennas and Wireless Propagation Letters,2008,7:799-802.
    [13] Guo Yiduo, Zhang Yongshun, Tong Ningning. A new DOA estimation method foruncorrelated and coherent sources under nonstationary noise fields[C]//IEEE8thInternational Conference on Application Specific Integrated Circuit, Changsha,2009:987-990.
    [14]王永良,陈辉,彭应宁等.空间谱估计理论与算法[M].清华大学出版社,2005年第二版.
    [15]刁鸣,王艳温.基于任意形状平面阵列的二维测向技术研究[J].哈尔滨工程大学学报,2006,27(4):593-596.
    [16]鲍晓红,黄绣坤,孙苏辉.相干信号到达方向估计的对称子阵列组合技术[J].通信学报,1993,14(1):85-91.
    [17]王鞠庭,江胜利,何劲,刘中.冲击噪声下基于子空间的MIMO雷达DOA估计研究[J].宇航学报,2009,30(4):1653-1657,1674.
    [18] Shao M, Nikias C L. Signal processing with fractional lower order moments: stableprocesses and their applications[J]. Proceedings of the IEEE,1993,81(7):986-1010.
    [19]何劲. α稳定分布噪声背景下阵列信号处理方法研究[D].南京理工大学,2007.
    [20] Abeida H, Delmas J P. MUSIC-like estimation of direction of arrival for noncircularsources[J]. IEEE Transactions on Signal Processing,2006,54(7):2678-2690.
    [21]刘剑.非圆信号波达方向估计算法研究[D].国防科学技术大学,2007.
    [22] Hassen S B, Bellili F, Samet A, Affes S. DOA estimation of temporally and spatiallycorrelated narrowband noncircular sources in spatially correlated white noise[J]. IEEETransactions on Signal Processing,2011,59(9):4108-4121.
    [23] Nehorai A, Paldi E. Vector-sensor array processing for electromagnetic sourcelocalization[J]. IEEE Transactions on Signal Processing,1994,42(2):376-398.
    [24]龚晓峰,刘志文,徐友根.电磁矢量传感器阵列信号波达方向估计:双模MUSIC[J].电子学报,2008,36(9):1698-1703.
    [25]王克让,朱晓华,何劲.基于矢量传感器MIMO雷达的DOD-DOA和极化联合估计算法[J].电子与信息学报,2012,34(1):160-165.
    [26]刘学斌,韦岗,季飞.基于四阶累积量扩展孔径的线阵设计[J].电波科学学报,2006,21(1):126-130.
    [27] Zeng Wenjun, Li Xilin, Zhang Xianda. Direction-of-arrival estimation based on the jointdiagonalization structure of multiple fourth-order cumulant matrices[J]. IEEE SignalProcessing Letters,2009,16(3):164-167.
    [28] Pascal C, Anne F, Laurent A. High-resolution direction finding from higher order statitics:the2q-MUSIC algorithm[J]. IEEE Transactions on Signal Processing,2006,54(8):2986-2997.
    [29] Gwenael B, Laurent A, Pascal C. Sequential high-resolution direction finding fromhigher order statitics[J]. IEEE Transactions on Signal Processing,2010,58(8):4144-4155.
    [30]胡晓琴,陈辉,陈建文,王永良.一种利用最大特征矢量的Toeplitz去相干方法[J].电子学报,2008,36(9):1710-1714.
    [31] Li Donghai, Dong Chunli, Huang Jie. A study on the application of Toeplitzapproximation method on DOA estimation[C]//20102nd International Conference onSignal Processing Systems, Dalian,2010,3:215-218.
    [32]蒋伯峰,王文杰,殷勤业.适用于任意阵列的多径信道二维方向角与相对时延的联合估计方法[J].电子学报,2000,28(12):1-4.
    [33]杨鹏,杨峰,聂在平,周海京.基于共形天线阵的免搜索来波方向估计算法研究[J].电波科学学报,2012,27(2):241-245,325.
    [34] Ma Xinyu, Nikias C L. Joint estimation of time delay and frequency delay in impulsivenoise using fractional lower order statistics[J]. IEEE Transactions on Signal Processing,1996,44(11):2669-2687.
    [35] Liu T H, Mendel J M. A subspace-based direction finding algorithm using fractionallower order statistics[J]. IEEE Transactions on Signal Processing,2001,49(8):1605-1613.
    [36]吕泽均,肖先赐.一种冲击噪声环境中的二维DOA估计新方法[J].电子与信息学报,2004,26(3):350-356.
    [37]陈志菲,孙进才,侯宏.宽带DOA估计的类MUSIC波束形成算法[J].电子学报,2011,39(6):1257-1260.
    [38]彭世蕤,刘泉,王广学,潘谊春.一种基于波束空间的非相关信号源DOA估计方法[J].电子学报,2007,35(3):450-453.
    [39]游鸿,黄建国,徐贵民.基于MVDR的阵列信号波束域预处理算法[J].系统工程与电子技术,2008,30(1):64-67.
    [40] Kay S M, Marple S L. Spectrum analysis-a modern perspective[J]. Proceedings of theIEEE,1981,69(11):1380-1419.
    [41] Ihara S. Maximum entropy spectral analysis and ARMA processes (Corresp.)[J]. IEEETransactions on Information Theory,1984,30(2):377-380.
    [42] Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings ofthe IEEE,1969,57(8):1408-1418.
    [43] Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEETransaction on Antennas&Propagation,1986,36(3):276-280.
    [44] Selva J. Computation of spectral and root MUSIC through real polynomial rooting[J].IEEE Transactions on Signal Processing,2005,53(5):1923-1927.
    [45]智婉君,严胜刚,李志舜.宽带方位估计的波束域Root-MUSIC算法[J].电子与信息学报,2002,24(5):644-648.
    [46] Liu Congfeng, Liao Guisheng. Fast algorithm for Root-MUSIC with real-valuedeigendecomposition[C]//IEEE International Radar Conference, Shanghai,2006:1-4.
    [47] Clergeot H, Tressens S, Ouamri A. Performance of high resolution frequencies estimationmethods compared to the Craner-Rao bounds[J]. IEEE Transaction on Acoustics, Speechand Signal Processing,1989,37(11):1703-1720.
    [48] Jiao Yameng, Huang Jianguo, Hou Yunshan. Multidimensional MUSIC DOA estimationusing ant colony optimization algorithm[C]//IEEE International Conference on SignalProcessing, Beijing,2010:291-294.
    [49]张聪,胡谋法,卢焕章.基于虚拟阵列空间平滑的相干信号DOA估计[J].电子学报,2010,38(4):929-933.
    [50] Roy R, Kailath T. ESPRIT-Estimation of signal parameters via rotational invariancetechniques[J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1989,37(7):984-995.
    [51]张洪顺,许云林,湛江书.基于信号子空间的ESPRIT-Like算法在相干DOA估计中的应用[J].通信学报,2010,31(7):110-115.
    [52] Bachl R. The forward-backward averaging technique applied to TLS-ESPRITprocessing[J]. IEEE Transactions on Signal Processing,1995,43(11):2691-2699.
    [53] Tayem N, Kwon H M. Conjugate ESPRIT (C-SPRIT)[J]. IEEE Transactions on Antennas&Propagation,2004,52(10):2618-2624.
    [54] Delmas J P. Comments on "Conjugate ESPRIT (C-SPRIT)"[J]. IEEE Transactions onAntennas&Propagation,2007,55(2):511.
    [55] Tayem N, Kwon H M. Reply to Comments on "Conjugate ESPRIT (C-SPRIT)"[J]. IEEETransactions on Antennas&Propagation,2007,55(2):512-513.
    [56] Stoica P, Nehorai A. Maximum likelihood methods for direction-of-arrival estimation[J].IEEE Transactions on Acoustics, Speech and Signal Processing,1990,38(7):1132-1143.
    [57] Hamza R, Buckley K. Second-order statistical analysis of totally weighted subspacefitting methods[J]. IEEE Transactions on Signal Processing,1994,42(9):2520-2524.
    [58] Marcos S, Marsal A, Benidir M. The propagator method for source bearing estimation[J].IEEE Transactions on Signal Processing,1995,42:121-138.
    [59]刘剑,王廷伟,黄知涛.共轭传播算子测向算法[J].通信学报,2008,29(5):13-18.
    [60] Bilik I. Spatial compressive sensing approach for field directionality estimation[C]//IEEE International Radar Conference, Pasadena, CA,2009:1-5.
    [61] Khomchuk P, Bilik I. Dynamic direction-of-arrival estimation via spatial compressivesensing[C]//IEEE International Radar Conference, Washington, DC,2010:1191-1196.
    [62]安志娟,苏洪涛,保铮.信源个数估计的空间平滑方法[J].西安电子科技大学学报,2008,35(6):1009-1014.
    [63]唐涛,吴瑛.基于直线检测的宽带信源个数估计新方法[J].系统工程与电子技术,2009,31(8):1878-1881.
    [64] Bai Xiaoxiao, He Bin. Estimation of number of independent brain electric sources fromthe scalp EEGs[J]. IEEE Transactions on Biomedical Engineering,2006,53(10):1883-1892.
    [65] Han Fangming, Zhang Xianda. An ESPRIT-like algorithm for coherent DOAestimation[J]. IEEE Antennas and Wireless Propagation Letters,2005,4:443-446.
    [66]罗蓬,刘开华,于洁潇,马永涛.相干宽带线性调频信号的波达方向估计新方法[J].通信学报,2012,33(3):122-129.
    [67]张辉,张晋.空-时多用户检测中子空间跟踪算法[J].西安电子科技大学学报,2005,32(2):237-241.
    [68]杨雪亚,陈伯孝,朱根生.基于实值特征子空间迭代的DOA估计算法[J].西安电子科技大学学报,2010,37(2):242-247.
    [69]蒋锐,朱岱寅,沈明威,朱兆达.基于投影近似子空间跟踪技术的自聚焦算法[J].电子学报,2012,40(6):1251-1256.
    [70]金梁,殷勤业.广义谱相关子空间拟合DOA估计原理[J].电子学报,2000,28(1):60-63.
    [71] Abeida H, Delmas J P. MUSIC-like estimation of direction of arrival for noncircularsources[J]. IEEE Transactions on Signal Processing,2006,54(7):2678-2690.
    [72] Li Qiong, Ye Zhongfu, Gan Long. DOA-and Doppler frequency estimation with arrayerrors[C]//IEEE International Conference on Intelligent Transportation Systems,2003,2:1348-1351.
    [73]陈德莉,张聪,卢焕章.存在阵列模型误差情况下的宽带DOA估计[J].航空学报,2009,30(2):325-331.
    [74]赵大勇,刁鸣,吴小强.特殊阵列的二维到达角方向估计[J].应用科学学报,2010,28(6):628-632.
    [75]刁鸣,缪善林,张一飞.基于特殊阵列的相干信源二维测向新方法[J].系统工程与电子技术,2007,29(3):338-340.
    [76]郭艺夺,童宁宁,张永顺,史泽.相关噪声下基于对角加载的相干信源DOA估计算法[J].系统工程与电子技术,2009,31(11):2582-2586.
    [77]朱圣棋,廖桂生,周争光.基于数据矩阵重构的相干源波达方向共轭ESPRIT(C-SPRIT)估计方法[J].电子学报,2009,37(12):2838-2844.
    [78]陈辉,黄本雄,王永良.基于互相关矢量重构的解相干算法研究[J].系统工程与电子技术,2008,30(6):1005-1008,1036.
    [79] Xu X, Ye Z, Peng J. Method of direction-of-arrival estimation for uncorrelated, partiallycorrelated and coherent sources[J]. IET Microwaves, Antennas&Propagation,2007,1(4):949-954.
    [80] Ye Z F, Zhang Y F. DOA estimation for non-Gaussian signals using fourth-ordercumulants[J]. IET Microwaves, Antennas&Propagation,2009,3(7):1069-1078.
    [81] Ye Z F, Zhang Y F, Xu X. Direction of arrival estimation for uncorrelated and coherentsignals with uniform linear array[J]. IET Radar, Sonar&Navigation,2009,3(2):144-154.
    [82]徐友根,刘志文.修正的虚拟空间平滑算法[J].电子学报,2009,37(12):2646-2650.
    [83] Ye Z F, Zhang Y F, Xu X. Two-dimensional direction of arrival estimation in the presenceof uncorrelated and coherent signals[J]. IET Signal Processing,2009,3(5):416-429.
    [84] Zhang Y F, Ye Z F, Xu X. Estimation of two-dimensional direction-of arrival foruncorrelated and coherent signals with low complexity[J]. IET Radar, Sonar&Navigation,2010,4(4):507-519.
    [85] Hua Yingbo, Tapan K Sarkar, Donald D Weiner. An L-shaped array for estimating2-Ddirections of wave arrival[J]. IEEE Transactions on Antennas&Propagation,1991,39(2):143-146.
    [86] Wang Guangmin, Xin Jingmin, Ge Chenyang, et al. Direction estimation of uncorrelatedand coherent narrowband signals with uniform linear array[C]//InternationalSymposium on Access Spaces, Yokohama,2011:101-104.
    [87] Liu Fulai, Wang Jinkuan, Sun Changyin, et al. Spatial differencing method for DOAestimation under coexistence of both uncorrelated and coherent signals[J]. IEEETransactions on Antennas&Propagation,2012,60(4):2052-2062.
    [88] Wax M, Kailath T. Detection of signals by information theretic criteria[J]. IEEETransactions on Acoustics, Speech and Signal Processing,1989,37(8):1190-1196.
    [89]叶中付,李春辉,贾红江,刘超.空间非平稳噪声下的信源数估计算法[J].兵工学报,2009,30(7):873-878.
    [90] Zhang Q, Wong K M. Statistical analysis of the performance of information theoreticcriteria in the detection of the number of signals in array processing[J]. IEEETransactions on Acoustics, Speech and Signal Processing,1989,37(10):1557-1567.
    [91] Cozzens J H, Sousa M J. Source enumeration in a correlate signed environment[J]. IEEETransactions on Signal Processing,1994,42(2):304-317.
    [92] Di A. Multiple source location-a matrix decomposition approach[J]. IEEE Transactionson Acoustics, Speech and Signal Processing,1985,33(5):1086-1091.
    [93] Wu H T, Yang J, Chen F K. Source number estimation using transformed Gerschgorinradii[J]. IEEE Transactions on Signal Processing,1995,43(6):1325-1333.
    [94] Chen W, Reilly J P. Detection of the number of signals in noise with banded covariancematrices[J]. IEEE Transactions on Signal Processing,1992,42(5):377-380.
    [95]叶中付,向利,徐旭.基于信息论准则的信源个数估计算法改进[J].电波科学学报,2007,22(4):593-598.
    [96] Lei Huang, Teng Long, Mao E, So H C. MMSE-Based MDL Method for RobustEstimation of Number of Sources Without Eigendecomposition[J]. IEEE Transactions onSignal Processing,2009,57(10):4135-4142.
    [97] Tao H, Xin J M, Mei K Z. Detection of number of uncorrelated and coherent narrowbandsignals with L-shaped sensor array[C]//IEEE International Symposium on Access Spaces,Yokohama,2011:65-70.
    [98] Ye Z F, Zhang Y F, Liu C. Direction-of-arrival estimation for uncorrelated and coherentsignals with fewer sensors[J]. IET Microwaves, Antennas&Propagation,2009,3(3):473-482.
    [99]叶中付.空间平滑差分法[J].通信学报,1997,18(9):1-7.
    [100]李海森,周天,朱志德,孙圣和.前后向空间平滑对相关信号源的DOA估计性能[J].哈尔滨工业大学学报,2007,39(3):416-419.
    [101] Viberg M, Ottersten B. Sensor array processing based on subspace fitting[J]. IEEETransactions on Signal Processing,1991,39(5):1110-1121.
    [102]焦亚萌,黄建国,韩晶.基于连续蚁群优化算法的小快拍加权子空间拟合快速算法[J].电子与信息学报,2011,33(4):972-976.
    [103]王布宏,王永良,陈辉.相干信源波达方向估计的加权空间平滑算法[J].通信学报,2003,24(4):31-40.
    [104] Chen F J, Kwong S, Kok C W. ESPRIT-like two-dimensional DOA estimation forcoherent signals[J]. IEEE Transactions on Aerospace and Electronic Systems,2010,46(3):1477-1484.
    [105] Choi Y H. ESPRIT-based coherent source localization with forward and backwardvectors[J]. IEEE Transactions on Signal Processing,2010,58(12):6416-6420.
    [106]黄家才,石要武,陶建武.多径循环平稳信号二维波达方向估计-极化域平滑法[J].电子与信息学报,2007,29(5):1110-1114.
    [107] Wang Y, Leus G, Pandharipande A. Direction estimation using compressive samplingarray processing[C]//IEEE Workshop on Statistical Signal Processing, Cardiff,2009:626-629.
    [108]徐友根,刘志文.电磁矢量传感器阵列相干信号源波达方向和极化参数的同时估计:空间平滑法[J].通信学报,2004,25(5):28-38.
    [109] Xu Y, Liu Z W. Polarimetric angular smoothing algorithm for an electromagneticvector-sensor array[J]. IET Radar Sonar&Navigation,2007,1(3):230-240.
    [110] He J, Liu Z W. Computationally efficient two-dimensional direction-of arrivalestimation of electromagnetic sources using the propagator method[J]. IET Radar, Sonar&Navigation,2009,3(5):437-448.
    [112] He J, Jiang S L, Wang J T. Polarization difference smoothing for direction finding ofcoherent signals[J]. IEEE Transactions on Aerospace and Electronic Systems,2010,46(1):469-480.
    [113]刘兆霆,刘中,何劲.线性极化敏感阵列的极化平滑算法及相干源参数估计[J].航空学报,2010,31(8):1646-1652.
    [114] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory,2006,52(4):1289-1306.
    [115]石光明,刘丹华,高大化.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081.
    [116] Bilik I. Spatial compressive sensing for direction-of-arrival estimation of multiplesources using dynamic sensor arrays[J]. IEEE Transactions on Aerospace and ElectronicSystems,2011,47(3):1754-1769.
    [117] Wang Y, Leus G, Pandharipande A. Direction estimation using compressive samplingarray processing [C]//IEEE Workshop on Statistical Signal Processing, Cardiff, Wales,2009:626-629.
    [118] Cotter S F, Rao B D, Engan K, et al. Sparse solution to linear inverse problems withmultiple measurement vectors[J]. IEEE Transactions on Signal Processing,2005,53(7):2477-2488.
    [119]刘寅,吴顺君,吴明宇,李春茂,张怀根.基于空域稀疏性的宽带DOA估计[J].航空学报,2012,33(11):2028-2038.
    [120] Xu Xu, Wei Xiao-han, Ye Zhong-fu. DOA estimation based on sparse signal recoveryutilizing weighted l1-norm penalty[J]. IEEE Signal Processing Letters,2012,19(3):155-158.
    [121]贺亚鹏,李洪涛,王克让,朱晓华.基于压缩感知的高分辨DOA估计[J].宇航学报,2011,32(6):1344-1349.
    [122]甄佳奇,司锡才,王桐.任意平面阵列的相干信号二维波达方向估计方法.系统工程与电子技术,2009,31(12):2841-2843,2858.
    [123] Mathews C P, Zoltowski M D. Direction finding with circular arrays via phase modeexcitation and root-MUSIC[J]. IEEE International Symposium on Antennas andPropagation Society, Chicago IL, USA,1992,7:1019-1022.
    [124]蒋柏峰,吕晓德.一种基于导向矢量变换的DOA估计预处理方法[J].电子与信息学报,2012,34(7):1552-1557.
    [125] Belloni F, Richter A, Koivunen V. DOA estimation via manifold separation for arbitraryarray structures[J]. IEEE Transactions on Signal Processing,2007,55(10):4800-4810.
    [126] Costa M, Richter A, Koivunen V. Unified array manifold decomposition based onspherical harmonics and2-D Fourier basis[J]. IEEE Transactions on Signal Processing,2010,58(9):4634-4645.
    [127] Zhuang Jie, Li Wei, Manikas A. An IDFT-based root-MUSIC for arbitrary array[C]//IEEE International Conference on Acoustics Speech and Signal Processing, Dallas,Texas, USA,2010:2614-2617.
    [128] Rubsamen M, Gershman A B. Direction-of-arrival estimation for non-uniform sensorarrays: from manifold separation to Fourier domain MUSIC methods[J]. IEEETransactions on Signal Processing,2009,57(2):588-599.
    [129]夏铁骑,万群,汪学刚.冲击噪声环境下基于任意阵列流形的空时二维DOA估计方法[J].航空学报,2008,29(5):1233-1238.
    [130]孙晓颖,陈建,林琳.基于时空处理的频率与二维DOA联合估计算法[J].通信学报,2009,30(8):39-44.
    [131]石娟,邓科,殷勤业.一种适合任意阵列流型的相干信号波达方向估计算法[J].西安交通大学学报,2009,43(6):72-75,98.
    [132]潘捷,周建江,汪飞.基于流形分离技术的稀疏均匀圆阵快速DOA估计方法[J].电子与信息学报,2010,32(4):963-966.
    [133] Wong K T, Yuan X.“Vector cross-product direction-finding” with an electromagneticvector-sensor of six orthogonally oriented but spatially noncillicating dipoles/loops[J].IEEE Transactions on Signal Processing,2011,59(1):160-171.
    [134]夏铁骑.二维波达方向估计方法研究[D].电子科技大学,2008.
    [135]司锡才,甄佳奇,那振宇.二维相干信号测向估计方法[J].系统工程与电子技术,2009,31(8):1982-1984.
    [136] Liang J L, Liu D. Joint elevation and azimuth direction finding using L-shaped array[J].IEEE Transactions on Antennas and Propagation,2010,58(6):2136-3141.
    [137] Wang G M, Xin J M, Zheng N N. Computationally efficient subspace-based method fortwo-dimensional direction estimation with L-shaped array[J]. IEEE Transactions onSignal Processing,2011,59(7):3197-3212.
    [138]孙心宇,周建江,汪飞.一种双L型阵列DOA估计参量的精确配对方法[J].系统工程与电子技术,2010,32(6):1125-1130.
    [139]甘露,彭晓燕,魏平,李明.基于双L型阵的二维测向算法[J].电波科学学报,2010,25(5):882-887.
    [140]许凌云,张小飞,许宗泽.平面阵列下的二维角度和频率联合估计[J].应用科学学报,2011,29(2):187-194.
    [141]谢纪岭,司锡才,唐建红.任意阵列二维测向的快速子空间算法[J].弹箭与制导学报,2007,27(5):305-308.
    [142]刘剑,黄知涛,周一宇.非圆信号方位、俯仰及初相联合估计[J].电子与信息学报,2008,30(7):1666-1670.
    [143]彭晓燕,甘露,魏平.基于非圆信号的二维测向算法[J].电波科学学报,2009,24(2):302-306,310.
    [144]陈显舟,韩静静,甘露,李立萍.非圆信号快速高精度二维测向算法[J].电波科学学报,2011,26(6):1095-1101.
    [145]杨雪亚,陈伯孝.一种新的二维角度估计的高分辨算法[J].电子与信息学报,2010,32(4):953-958.
    [146]王凌,李国林,毛维平.一种基于数据矩阵重构的相干信源二维测向新方法[J].西安电子科技大学学报,2013,40(2):159-168.
    [147]蒋伯峰,王文杰,殷勤业.适用于任意阵列的多径信道二维方向角与相对时延的联合估计方法[J].电子学报,2000,28(12):1-4.
    [148] Tsihrintzis G A, Nikias C L. Fast estimation of the parameters of alpha-stable impulsiveinferences. IEEE Transactions on Signal Processing,1996,6(44):1492-1503.
    [149]何劲. α稳定分布噪声背景下阵列信号处理方法研究[D].南京理工大学,2007.
    [150] Ma Xinyu, Nikias C L. Joint estimation of time delay and frequency delay in impulsivenoise using fractional lower order statistics[J]. IEEE Transactions on Signal Processing,1996,44(11):2669-2687.
    [151] Liu T H, Jerry M. A subspace-based direction finding algorithm using fractional lowerorder statistics[J]. IEEE Transactions on Signal Processing,2001,49(8):1605-1613.
    [152]何劲,刘中.利用分数低阶空时矩阵进行冲击噪声环境下的DOA估计[J].航空学报,2006,27(1):104-108.
    [153]吕泽均,肖先赐.在冲击噪声环境中基于子空间的测向算法研究[J].航空学报,2003,24(2):174-177.
    [154] Zhao Dayong, Gao Hongyuan, Diao Ming, et al. Direction finding of maximumlikelihood algorithm using artificial bee colony in the impulsive noise[C]//IEEEInternational Conference on Artificial Intelligence and Computational Intelligence,Sanya,2010:102-105.
    [155] Hari K V S, Lalitha V. Subspace-based DOA estimation using fractional lower orderstatistics[C]//IEEE International Conference on Acoustics, Speech and Signal Processing,Prague, Czech Republic,2011:2580-2583.
    [156] Panagiotis T, Chrysostomos L N. The robust covariation-based MUSIC (ROC-MUSIC)algorithm for bearing estimation in impulsive noise environments[J]. IEEE Transactionson Signal Processing,1996,44(7):1623-1633.
    [157]何劲,刘中.冲击噪声环境中求根类DOA估计方法研究[J].系统工程与电子技术,2005,27(12):2103-2106.
    [158] Zhong Xionghu, Premkumar A B, Madhukumar A S. Direction of arrival tracking inimpulsive noise using particle filtering with fractional lower order momentlikelihood[C]//IEEE International Conference on Information, Communication andSignal Processing, Singapore,2011:1-5.
    [159] Qiu Tianshuang, Zhu Yong, Zhao Saiyuan, Zha Daifeng. The Properties of FLOC andits application in evoked potential latency change detection[C]//IEEE InternationalConference on Innovative Computing Information and Control, Dalian,2008:355.
    [160]何劲,刘中.基于Screened Ratio原理的冲击噪声环境下DOA估计算法[J].电子与信息学报,2006,28(5):875-878.
    [161]黄蕾,张曙.冲击噪声环境下的快速DOA估计[J].哈尔滨工程大学学报,2008,29(6):599-603.
    [162]何劲,刘中.利用分数低阶空时矩阵进行冲击噪声环境下的DOA估计[J].航空学报,2006,27(1):104-108.
    [163]高洪元,刁鸣.重构分数低阶协方差的子空间拟合测向算法[J].电波科学学报,2009,24(4):729-734.
    [164]姚林宏,高鹰,石宇等.冲击噪声背景下的虚拟空间平滑算法[J].吉林大学学报(信息科学版),2011,29(1):47-50.
    [165]吕泽均,肖先赐.一种冲击噪声环境中的二维DOA估计新方法[J].电子与信息学报,2004,26(3):350-356.
    [166]夏铁骑,万群,汪学刚,郑毅.利用联合对角化分数低阶空时矩阵进行冲击噪声环境下的二维DOA估计[J].中国科学(E辑:信息科学),2008,08:1310-1318.
    [167] Huang Z T, Liu Z M, Liu J, Zhou Y Y. Performance analysis of MUSIC for non-circularsignals in the presence of mutual coupling[J]. IET Radar, Sonar&Navigation,2010,4(5):703-711.
    [168] Linebarger D A. Redundancy averaging with large arrays[J]. IEEE Transactions onSignal Processing,1993,41(4):1707-1710.
    [169] Park H R, Kim Y S. A solution to the narrow-band coherency problem in multiplesource location[J]. IEEE Transactions on Signal Processing,1993,41(1):473-476.
    [170] Trapp J A, Wright S J. Computational methods for sparse solution of linear inverseproblems[J]. Proceedings of the IEEE,2010,98(6):948-958.
    [171]李鹏飞,张旻,钟子发.基于空间角稀疏表示的二维DOA估计[J].电子与信息学报,2011,33(10):2402-2406.
    [172]张贤达.矩阵分析与应用[M].清华大学出版社,2004第一版,687-697.
    [173]陈建,王树勋,魏小丽.一种基于L型阵列的二维波达方向估计新方法[J].吉林大学学报(工学版),2006,36(4):590-593.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700