用户名: 密码: 验证码:
多频高频地波雷达目标检测与跟踪技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
武汉大学电波传播实验室的高频地波雷达系统OSMAR诞生的时候,正是冷战结束后世界高频地波雷达发展的一个黄金期。这时期以CODAR的Seasonde为代表的小型海洋环境监测雷达是民用高频地波雷达发展的主流。所以OSMAR从诞生之日起,实际上就被赋予中国海洋环境监测雷达的使命。然而,雷达天生就是用于目标探测的,OSMAR也不例外。目标检测与跟踪技术一直是我们最为重视的技术。它不属于OSMAR的昨天,它是OSMAR的未来。所以今天,无论OSMAR以何种形式出现,目标检测与跟踪技术将是我们研究的一个核心内容。
     “变频多功能高频地波雷达”是OSMAR的最新形态。它的出现绝非偶然。在民用浪潮红极一时之后,高频地波雷达研究很快回归目标检测领域。“多功能”正是OSMAR顺应时代的产物。高频地波雷达用于目标探测,有其天然优势和不足。其不足主要表现为海杂波干扰和目标RCS起伏造成的检测性能不稳。人们很早就试图利用多频弥补这个缺陷,有成功更有失败。对于目标检测技术而言,“变频多功能高频地波雷达”实际上仅仅是一个载体。
     本文以国家863计划项目“变频多功能高频地波雷达”为依托,以变频多功能高频地波雷达为平台,全面展开了高频地波雷达目标检测与跟踪技术的研究。其内容涉及从雷达波形设计到多目标跟踪技术的全部雷达信号处理和数据处理流程,比较全面的展现了高频地波雷达目标检测与跟踪技术的全貌。文章对OSMAR目标检测与跟踪的一些具体技术做了细致深入的研究,并给出作者独有的理解;对一些遗留的历史问题,从概念上加以区分,从基础理论上加以分析,并作出定性的回答。此外,作者在全面分析变频多功能高频地波雷达信号特点的基础上,给出了一整套工程应用性强的目标检测与跟踪方案;并给出了该方案的实际应用结果,对其作出了切实的评价。
     本文的主要内容如下:
     1、对调频中断连续波(FMICW, Frequency Modulated Interupted Continuous Wave)的解调过程进行了分析,对解距离算法进行了总结,指出了直接DFT解距离的优势;并提出了一套时频分析解距离的方法,解释了其物理含义,该方法可有效的提高信噪比和距离分辨率。在此基础上,作者给出了目标检测与跟踪算法的整体方案,它包括通道校准、目标检测、目标参数估计、多频数据融合和目标跟踪,再加上之前的波形解调共6部分内容,每一部分所涉及的信号处理算法相互联系却又截然不同。
     2、对有源及无源的通道校准原理做了总结,对离线有源校准提出了2个解决方案,通过对实测信号特点分析给出了基于自动识别系统(AIS, Automatic Identifacation System)辅助信息的在线通道校准方法。
     3、对多频高频地波雷达海洋回波特点做了简要介绍,并给出了目标和噪声的典型回波谱。针对不同的射频干扰,作者对其形成机理和抑制方法做了仔细研究。针对多频雷达较高频段的多普勒展宽现象,作者通过分析其形成机理,给出速度补偿的运动目标信号增强方法。在此基础上,本文提出了一套适合实际的基于恒虚警的检测方案。
     4、研究了到达角、距离及径向速度的估计问题。到达角估计部分,作者深入研究了超分辨算法的基本理论,对“超分辨”的本质给出了独有的见解,探讨了多重信号分类算法(MUSIC, Multiple Signal Classification)和AIC (Akaike' s Information theoaretic Criteria)应用于高频地波雷达的可行性和实现方式。从波形解调的角度出发,作者还给出了一个适合于本雷达的简单有效的距离估计方法。在此基础上,作者给出了多频高频地波雷达目标参数估计的实现方案以及实际参数估计的部分统计结果。
     5、介绍了信息融合的基本原理,并针对多频高频地波雷达的特点,提出一套适合本雷达的点迹融合方法,包括不同频率雷达数据的融合和雷达与AIS数据的融合。与AIS信息的融合主要为通道校准提供数据,多频数据融合则是为目标跟踪提供单一的点迹集。
     6、介绍了目标跟踪技术,主要包括了扩展卡尔曼滤波理论、多状态模型理论和联合概率数据关联理论,并给出一套实用的跟踪方案。作者还给出了整套目标检测与跟踪算法运用于实测数据的最终结果,并对其做出了评价。
The radar system OSMAR was developed by the Radio Propagation Lab of Wuhan University in the golden era of the development of high-frequency surface wave radar (HFSWR) after the Cold War. In this period, the small radar systems for ocean enviroment monitoring was the mainstream of civilian HFSWR which was represent by the CODAR's Seasonde. So OSMAR was given the mission of the marine environmental monitoring for China in its birth. However, radars are for target detection inherently, and also OSMAR. Target detection and tracking technique is one of the most important techniques of OSMAR. It does not belong to OSMAR's yesterday, it is OSMAR's future. So today, no matter in what form of OSMAR, target detection and tracking is a core technique of our study.
     "Frequency-Agile Multifunctional HFSWR" is the latest form of OSMAR. Its appearance is not accidental. After the wave of sdudy in the radar's civilian use, the focus of HFSWR's research soon returns to the field of target detection. "Multifunctional" is the product of the times. HFSWR has its natural advantages and disadvantages in target detection. Its detection performance is instable because of sea clutter and fluctuation of target's radar cross surface (RCS). It is long ago that peaple tried to use multi-frequency to compensate for this defect, and failed to succeed more. In fact, the " Frequency-Agile Multifunctional HFSWR " is just a tool for target detection technology.
     This paper launch the research of HFSWR's target detection and tracking techniques on the platform of that radar system in the base of the reseach supported by the national 863 Project-" Frequency-Agile Multifunctional HFSWR ". Its contents range all the radar signal processing and data processing from the radar waveform design to the multi-target tracking, and it shows a whole picture of HFSWR's target detection and tracking technique. A careful in-depth study is made on some of the specific techniques of OSMAR's target detection and tracking, and a unique understanding of those techniques are given. Some issues left over by history are answered through distinction of concept and basic theory analysis. In addition, based on comprehensive analysis of the characteristics of the radar signal, the author proposes a set of engineering programs for target detection and tracking, and gives the results of its application, and makes a practical evaluation.
     The main contents are as follows:
     1. Through analysis of frequency modulated interupt continuous wave (FMICW), its demodulation algorithm are summarized, and the advantages of the range demodulation by direct DFT are pointed out. A demodulation algorithm based on the time-frequency analysis methods is proposed and explained from physical view. The algorithm can effectively improve signal to noise ratio and range resolution. On this basis, the author gives the overall program of the target detection and tracking algorithm, which includes channel calibration, target detection, target parameter estimation, multi-frequency data fusion, target tracking, and the demodulation algorithm memtioned before. There are 6 parts in totle. Each part of the signal processing algorithm is interrelated with others but distinct.
     2. The principle of active and passive channel calibration was summarized and 2 off-line active calibration solutions are proposed. Through analysis of the characteristics of actual radar signal, the author proposes a channel calibration method based on aided information from the shipborne automatic indentification system (AIS), too.
     3. The sea echo's characteristics are briefly introduced, and typical spectrum of target and noise are shown. For different type of radio frequency interferences, the formation mechanisms and suppression algorithms are researched carefully. The author analyzes the formation mechanism of the Doppler broadening phenomenon which often happens in the higher bands of the multi-frequency HFSWR, and proposes a signal enhancement method of velocity compensation for moving targets. On this base, this paper presents a practical constant false alarm rate (CFAR) detector.
     4. The estimation of direction of arrival (DOA), distance and radial speed is researched. The author studies in depth the basic theory of super-resolution algorithm, and proposes a unique view of the nature of the "super-resolution". The algorithms of MUSIC and AIC are proved applicable and put into application. From the perspective of the waveform demodulation, the author gives a suitable distance estimation algorithm for the radar which is simple and effective. On this basis, the author proposes a target parameter estimator for the multi-frequency HFSWR and evaluates it by its result.
     5. The basic principles of information fusion is introduced. According the characteristics of multi-frequency HFSWR, a set of plot fusion methods is proposed, including fusion of radar data from different frequencies and fusion of radar and AIS's data. The integration of AIS information is mainly for the calibration. And the multi-frequency fusion provides a single collection of target plots for tracking.
     6. Target tracking techniques are introduced, including multi-state model theory, the joint probabilistic data association theory and the extended Kalman filtering theory. A practical tracking program is given. The target detection and tracking algorithm is applied to the actual radar data, and its evaluation is given from the result at the end of this paper.
引文
[1]R. M. Page. The Early History of Radar[J], Proceedings of the IRE,1962,50(5): 1232-1236.
    [2]J. R. Wait. The ancient and modern history of EM ground-wave propagation[J], Antennas and Propagation Magazine, IEEE,1998,40(5):7-24.
    [3]H. Leong,A. Ponsford. The advantage of dual-frequency operation in ship tracking by HF surface wave radar[C],RADAR2004 International Conferenceon Radar Systems,2004,19-20.
    [4]L. Sevgi. Target reflectivity and RCS interactions in integrated maritime surveillance systems based on surface-wave high-frequency radars[J], Antennas and Propagation Magazine, IEEE,2001,43(1):36-51.
    [5]D. B. Trizna. A bistatic HF radar for current mapping and robust ship tracking[C],OCEANS 2008,2008,1-6.
    [6]J. Clarke,D. E. N. Davies,M. F. Radford. Review of United Kingdom Radar[J], Aerospace and Electronic Systems, IEEE Transactions on,1984, AES-20(5):506-520.
    [7]A. M. Ponsford,S. K. Srivastava,T. N. R. Coyne. Groundwave, Over-the-horizon, Radar Development At Nordco[C],Geoscience and Remote Sensing Symposium,1989. IGARSS'89. 12th Canadian Symposium on Remote Sensing.,1989 International,1989, Vol.5,pp.2953-2956.
    [8]S. B. Colegrove. Project Jindalee:from bare bones to operational OTHR[C],Radar Conference,2000. The Record of the IEEE 2000 International,2000,825-830.
    [9]J. F. Thomason. Development of over-the-horizon radar in the United States[C],Radar Conference,2003. Proceedings of the International,2003,599-601.
    [10]D. Barrick. History, present status, and future directions of HF surface-wave radars in the U.S[C],Radar Conference,2003. Proceedings of the International,2003,652-655.
    [11]K. W. Gurgel,H. H. Essen,T. Schlick. HF surface wave radar for oceanography-a review of activities in Germany[C],Radar Conference,2003. Proceedings of the International,2003, 700-705.
    [12]L. R. Wyatt,J. J. Green,A. Middleditch,M. Moorhead. HF radar and the UK wave monitoring network, WAVENET[C],Oceans 2005-Europe,2005, Vol.1,pp.310-313.
    [13]A. M. Ponsford,R. M. Dizaji,R. Mckerracher. HF surface wave radar operation in adverse conditions[C],Radar Conference,2003. Proceedings of the International,2003,593-598.
    [14]张宁.俄罗斯地波超视距雷达汇编[M].哈工大电子所,1998.
    [15]T. M. Georges,J. A. Harlan. New horizons for over-the-horizon radar[J], Antennas and Propagation Magazine, IEEE,1994,36(4):14-24.
    [16]C. C. Teague,D. M. Fernandez,K. E. Laws,J. D. Paduan,J. F. Vesecky. Comparison of multifrequency phased-array and direction-finding HF radar systems during COPE-3[C],Geoscience and Remote Sensing Symposium Proceedings,1998. IGARSS'98. 1998 IEEE International,1998, Vol.1,pp.201-203.
    [17]Yang Zi-Jie,Wu Shi-Cai,Hou Jie-Chang,Wen Bi-Yang,Shi Zhen-Hua. Some problems in general scheme for HF ground wave radar engineering[J], Wuhan University Journal of Natural Sciences,2001,6(4):790-790.
    [18]R. E. Moutray,A. M. Ponsford. Integrated maritime surveillance:protecting national sovereignty [C],Radar Conference,2003. Proceedings of the International,2003,385-388.
    [19]D. M. Fernandez,J. F. Vesecky,C. C. Teague,J. D. Paduan,K. E. Laws. Ship detection with high-frequency phased-array and direction-finding radar systems[C],Geoscience and Remote Sensing Symposium Proceedings,1998. IGARSS'98.1998 IEEE International,1998, Vol.1,pp.204-206.
    [20]H. Gunther,K. W. Gurgel,O. Breivik,J. Guddal,L. R. Wyatt,J. C. Nieto Borge. EuroROSE: a project to support shipping in port approaches[C],Geoscience and Remote Sensing Symposium,2001. IGARSS'01. IEEE 2001 International,2001, Vol.5,pp.2474-2476.
    [21]S. J. Anderson,P. J. Edwards,P. Marrone,Y. I. Abramovich. Investigations with SECAR-a bistatic HF surface wave radar[C],Radar Conference,2003. Proceedings of the International,2003,717-122.
    [22]Y. Hisaki. Development of HF ocean radar in japan[C],Radar Conference,2003. Proceedings of the International,2003,510-514.
    [23]Liu Shun,H. Hagiwara,R. Shoji,H. Tamara,T. Okano. Radar network system to observe & analyze Tokyo Bay vessel traffic[J], Aerospace and Electronic Systems Magazine, IEEE,2004, 19(11):3-11.
    [24]D. M. Fernandez,J. F. Vesecky,J. Roughgarden,C. C. Teague,D. J. Napolitano. Use Of High Frequency Radar For The Measurement Of Ocean Surface Currents[C],Geoscience and Remote Sensing Symposium,1990. IGARSS'90. 'Remote Sensing Science for the Nineties'., 10th Annual International,1990,715-717.
    [25]C. C. Teague,J. F. Veseeky,P. E. Hansen,N. G. SchnepfJ. M. Daida,R. G Onstott,K. Fischer,D. M. Fernandez. Initial observations of ocean currents, current shears and wind direction using a multi-frequency HF radar[C],Geoscience and Remote Sensing,1997. IGARSS'97. Remote Sensing-A Scientific Vision for Sustainable Development.,1997 IEEE International,1997, Vol.4,pp.1808-1810.
    [26]L. A. Meadows,S. J. Jacobs,J. F. Vesecky. High frequency radar measurements of friction velocity in the marine boundary layer[C],Current Measurement Technology,2003. Proceedings of the IEEE/OES Seventh Working Conference on,2003,83-87.
    [27]J. F. Vesecky,K. Laws,J. D. Paduan. Monitoring of Coastal Vessels Using Surface Wave HF Radars: Multiple Frequency, Multiple Site and Multiple Antenna Considerations[C],Geoscience and Remote Sensing Symposium,2008. IGARSS 2008. IEEE International,2008, Vol.1,pp.I-405-I-408.
    [28]D. B. Trizna. Dual use multi-frequency radar for current shear mapping and ship target classification[C],OCEANS 2003. Proceedings,2003, Vol.4,pp.2325-2331.
    [29]D. B. Trizna. Microwave and HF multi-frequency radars for dual-use coastal remote sensing applications[C],OCEANS,2005. Proceedings of MTS/IEEE,2005,532-537.
    [30]D. B. Trizna,L. Xu. Multi-frequency HF radar for mapping current shear and vector winds[C],OCEANS 2003. Proceedings,2003, Vol.4,pp.2332-2334.
    [311 D. B. Trizna,L.Xu. Dual-use bistatic multi-frequency HF radar for ship classification and mapping of oceanic currents and vector winds[C],Antennas and Propagation Society International Symposium,2005 IEEE,2005, Vol.lA,pp.392-395.
    [32]D. J. Emery,D. G. Money,P. Matthewson. Target detection and tracking in a monostatic HF surfacewave radar[C],Inti.Radar Conf. Radar2004,2004,
    [33]M. Evans.T. Georges. Coastal Ocean Dynamics Radar (CODAR):NOAA's Surface Current Mapping System[C],OCEANS 1984,1979, Vol.ll,pp.379-384.
    [34]D. M. Fernandez,J. F. Vesecky,C. C. Teague. Measurements of upper-ocean surface currents with high-frequency radar[C],Current Measurement,1995., Proceedings of the IEEE Fifth Working Conference on,1995,109-114.
    [35]J. F. Vesecky,C. C. Teague,R. G. Onstott,J. M. Daida,P. Hansen,D. Fernandez,N. Schnepf,K. Fischer. Surface current response to land-sea breeze circulation in Monterey Bay, California as observed by a new multifrequency HF radar[C],OCEANS'97. MTS/IEEE Conference Proceedings,1997, Vol.2,pp.1019-1024.
    [36]J. F. Vesecky,C. C. Teague,R. G. Onstott,P. Hansen,N. Schnepf,D. Fernandez,J. Daida,K. Fischer. Observations of near-surface ocean currents at varying depths using a new multifrequency HF radar[C],Geoscience and Remote Sensing,1997. IGARSS'97. Remote Sensing-A Scientific Vision for Sustainable Development.,1997 IEEE International,1997, Vol.4,pp.1811-1813.
    [37]D. M. Fernandez,J. F. Vesecky,D. E. Barrick,C. C. Teague,M. M. Plume,C. Whelan. Detection of ships with multi-frequency and CODAR seasonde HF radar systems[J], Canadian journal of remote sensing,2001,27(4):277-290.
    [38]D. J. Emery,D. G. Money,H. W. Mainwaring. Some aspects of design and environmental management in HF surface wave radar[C],RADAR 2002,2002,51-55.
    [39]D. J. Emery. The choice of operating frequency in HF surface wave radar design[C],HF Radio Systems and Techniques,2003. Ninth International Conference on (Conf. Publ. No. 493),2003,278-281.
    [40]G. Dickel,D. J. Emery,D. G. Money. The architecture and operating characteristics of a multi-frequency HF surfacewavc radar-part one [C],Radar Systems,2007 IET International Conference on,2007,1-5.
    [41]G. Dickel,D. J. Emery,D. G. Money. The architecture and operating characteristics of a multi-frequency HF surfacewave radar-part two[C],Radar Systems,2007 IET International Conference on,2007,1-5.
    [42]D. J. Emery,G. Dickel. The operation and performance of a multi-frequency HF Surfacewave Radar[C],Radar Conference,2008. RADAR'08. IEEE,2008,1-6.
    [43]D. G. Money,D. J. Emery.G. Dickel. Intelligent Radar Management Techniques in High Frequency Surface Wave Radar[C],Intelligent Sensor Management,2007 3rd Institution of Engineering and Technology Seminar on,2007,1-11.
    [44]D. G. Money,P. A. Langsford. Future radar markets[C],The Future of Radar in the UK and Europe (Ref. No.1999/186), IEE Workshop on,1999,3/1-3/7.
    [45]Liu Yongtan,Xu Rongqing,Zhang Ning. Progress in HFSWR research at Harbin Institute of Technology[C],Radar Conference,2003. Proceedings of the International,2003,522-528.
    [46]Baixiao Chen,Duofang Chen,Shouhong Zhang,Hao Zhang,Maocang Liu. Experimental System and Experimental Results for Coast-ship Bi/multistatic Ground-wave Over-the-horizon Radar[C],Radar,2006. CIE'06. International Conference on,2006,1-5.
    [47]陈伯孝,许辉,张守宏.舰载无源综合脉冲/孔径雷达及其若干关键问题[J],电子学报,2003,31(12):29-33.
    [48]陈伯孝,孟佳美,张守宏.岸舰多基地地波超视距雷达的发射波形及其解调[J],西安电子科技大学学报,2005,32(1):7-11.
    [49]何友,修建娟,张晶炜,关欣.雷达数据处理及应用[M].电子工业出版社,2006.
    [50]R. H. Khan,D. K. Mitchell. Waveform analysis for high-frequency FMICW radar[J], Radar and Signal Processing, IEE Proceedings F,1991,138(5):411-419.
    [51]Rafaat Khan,Brian Gamberg,Desmond Power, John Walsh,Barry Dawe, Wayne Pearson,Dave Millan. Target Detection and Tracking with a High Frequency Ground Wave Radar[J], IEEE JOURNAL OF OCEANIC ENGINEERING,1994,19:53-62.
    [52]Donald E. Barrick. FM/CW Radar Signals and Digital Processing[R],NOAA,1973,ERL283-WPL26.
    [53]Donald E. Barrick,Belinda J. Lipa,Peter M. Lilleboe,Jimmy Isaacson. Gated FMCW DF radar and signal processing for range/doppler/angle determination[P]. United States:Codar Ocean Sensors, Ltd. (Los Altos, CA).1994.
    [54]文必洋,沈伟,白立云,周浩.多通道高频雷达接收机的数字信号处理方法[P].中国:发明专利,2006.专利号: 200610018448.
    [55]J.T. Gonzalez-Partida. Stagger procedure to extend the frequency modulated interrupted continuous wave technique to high reslution radars[J], IET Radar Sonar Naving,2007: 281-288.
    [56]R. K. Jarrott,T. A. Soame. The processing of HF skywave radar signals[C],Acoustics, Speech, and Signal Processing,1994. ICASSP-94.,1994 IEEE International Conference on,1994, Vol.vi,pp.VI/165-VI/168.
    [57]Xiaojing Huang,Biyang Wen,Fan Ding. Ship detection and tracking using multi-frequency HFSWR[J], IEICE Electronics Express,2010,7(6):410-415.
    [58]J. F. Vesecky,K. E. Laws,J. D. Paduan. Using HF surface wave radar and the ship Automatic Identification System (AIS) to monitor coastal vessels[C],Geoscience and Remote Sensing Symposium,2009 IEEE International.IGARSS 2009,2009, Vol.3,pp.Ⅲ-761-III-764.
    [59]S. Hu,H.-Y. Ke,B.-Y. Wen,F. Cheng. Multiple targets tracking data processing for HF ground wave radar[J], Journal of Wuhan University (Natural Science Edition).2003,49(3): 391-395.
    [60]张光义.相控阵雷达原理[M].国防工业出版社,2009.
    [61]C. M. S. See. Method for array calibration in high-resolution sensor array processing[J], Radar, Sonar and Navigation, IEE Proceedings-,1995,142(3):90-96.
    [62]B. P. Flanagan,K. L. Bell. Array self calibration with large sensor position errors[C],Signals, Systems, and Computers,1999. Conference Record of the Thirty-Third Asilomar Conference on,1999, Vol.l,pp.258-262.
    [63]Halis M. Bayri,Donald R. Ucci,Jeffrey C. Hantgan,Chien-Chung Yeh. A Technique for Reducing the Effect of Mutual Coupling in Adaptive Arrays[C],Military Communications Conference-Crisis Communications:The Promise and Reality,1987. MILCOM 1987. IEEE,1987, Vol.l,pp.285-288.
    [64]R. Sorace. Phased array calibration[C],Phased Array Systems and Technology,2000. Proceedings.2000 IEEE International Conference on,2000,533-536.
    [65]高火涛,吴世才.宽带短波天线性能综合测试的一种方法[J],无线电工程,2000,30(3):14-17.
    [66]钟志峰,文必洋,潘永才.无须阵列校准的一种来波方向估计算法[J],华中科技大学学宝(自然科学版),2008,36(2):99-103.
    [67]钟志峰,文必洋,王泉德,黄坚.高频地波雷达阵列的一种无源校准方法[J],电波科学学报,2007,22(3):414-418.
    [68]杨绍麟,柯亨玉,田建生,吴世才,杨子杰.高频地波雷达基于海洋回波的通道幅度自校准方法[J],电子与信息学报,2002,24(9):1233-1237.
    [69]程丰,柯亨玉,文必洋,吴雄斌,杨绍麟.DBF技术在FMICW雷达中的应用[J],电波科学学报,2002,17(6):600-603.
    [70]钟志峰,文必洋.虚拟跳频抑制高频地波雷达角闪烁[J],电子学报,2007,35(12):2284-2288.
    [71]王锦华,石振华.高频地波雷达应答器的设计[J],计算机测量与控制,2004,12(12):1195-1206.
    [72]T. Ussmueller,M. Jung,R. Weigel. Synthesizer concepts for FMCW based locatable wireless sensor nodes[C],Wireless Sensing, Local Positioning, and RFID,2009. IMWS 2009. IEEE MTT-S International Microwave Workshop on,2009,1-4.
    [73]M. Weib. Synchronisation of bistatic radar systems[C],Geoscience and Remote Sensing Symposium,2004. IGARSS '04. Proceedings.2004 IEEE International,2004, Vol.3,pp.1750-1753.
    [74]I. S. D. Solomon,D. A. Gray,Yu I. Abramovich,S. J. Anderson. OTH radar array calibration using disparate sources[C],Radar 97 (Conf. Publ. No.449),1997,176-180.
    [75]G. Efstathopoulos,A. Manikas. A blind array calibration algorithm using a moving source[C],Sensor Array and Multichannel Signal Processing Workshop,2008. SAM 2008.5th IEEE,2008,455-458.
    [76]吴锐,文必洋,钟志峰,洪淳.高频地波雷达天线阵列的自校正闭,武汉大学学报(理学版),2006,52(3):371-374.
    [77]柯亨玉董志飞,董晓辉.基于海洋回波的高频地波雷达阵列幅相误差校准[J],电子与信息学报,2007,29(6):1437-1440.
    [78]Xiongbin Wu,Feng Cheng,Zijie Yang,Hengyu Ke. Broad Beam HFSWR Array Calibration Using Sea Echoes[C],Radar,2006. CIE'06. International Conference on,2006, 1-3.
    [79]B. Lipa,D. Barrick. Least-squares methods for the extraction of surface currents from CODAR crossed-loop data:Application at ARSLOE[J], Oceanic Engineering, IEEE Journal of,1983,8(4):226-253.
    [80]E. Conte,A. De Maio,A. Farina,G. Foglia. Design and analysis of a knowledge-based radar detector[C],Radar Conference,2005 IEEE International,2005,387-392.
    [81]G. T. Capraro,A. Farina,H. Griffiths,M. C. Wicks. Knowledge-based radar signal and data processing: a tutorial review[J], Signal Processing Magazine, IEEE,2006,23(1):18-29.
    [82]A. B. Muccio,T. B. Scruggs. Moving Target Indicator (MTI) applications for Unmanned Aerial Vehicles (UAVS)[C],Radar Conference,2003. Proceedings of the International,2003, 541-546.
    [83]A. Dzvonkovskaya,K. W. Gurgel,H. Rohling,T. Schlick. Low power High Frequency Surface Wave Radar application for ship detection and tracking[C],Radar,2008 International Conference on,2008,627-632.
    [84]Wenhua Hu,Kaiyu Xu,Weina Zhou. AIS Information Display System Design Based-on the Embedded System[C].Electronic Measurement and Instruments,2007. ICEMI'07.8th International Conference on,2007,3-191-3-195.
    [85]D. M. Fernandez,J. Vesecky,C. Teague. Calibration of HF radar systems with ships of opportunity[C],Geoscience and Remote Sensing Symposium,2003. IGARSS'03. Proceedings. 2003 IEEE International,2003, Vol.7,pp.4271-4273.
    [86]Wen Bi-Yang,Lei Zhi-Yong,Cheng Feng,Ma Zhi-Gang. Preliminary Research on Target Deection in First-order Peaks with Adaptive Cancellation[J], International Conference on Computational Electromagnetics and Its Application Proceeding,2004:512-515.
    [87]Lei Li,Rongqing Xu,Gaopeng Li. Robust Least Squares Method for Sporadic E Ionospheric Clutter Mitigation in High Frequency Surface Wave Radar[C],Radar,2006. CIE '06. International Conference on,2006,1-4.
    [88]K. A. Norton. The Propagation of Radio Waves over the Surface of the Earth and in the Upper Atmosphere[J], Proceedings of the IRE,1936,24(10):1367-1387.
    [89]W. Xianrong,Z. Sifeng,K. Hengyu,W. Biyang. Target detection with high frequency surface ave radar in co-channel interference[J], Radar, Sonar and Navigation, IEE Proceedings-,2005,152(2):97-103.
    [90]沈伟,文必洋,李自立,黄晓静,杨静.高频地波雷达的电离层杂波识别新试验[J],电波科学学报,2008,22(1):1-5.
    [91]X. Wan,X. Xiong,F. Cheng,H. Ke. Experimental investigation of directional characteristics for ionospheric clutter in HF surface wave radar[J], Radar, Sonar & Navigation, IET,2007,1(2):124-130.
    [92]周浩,文必洋,吴世才.高频雷达在射频干扰下的目标探测研究[J],现代雷达,2004,26(9):29-32.
    [931 C. Liu,B. Chen,S. Zhang. Co-channel interference suppression by time and range adaptive processing in bistatic high-frequency surface wave synthesis impulse and aperture radar[J], Radar, Sonar & Navigation, IET,2009,3(6):638-645.
    [94]黄亮,文必洋,邓巍.高频地波雷达抑制瞬态干扰研究[J],电波科学学报,2004,19(2):166-170.
    [95]G. A. Fabrizio,A. Farina,M. D. Turley. Spatial adaptive subspace detection in OTH radar[J], Aerospace and Electronic Systems, IEEE Transactions on,2003,39(4):1407-1428.
    [96]R. H. Khan. Target detection and tracking with HF radar using ISAR techniques[C],Radar Conference,1996., Proceedings of the 1996 IEEE National,1996,94-99.
    [97]R. H. Khan. Target detection and tracking with HF radar using reciprocal SAR techniques[J], Aerospace and Electronic Systems Magazine, IEEE,1997,12(1):40-43.
    [98]D. Barrick,J. Snider. The statistics of HF sea-echo Doppler spectra[J], Antennas and Propagation, IEEE Transactions on,1977,25(1):19-28.
    [99]A. M. Zoubir. Statistical signal processing for application to over-the-horizon radar[C],Acoustics, Speech, and Signal Processing,1994. ICASSP-94.,1994 IEEE International Conference on,1994, Vol.vi,pp.VI/113-VI/116 vol.6.
    [100]R. Rifkin. Analysis of CFAR performance in Weibull clutter[J], Aerospace and Electronic Systems, IEEE Transactions on,1994,30(2):315-329.
    [101]童健,文必洋,王颂.强海杂波背景下的舰船目标检测[J],武汉大学学报:理学版,2005,51(3):370-374.
    [102]雷志勇,文必洋,彭念,倪菁,黄银河,陈希信.基于恒虚警的高频地波雷达低速目标检测研究[J],电波科学学报,2007,22(5):774-778.
    [103]杨强,刘永坦.高频地波雷达的识别检测方法[J],高技术通讯,2000,(8):37-41.
    [104]杨强,刘永坦.复杂背景下的二维检测研究[J],系统工程与电子技术,2002,24(1):34-37.
    [105]R. Schmidt. Multiple emitter location and signal parameter estimation[J], Antennas and Propagation, IEEE Transactions on,1986,34(3):276-280.
    [106]H. Akaike. A New Look at the Statistical Model Identification[J], IEEE trans on Automation Control,1974,AC-19(6):716-723.
    [107]H. Akaike. Likelihood of a Model and Information Criteria[J], Journal of Econometrics, 1981, (16):3-14.
    [108]J. Rissanen. Universal coding, information, prediction, and estimation[J], Information Theory, IEEE Transactions on,1984,30(4):629-636.
    [109]Gideon Schwarz. Estimating the Dimension of a Model[J], The Annals of Statistics, 1978,6(2):461-464
    [110]Q. T. Zhang. Asymptotic Performance Analysis of Information-Theoretic Criteria for Determining the Number of Signals in Spatially Correlated Noise[J], IEEE transactions on signal processing,1994,42(6):1537-1539.
    [111]Q. T. Zhang,Kon Max Wang. Statistical analysis of the performance of information theoretic criteria in the detection of the number of signals in array processing[J], IEEE transactions on signal processing,1989,41(4):1652-1662.
    [112]T. W. Anderson. Asymptotic Theory for Principal Component Analysis[J], The Annals of Mathematical Statistics,1963:122-148.
    [113]M. Wax,T. Kailath. Detection of Signals by Information Teoretic Criteria[J], Acoustics, Speech and Signal Processing, IEEE Transactions on,1985,33(2):387-392.
    [114]M. Wax,I. Ziskind. Detection of the Number of Coherent Signals by the MDL principle[J], Acoustics, Speech and Signal Processing, IEEE Transactions on,1989,37(8): 1190-1196.
    [115]A. S. Sekmen,Z. Bingul. Comparison of algorithms for detection of the number of signal sources[C],Southeastcon'99. Proceedings. IEEE,1999,70-73.
    [116]杨绍麟,柯亨玉.OSMAR2000超分辨率海流算法中空间信号源数的确定[J],武汉大学学报:理学版,2001,47(5):609-613.
    [117]H. T. Wu,J. F. Yang,F. K. Chen. Source Number Estimators Using Gerschgorin Disks[J], Proc ICASSP,1994:261-264.
    [118]H. T. Wu,J. F. Yang,F. K. Chen. Source Estimators Using Transformed Gerschgorin Radii[J], IEEE trans,1995:1325-1333.
    [119]Y. I. Abramovich,N. K. Spencer,A. Y. Gorokhov. Resolving manifold ambiguities in direction-of-arrival estimation for nonuniform linear antenna arrays[J], Signal Processing, IEEE Transactions on,1999,47(10):2629-2643.
    [120]何友.多传感器信息融合及应用[M].电子工业出版社,2007.
    [121]Kesheng Liu. An analysis of some problems of bistatic and multistatic radars[C],Radar Conference,2003. Proceedings of the International,2003,429-432.
    [122]S. J. Symons,J. A. H. Miles,J. R. Moon. Comparison of plot and track fusion for naval sensor integration[C],Information Fusion,2002. Proceedings of the Fifth International Conference on,2002, Vol.2,pp.1361-1366.
    [123]Zhihong Wang,Xiaochun Mei. Research on Target Auto-tracking Initiation Based on Plot Fusion Processing of Multi-radar[C],Radar,2006. CIE'06. International Conference on,2006,1-4.
    [124]A. Farina,F.A. Studer. Radar data processing[M].publishing house of national defence industry,,1992.
    [125]Chang Liu,Xiaofei Shi. Study of Data Fusion of AIS and Radar[C],Soft Computing and Pattern Recognition,2009. SOCPAR'09. International Conference of,2009,674-677.
    [126]Jidong Suo,Xiaoming Liu. Fusion of radar and AIS data[C],Signal Processing,2004. Proceedings. ICSP'04.2004 7th International Conference on,2004, Vol.3,pp.2604-2607.
    [127]D. Danu,A. Sinha,T. Kirubarajan,M. Farooq,D. Brookes. Fusion of over-the-horizon radar and automatic identification systems for overall maritime picture[C],Information Fusion, 2007 10th International Conference on,2007,1-8.
    [128]R. E. Kalman. A New Approach to Linear Filtering and Prediction Problem[J], Trans. ASME. J. Basic Engineering,1960,82:34-45.
    [129]R. A. Singer. Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets[J], Aerospace and Electronic Systems, IEEE Transactions on,1970, AES-6(4): 473-483.
    [130]周宏仁,敬忠良,王培德.机动目标跟踪[M].国防工业出版社,1991.
    [131]蔡庆宇,薛毅,张伯彦.相控阵雷达数据处理及其仿真技术[M].国防工业出版社,1997.
    [132]E. Mazor,A. Averbuch,Y. Bar-Shalom,J. Dayan. Interacting multiple model methods in target tracking: a survey[J], Aerospace and Electronic Systems, IEEE Transactions on,1998, 34(1):103-123.
    [133]H. A. P. Blom,Y. Bar-Shalom. The interacting multiple model algorithm for systems with Markovian switching coefficients[J], Automatic Control, IEEE Transactions on,1988, 33(8):780-783.
    [134]胡松.高频地波雷达多目标跟踪算法研究[D].武汉:武汉大学.2003.
    [135]Kuo-Chu Chang,Y. Bar-Shalom. Joint Probabilistic Data Association for Multitarget Tracking with Possibly Unresolved Measurements[C],American Control Conference, 1983,1983,466-471.
    [136]T. Fortmann,Y. Bar-Shalom,M. Scheffe. Sonar tracking of multiple targets using joint probabilistic data association[J], Oceanic Engineering, IEEE Journal of,1983,8(3):173-184.
    [137]Chang Kuo-Chu,Y. Bar-Shalom. A simplification of the JPDAM algorithm[J], Automatic Control, IEEE Transactions on,1986,31(10):989-991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700