用户名: 密码: 验证码:
海积软土力学特征与固化新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文阐述了天津滨海新区海积软土的特点、成因、工程力学性质和微观结构特征,分析了现有软土地基处理方法的适用条件和影响纯水泥固化软土强度的主要因素,提出了使用外掺剂改善水泥固化土物理化学环境并进而提高其强度的新理念,通过大量室内试验,研究出了两种新型固化剂。经实际工程应用,证实上述两种新型固化剂不但固化软土效果好,而且使用方便、经济效益好。同时,还从固化软土的微观结构和物理化学作用出发,探讨了新型固化剂的固化机理。
     本文主要研究内容与成果如下:
     1.分析了天津滨海新区海积软土的结构特征。发现区内海积软土均属结构性土,大港区结构性较强,塘沽区结构性较弱,而汉沽区在二者之间。在组构特征上,塘沽区软土属于典型的絮凝状结构,骨架松散,孔隙尺寸较大;汉沽区软土属于团粒-絮凝状结构,片状结构单元体以及粒状颗粒之间排列相对密实,而大港区软土与汉沽区类似,但单元体与颗粒之间排列更为紧密。组构特征的差异是三个区软土力学性质差异的主要原因。
     2.将多重分形算法引入到海积软土微观结构研究中,发现孔隙多重分形谱特征参数f(α)_(max)可作为土质松散与密实的评价指标。f(α)_(max)值越高,土质越松散。
     3.提出了一个能有效反映海积软土孔隙破损趋势的评价指标—孔隙结构因子(PSF),它综合反映了孔隙大小、形态、分布、定向性四方面的因素。孔隙结构因子越大,土体破坏的趋势越大,土的结构强度越低。
     4.分析了影响天津滨海新区纯水泥固化土强度的主要因素,指出除了常见的因素之外,软土的含水量、有机质含量、PH值影响较大,主要表现在水泥土的强度随软土的含水量和有机质含量的增加和PH值的降低而减弱,故将其称为“水泥土强度弱化因子”,在滨海地区勘察时,要特别注意“水泥土强度弱化因子”的勘察测试,以便采取相应措施。
     5.发现了水泥土搅拌法存在水泥饱和效应:当龄期相同时,随着掺灰量的增加,水泥固化土抗压强度有较明显的增加,并在某一最佳掺灰量时,水泥固化土强度达到最大,此后无论怎样增加含灰量都不能明显提高桩身强度和单桩极限承载力。水泥饱和现象的存在、发现和界定,可以在保证工程质量的前提下节省大量的资金,其经济意义不言而喻。
     6.通过多地段、多孔位、多地层和多掺量的水泥土强度实验,提出了水泥土强度增长的各向异性问题。在掺入量和配合比相同的条件下,水泥土强度随龄期增长的规律在垂向上因各层土质不同或各层土的物理力学性质不同而有差异,即每层水泥土的强度增长是不同步的,它存在强度增长的纵向异性,如果地层在水平方向上变化较大,则由于土性在水平方向的较大差异,也可能使强度增长存在横向异性。水泥土强度增长的纵向异性和横向异性总称为强度增长的各向异性。水泥土存在的强度增长的各向异性,揭示了单桩桩身强度的差异性和单桩承载力及复合地基承载力的差异性。
     7.研究出了新的软土固化剂:水泥+NaOH组合和水泥+Na_2CO_3组合,并经实验和工程实践证实经济有效,可以推广使用。
     8.探讨了软土固化剂的固化机理,指出将NaOH和Na_2CO_3作为外掺剂加入水泥土中,可以使水泥土保持强碱性,使OH~-浓度增加,促使生成大量针状棒状或纤维状水化硅酸钙晶体,抑制了能产生膨胀作用的钙矾石的生成,同时有Ca(OH)_2晶体析出,它们共同构成土颗粒间和土颗粒表面的充填物和包裹物,使水泥土的孔隙明显减小,土体得到加固,强度得以提高。
This paper describes the characteristics, the formation mechanism, engineering mechanical properties and microstructure characteristics of marine soft soil in Tianjin Binhai new developed area. The existed applicable condition of ground treatment methods and the major factors that influence the intensity of soft soil solidified by cement are discussed and analyzed. For improving physical chemistry environment of soft soil, a new idea has been put forward, in which the soft soil can be solidified by cement with agents in addition. Two new curing agents were invented by a large number of laboratory tests.Through in-site application, it was found that the new curing agents not only have wonderful effects on solidifying soft soil but also can be used conveniently and economically. Meanwhile, the solidified mechanism of new curing agents has been discussed from the microstructure and physical chemistry reaction of the soft soil.The main results of this paper are as follows:
     1. The structural characteristics of the soft soil in Tianjin Binhai new developed area have been analyzed. It is found that the soft soil in this area is all structural soil; in Dagang district it is relatively strong; in Tanggu district it is relatively weak; and in Hangu district it is located between the former two. In the aspect of fabric characteristic, the soft soil in Tanggu district belongs to the typical flocculent form structure. The skeleton of the soil is incompact and the pore is relatively large in size. The soft soil in Hangu district belongs to granule-flocculate form structure. Its unit body is slice structural and the granulous particles are relatively close-knit in tactic modality.The soft soil in Dagang district is similar to Hangu district, but it has closer arrangement between unit body and particle than the former one. The difference of the fabric structure characteristic is the main reason leading to the difference of mechanics property of soft soil among the three districts.
     2. By introducing multi-fractals algorithm into a study of marine soft soil's microstructure, multi-fractals spectrum of pore characteristic parameters f(α)_(max) are found as evaluation indexes of the looseness and the compacity of the soft soil. The higher of the f(α)_(max) value, the looser of the soil.
     3. An evaluation index which is a reflection of marine soft soil pore's breaking trend -pore structure factor (PSF) is proposed. PSF is a synthetical reflection of the pore's size, shape, distribution and directivity. The higher of the PSF' s value, the greater of the tendency of the soil to disrepair and the lower of the soil's structure intensity.
     4. The major factors affecting the intensity of soil solidified by cement in Tianjin Binhai new developed area have been analysed. It is pointed out that water content, organic matter content and PH value of soft soil are key influencing factors besides common factors. It has been shown that the intensity of soil solidified by cement weakens with the increasement of moisture content and organic matter content , but weakens with the decreasement of the PH value. Therefore, all of them are called "the intensity of cement soil weakening factor". Special attention must be paid to the factors when making investigations in coast area so that some corresponding measures should be taken.
     5. The cement saturation effect existing in mixing law of cement soil has been found: in the condition of the same age period, the compression strength of soil solidified by cement increases obviously with the increasement of cement adulterated content. At the same time, with the optimum cement content, the intensity of soil solidified by cement reaches the maximum value. As long as the cement adulterated content is over optimum content, the intensity of the pile and the ultimate bearing capacity of the single pile can't be improved obviously no matter how much of the increasing of the cement content. The economic meaning of existence, discovery, and confirmation of the saturated phenomenon of cement is self-evident because it plays an important role in saving a large amount of fund on the premise of guaranteeing the project quality.
     6. The anisotropism of intensity increasement of cement soil has been put forward firstly by experimental study on the strength of soil-cement with different sites, multi-hole location, multi-stratum and different cement adulterated contents. In the condition of the same adulterating content and mixture ratio, the law of intensity increasement with age period of each layer varies with soil property and physical mechanical character. The growth of intensity of cement soil of each layer is out of step. It has vertical isometric in intensity increasement. If the stratums are veried different in horizontal direction, it has horizontal isometric possibly because of the great difference of soil property in horizontal direction. The vertical isometric and horizontal isometric of the intensity increasement of cement soil are called by a joint name anisotropic intensity increasement. This anisotropism indicates the otherness of intensity and bearing capability of single pile and bearing capability of compound-ground.
     7. The new curing agents have been invented, which is the conjugate of cement with sodium hydroxide and combination of cement with sodium carbonate. According to the engineering application and practical experience, it was proved to be an effective and economical method and it should be spreading used.
     8. The curing mechanism of curing agents in soft soil has been discussed. It is indicated that sodium hydroxide and sodium carbonate as cement additives can make cement soil maintain strong alkalescence and increase concentrations of hydronium. It makes large amounts of hydrate calcium silicate crystals of needle-like rod-shaped or fibrous and inhibits the generation of calcic alum crystal which would bring expansile action, At the same time, it can separate out hydrate calcium. All of them constitute the filling and inclusions together among soil particles and on the surface of soil particles, which cut down the interstices of cement soil obviously. Therefore, soil mass has been reinforced, and its intensity has been improved.
引文
[1].天津市地质工程勘察院.天津市滨海新区综合地质评价报告[R].天津:天津市地质工程勘察院,2001.4
    [2].中国建筑科学研究院.建筑地基处理规范(JGJ 79-2002)[S].北京:中国建筑工业出版社,2002
    [3].叶书麟.地基处理[M].北京:中国建筑工业出版社,1988
    [4].冶金工业部建筑研究总院.地基处理技术[M].北京:冶金工业出版社,1991
    [5].地基处理手册编写委员会.地基处理手册[M].北京:中国建筑工业出版社,2000
    [6].叶书麟,韩杰,叶观宝.地基处理与托换技术(第二版)[M].北京:中国建筑工业出版社,1994
    [7].沈珠江.软土工程和软土地基设计[J].岩土工程学报,1998,20(1):100-111
    [8].曾国熙等.地基处理手册[M].北京:中国建筑工业出版社,1998
    [9].高宏兴.软土地基加固[M].上海:上海科学技术出版社,1990
    [10].吴邦颖,张师德,陈绪禄等.软土地基处理[M].北京:中国铁道出版社,1995
    [11].林宗元.岩土工程治理手册[M].辽宁:辽宁科学技术出版社,1993
    [12].闫明礼.地基处理技术[M].北京:中国环境科学出版社,1996
    [13].龚晓南.地基处理新技术[M].西安:陕西科学技术出版社,1997
    [14].殷宗泽,龚晓南.地基处理工程实例[M].北京:中国水利水电出版社,2000
    [15].龚晓南.复合地基理论及工程应用[M].北京:中国建筑工业出版社,2002
    [16].李彰明.软土地基加固的理论、设计与施工[M].北京:中国电力出版社,2006
    [17].天津城市建设学院等.滨海新区软土微结构与地基处理新技术研究[R].天津:天津城市建设学院等,2005,9
    [18].郑刚,顾晓鲁,姜忻良.水泥土搅拌桩复合地基承载力辨析[J].岩土工程学报,2000,22(4):487-489
    [19].王宝勋,李夕兵等.某住宅楼倾斜原因与纠偏加固处理[J].岩土工程学报,2006,28(7):906-909
    [20].天津市地质调查研究院.天津市海岸带国土资源综合地质调查报告[R].天津:天津市地质调查研究院,2004.10
    [21].肖树芳,雷华阳,房后国,王常明,王清,王旭东,齐放.近代海积软土结构性及弹-塑性模型研究[J].工程地质学报,2000,8(4):394-399
    [22].王常明,肖树芳,夏玉斌,刘成民.海积软土的固结蠕变性状[J].长春科技大学学报,2000,(1):58-61
    [23].房后国,肖树芳,汪士锋.天津地区海积软土结构强度及其对力学特性的影响[J].吉林大学学报(地球科学版),2002,(1):73-76
    [24].雷华阳,肖淑芳.天津海积软土微观结构与工程性质初探[J].地质与勘探,2002,38(6):81-85
    [25].雷华阳.天津地区海积软土的孔压模型建立及参数确定[J].吉林大学学报(地球科学版),2003,(1):76-79
    [26].施斌.粘性土微观结构研究回顾与展望[J].工程地质学报,1996,4(1):39-44
    [27].塔萨奇、泼克著,蒋彭年译.工程实用土力学[M].北京:水利电力出版社,1960
    [28].Collins,K.and Megown,A.,The form and function of microfabric feature in a variety of natural soils,Geotechnique.No.2,1974
    [29].BH 奥西波夫.粘土类土和岩石的强度与变形性能的本质[M].北京:地质出版社,1985
    [30].Aylmore,L.A.G,Quirk,J.P.,Swelling of Claywatersystems,Nature,1959
    [31].Aylmore,L.A.G,Quirk,J.P.,The Structural status of Clay systems,第九届
    [32].Stoops G,Hari Eswaran H.Soil Micromorphology.Van Norstrcad Soil Science Serics,1986
    [33].Mesir,G.Discussion.Geotech.Div.ASCE[J],GT4,1975,pp:409-412
    [34].Tavenas,F.and Leroueil,S..Laboratory and in situ stress-strain-time behavior of soft clays-state-of-thepaper[J].Int.Symp.Geotech.Enging.Soft soils,Mexico City 2,1990
    [35].S.Leroueil and P.R.Vaughan.The general and Congruent effects of structure in natural soil and weak rock[J],Geotechnique40.No.3,1990,pp:467-488
    [36].Per Holmnsen.Landslips in Norwegian quick-clays[J].Geotechnique,1952& 1953,Vol 3:187-194
    [37].Roscoe K H,Schofield M A and Thurairajah A.Yield of clays in states wetter than critical[J],Geotechnique,1963,13(3):211-240
    [38].谭罗荣.土的微观结构研究概况和发展[J].岩土力学,1983,4(1):73-86
    [39].Tan-Tjongkie(陈宗基),Structure mechanics of clays[J].Scientia Sinica,8,p.93-97,1959
    [40].Tan-Tjongkie(陈宗基),The fundamental properties of clays,loess and rock and their application to engine ering problems[J].Scientia Sinica,vol.8,No.10,1959
    [41].Van Olphen,An introduction to clay colloid chemistry[M].1963
    [42].Gillott,J.E.,1969.Study of the fabric of fine-grained sediments with the scanning electron microscope[J].Journal of Sedimentary Petrology,39(1),90-105
    [43].Mitchell,J.K,Fundamentals of Soil Behevior[M].1976
    [44].Morgenstern,N.R.,Tchalenko,J.S.1967.Microscopic structure in kaolin subjected to direct shear[J].Geothechnique,17(4),309-328
    [45].Osipov,J.B.Sokoloy,B.K.1973.On the texture of clay soils of different genesis investigated by magnetic anisotropy method[J].Proceedings of the International Symposium on Soil Structure,Gothenburg,Sweden,21-29
    [46].Osipov,J.B.,Sokolov,B.A.,1972.Quantitative Characteristics of clay fabrics using the method of magnetic anisotropy[J].Bulletin of the International Association of Engineering Geology,5,p23-38
    [47].Sorodkina M M,Osipov IV.Automatic X-ray analysis of clay microfabics[J].Proc.Int.Syp.on Soil Structure,Gethenburg,1973
    [48].Arulanandan,K.and Smith,S..Electrical dispersion in elation to soil structure[J].Journal of the soil mechanics and foundation division,ASCE,vol.99,No.Sm12,1973
    [49].Tovey N K.Quantitative analysis of electron micrographs of soil structure,Proceedings of the International Symposium on Soil Structure[J].Gothenburg,Sweden,1973.50-59
    [50].Tovey N K.Wong K Y.Some aspects of quantitative measurement from electron micrographs of soil structure[J].Geotechnique,1983
    [51].Tovey N K.Krinsley D H.Mapping of the orientation of fine grained minerals in soils and sediments[J].Bulletin oflAEG.1992,46:93-101
    [52].Tovey N K.A digital computer technique for orientation analysis of Micrographs soil fabric[J].J of Microscopy.1990.120:303-315
    [53].周萃英.土体微观结构研究与土力学的发展方向[J].地球科学-中国地质大学学报,2000,25(2):215-220
    [54].李生林,秦素娟,薄遵昭,施斌.中国膨胀土工程地质研究[M].南京:江苏科学技术出版社.1992.171-177
    [55].吴义祥.工程粘性土微观结构的定量评价[J].中国地质科学院院报,1991,23:143-151
    [56].Shi B.Li S L.Quantitative approach on SEM images of microstructure of clay soils[J].Seiencein China(Series B).1995,38(6):741-748
    [57].施斌,李生林,Tolkachev,M.粘性土微观结构SEM图像定量研究.中国科学,A 辑,1995,25(6)
    [58].胡瑞林,官国琳,李向东等.粘性土微观结构定量模型及其工程地质特征研究[M].北 京:地质出版社,1995
    [59].施斌.粘性土微观结构简易定量分析法[J].水文地质工程地质,1997,(1):7-10
    [60].Tyler S W.Wheatcraft S W.Fractal scaling of soil particle-size distribution analysis and limitations[J].Soil Sci Soc Am J.1992,56:362-369
    [61].McBrathney A B.Comments on "Fractal distribution of soil aggregate-size distribution calculated by number and mass"[J].Soil Sci Soc Am J,1993,57:1393-1394
    [62].谢和平.分形几何及其在岩土力学中的应用[J].岩土工程学报,1992,14(1):14-24
    [63].Kozak E.Pechepsky Ya A.A modified number-based method for estimating fragementation fractal dimensions of soils[J].Soil Sci Soc Am J,1996,60:1291-1297
    [64].刘松玉,方磊.试论粘性土粒度分布的分形结构[J].工程勘察,1992,(2):16-20
    [65].肖树芳.泥化夹层的组构及强度蠕变特性[M].长春:吉林科学技术出版社,1991
    [66].张宗祜.中国黄土分类的理论基础[J].地质论评,1963,(1):12-14
    [67].林崇义.黄土的结构特征[R].北京:科学出版社,1961
    [68].朱海之,文启忠,姚金銮.黄土结构某些特征的初步研究[R].北京:科学出版社,1964
    [69].张宗祜,张之一,张平.黄土微结构与湿陷性[M].北京:科学出版社,1983
    [70].Zhang Zonghu,Zhang Zhiyi,Wang Yunsheng.1991,Loess Deposit in China,Geological Pubilishing House,Beijing,China
    [71].高国瑞.兰州黄土显微结构和湿陷机理的探讨[J].兰州大学学报(自然科学版),1979,(2)
    [72].高国瑞.黄土显微结构分类与湿陷性[J].中国科学,1980,(12):1203-1208
    [73].高国瑞.中国黄土微结构[J].科学通报,1980,(20)
    [74].王永焱,腾志宏.中国黄土的微结构及其在时代上和区域上的变化[J].科学通报,1982,(2)
    [75].李生林,秦素娟,薄遵昭,吴兰州.广西宁明膨胀土组成成分、组织结构及工程地质特性的研究[J].水文地质工程地质,1980,(3)
    [76].薄遵昭,李生林,秦素娟,魏学成,吴兰渊.广西柳州龙船山地区红粘土的成因及工程地质特征[A].中国土木工程学会第四届土力学及基础工程学术会议论文选集[C],1983
    [77].李生林,薄遵昭,秦素娟,吴兰洲.塑性图在判别膨胀土中的应用[J].地质论评,1984,(4)
    [78].李生林等.粘土结构、构造研究中的理论与实践课题[M].国际交流地质学论文集,第三册.北京:地质出版社,1985
    [79].李生林,施斌.湖北郧县膨胀土的工程地质研究[J].南京大学学报(自然科学版), 1988,(3)
    [80].施斌,李生林.击实膨胀土微观结构与工程特性的关系[J].岩土工程学报,1988,10(6):80-87
    [81].Gao Guo-rui.Classification of microstructures of loess in China and their collapsibility[J].Science in China,Ser.A,1981,(7):962-974
    [82].高国瑞.膨胀土微结构特征的研究[J].工程勘察,1981,(5)
    [83].高国瑞.中国红土的微结构和工程性质[J].岩土工程学报,1985,(5)
    [84].罗鸿禧,周芳琴.郧县胀缩土的矿物成分及微观结构的研究[J].工程勘察,1981,(5)
    [85].王幼麟.蒲圻第四纪红色粘土的物质成分和结构特性及其工程性质的关系[R].长江水电科学研究院科技成果选编,1981,(9)
    [86].罗鸿禧,陈守义.湛江灰色粘土的工程地质特性[J].水文地质工程地质,1981,(5)
    [87].谭罗荣,张梅英.一种特殊土的微观结构特性的研究[J].岩土工程学报,1982,(2)
    [88].曲永新,单世桐,徐晓岚,时梦熊.某水利工程泥化央层的形成及变化趋势的研究[J].地质科学,1977,(4)
    [89].王幼麟.葛洲坝泥化央层的成因及性状的物理化学探讨[J].水文地质工程地质,1980,(4)
    [90].陈守义,谭罗荣,张梅英.某些粘土岩的各向异性在亚微观结构上的表现[J].水文地质工程地质,1980,(5)
    [91].雷华阳.结构性海积软土的弹塑性研究[J].岩土力学,2002,(6):721-724
    [92].雷华阳.海积软土结构性模型的试验研究及其在基坑开挖工程中的应用:[博士学位论文].长春:吉林大学,2001:81-93
    [93].王冠英,肖淑芳,习春飞.海积软土前期固结压力与结构强度的关系及成因分析[J].世界地质,2004,(1):69-74
    [94].柳艳华,张宏,杜东菊.多重分形在海积软土微观结构研究中的应用[J].水文地质工程地质,2006,(3):83-87
    [95].张诚厚,袁文明,戴济军.软粘土与结构性及其对沉降的影响[J].岩土工程学报,1995,17(5):25-32
    [96].程鉴基,邝健政.软弱地基中水泥类化学灌浆机理初探[J].岩土工程学报,1993,15(3):81-86
    [97].沈珠江.土体结构性的数学模型-21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97
    [98].胡瑞林,王思敬,李向全.21世纪工程地质学生长点:土体微结构力学[J].水文地质工程地质,1999,(4):5-8
    [99].缪纪生,李秀英,程荣逵.中国古代胶凝材料初探[J].硅酸盐学报,1981,9(2):234-240
    [100].刘巽伯,魏金照,孙丽玲.胶凝材料[M].上海:同济大学出版社,1990
    [101].肖林,王春义,郭汉生.建筑材料水泥土[M].北京:水利电力出版社,1987
    [102].谭文英,汪益敏,陈页开.土固化材料的研究现状[J].中外公路,2004,24(4):160-172
    [103].Medina J,Guide H N.Stabilization of lateritic soils with phosphoric acid[J].Geotechnical and Geological Engineering,1995,13(4):199-216
    [104].Tomohisa S,Sawa K,Naitoh N.Hedoro hardening treatment by industrial wastes[J].Zairyo/Journal of the Society of Materials Science Japan,1995,44(503):1023-1026
    [105].Bobrowski L.Injection of a liquid soil stabilizer into subgrade soil-Research rept[R].Austin:Texas Dept of Transportation,1992
    [106].Zalihe N,Emin G.Improvement of calcareous expansive soils in semi-arid environments[J].Journal of Arid Environments,2001,47(4):453-463
    [107].Shirazi H.Field and laboratory evaluation of the use of lime fly ash to replace soil cement as a base course[J].Transportation Research Record,1999,1652:270-275
    [108].Bell F G.Assessment of cement-PFA and lime-PFA used to statlize clay-size materials[J].Bultetin of the international Association of Engineering Geology,1994,49:25-32
    [109].Miller G A,Zaman M.Field and laboratory evaluation of cement kiln dust as a soil stabilizer[J].Transportation Reasearch Record,2000,1714:25-32
    [110].Munjed M A.Mousa F A.The use of burned sludge as a new soil stabilizing agent[C].Missouri:ASCE National Conference on Environmental and ripelive Enginceing,2000:378-388
    [111].Robert B R.Concentrated liquid stabilizers for railroad applications[C]//Roadbed Stabilization and Ballast Symposium.Missouri:St.Louis,2000(8-9):349-365
    [112].Saboundjian S.Subbase treatment using EMC2 soil stabilizer-Final rept 1997-2001[R].Juneau:Alaska Dept of Transportation and Public Facilities,Research and Technology Transfer,2002:1-26
    [113].Attom M F,Munjed M A.Soil stabilization with burned olive waste[J].Applied Clay Science,1998,13(3):219-230
    [114].Thecan C C.Soil binding properties of mucilage produced by a basidiomycete fungus in a model system[J].Mycological Research,2002,106(8):930-937
    [115].Nene A S.Paribar Y D.Natural stabilization of expansive soils[C].Calcatta:lndian Geothechnical Conference.1992:207-209
    [116].樊恒辉,高建恩,吴普特.土壤固化剂研究现状与展望[J].西北农林科技大学学报(自然科学版),2006,34(2):142-152
    [117].吴城玉.土壤固化剂技术在防渗工程中的应用[J].太原科技,2003,(2)
    [118].石丽萍.土壤固化剂在道路工程中的应用[J].宁夏工程技术,2004,(11)
    [119].柯结伟,庞有师,陈志勇.土壤固化剂技术研究与工程应用现状[J].华东公路,2007,(5):48-52
    [120].邵玉芳.土壤固化剂技术在农业工程中的应用[J].中国农机化,2005,(5)
    [121].吴立坚.固化剂在我国公路工程中的应用[R].2000
    [122].董邑宁,张俊伟.固化材料在土木工程中的发展及应用[J].青海大学学报,2000,(8)
    [123].刘建航,侯学渊主编.基坑工程手册[M].北京:中国建筑工业出版社,1997
    [124].龚晓南.复合地基设计和施工指南[M].北京:人民交通出版社,2003
    [125].江苏宁沪高速公路股份有限公司,河海大学主编.交通土建软土地基工程手册[M].北京:人民交通出版社,2001
    [126].周国钧,胡同安,黄新.水泥系深层搅拌法试验研究回顾[J].工业建筑,1994,(9):3-8
    [127].Burland J B et al.A laboratory study of the strength of four stiff clays[J].Geotechnique,1996,46(3):491-514
    [128].龚晓南,熊传祥,项可祥.粘土结构性对其力学性质的影响及形成原因分析[J].水利学报,2000,(10):43-47
    [129].王锺琦,孙广忠,刘双光等.岩土工程测试技术[M].北京:中国建筑工业出版社,1986,38-41
    [130].夏德深,傅德胜.现代图像处理技术与应用[M].南京:东南大学出版社,1997,1-8
    [131].施斌.粘性土击实过程中微观结构的定量评价[J].岩土工程学报,1996,18(4):57-62
    [132].唐大雄,刘佑荣等.工程岩土学[M].北京:地质出版社,1985
    [133].柳艳华.天津滨海海积软土结构性及其对力学性质的影响研究:[硕士学位论文].天津:天津城市建设学院,2005
    [134].华南理工大学.基础工程[M].北京:中国建筑工业出版社,2003,15-39
    [135].港工技术编辑部.瑞典布鲁姆斯(Bengt.B.broms)教授讲学记录(二)[J].港工技术,1984,(03)
    [136].曾小强.水泥土的力学特性和复合地基沉降计算研究:[硕士学位论文].杭州:浙江大学,1993
    [137].胡同安,杨晓刚,刘毅.水泥一磷石膏固化剂的试验研究[S].第七届土力学及基础工程学术会议论文集.北京:中国建筑工业出版社,1994
    [138].裴向军,吴景华.搅拌法加固海相软土水泥外掺剂的选择[J].岩土工程学报,2000,22(3):319-322
    [139].段新胜,顾湘.桩基工程(第三版)[M].武汉:中国地质大学出版社,1998
    [140].黄新,周国均.水泥加固土硬化机理初探[J].岩土工程学报,1994,16(1),62-68
    [141].拉马昌德兰.水泥水化与硬化(二)[M].沈威等译.北京:中国建筑工业出版社,1987
    [142].威廉逊R B著.波特兰水泥的凝固[M].黄文熙,吴锡琪译,北京:中国建筑工业出版社,1980
    [143].于天仁.土壤化学原理[M].北京科学技术出版社,1983
    [144].谢慈仪编.混凝土外加剂作用机理及合成基础[M].重庆:西南师范大学出版社,1993
    [145].姚环.粘性土微观结构与力学性质关系的研究[J].福州大学学报(自然科学版),1995,8(4):113-118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700