用户名: 密码: 验证码:
不确定使命环境下C2组织结构动态适应性优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息化战争的高度复杂性与动态不确定性,决定了战争中组织整体对抗优势的获取与维持必须建立在敏捷的指挥控制(Command and Control, C2)组织之上。敏捷的C2组织要求组织具有良好的适应性,如何根据使命环境中动态到达的不确定事件对C2组织能力的影响,适时的对当前组织结构进行适应性优化调整,是C2组织研究的关键问题之一。现有的组织结构适应性优化方法普遍选取整个使命执行期间作为优化时域,并且大多是采用组织重构的方法进行适应性优化,效果并不理想,关于C2组织结构的适应性优化问题还需要进一步深入研究。
     论文的研究集中在不确定使命环境下C2组织能力的测度分析,C2组织结构的适应性优化模型以及动态适应性优化方法等方面,做了以下几个方面的工作:
     1、提出了C2组织能力测度。完善了关于C2组织的组织元素和组织结构的定义和描述。特别的,为了度量使命的决策能力需求以及使命环境中不确定因素对组织决策能力的影响,考虑了任务和决策者的决策能力属性。定义了C2组织为有效完成使命所提供的决策能力和资源能力,并提出了相应的测度参数,分别给出了它们的定义和描述。分析了C2组织所面向的使命环境中各种不确定因素的类型、来源及其对组织的影响,以及C2组织结构对组织能力的优化作用,建立了组织结构变量与组织能力之间的优化关系。
     2、提出了C2组织结构的分层动态适应性优化方法。基于不确定使命环境下C2组织的能力分析,以组织能力测度最大化为目标构建了C2组织结构适应性优化(C2 Organization Structure Adaptive Optimization, COSAO)模型。针对COSAO模型中结构变量与能力测度具有复杂关联性的特点,提出了基于组织结构分层的适应性优化策略,降低了求解C2组织结构适应性优化模型时的复杂性。针对COSAO模型具有的动态不确定性特点,通过引入滚动时域的思想,提出了基于滚动时域的动态适应性优化策略,采用时域分解原理,通过灵活触发的多次较短时域的优化,降低计算的复杂度并适应所面向环境的不确定性变化。综合两种适应性优化策略,提出了C2组织结构的分层动态适应性优化方法SLDAO,降低了求解COSAO模型时面临的动态不确定性和复杂关联性。
     3、提出了基于滚动时域的C2组织决策层结构动态适应性优化方法。建立了C2组织决策能力测度的数学模型,从完成决策工作的量和质两个角度反映了使命决策能力需求的满足程度。讨论了影响决策能力的决策执行能力损耗事件和任务决策负载强度变化事件,定义了不确定事件的参数。在组织决策能力分析的基础上构建了决策层结构适应性优化模型。针对决策层结构适应性优化模型具有的动态不确定性特点,提出了基于滚动时域的决策层结构动态适应性优化方法DLSDAO-RHP,设计了预测窗口、滚动窗口、优化子问题以及滚动机制等滚动时域策略要素。该方法能够根据使命环境的不确定性程度来调整优化时域的长度,将原问题分解为较短时域内多个优化子问题,降低了问题求解时所面临的不确定性。针对优化时域内的优化子问题,提出了嵌套改进模拟退火求解算法NISA。案例分析和对比实验表明,DLSDAO-RHP方法能够通过多次较短时域内的子问题优化提升不确定使命环境下组织的决策能力。
     4、提出了基于关键事件的C2组织资源层结构动态适应性优化方法。建立了C2组织资源能力测度的数学模型,从完成任务的量和质两个角度反映了使命资源能力需求的满足程度。讨论了影响资源能力的平台损耗事件、任务新增或取消事件以及任务处理时间变化事件,定义了不确定事件的参数。在组织资源能力分析的基础上构建了组织资源层结构适应性优化模型。针对组织资源层结构适应性优化模型具有的动态不确定性特点,提出了基于关键事件的C2组织资源层结构两阶段动态适应性优化方法TAOBKE。该方法通过不确定事件对组织资源能力的影响及时触发资源层结构适应性优化。案例分析和对比实验表明,在不确定使命环境下TAOBKE方法能够有效的提升组织的资源能力。
     5、设计了分析C2组织结构动态适应性优化的综合案例。以一次多军兵种联合作战的登陆战役为例,综合讨论决策能力影响事件和资源能力影响事件对C2组织的影响,对本文所提出的C2组织结构分层动态适应性优化方法SLDAO进行了验证。案例分析说明了不确定使命环境下组织结构动态适应性调整的必要性和SLDAO方法的良好性能,通过对C2组织结构的有效分层,有效减少了组织重构,保证了C2组织结构的稳定性;随着不确定事件的增多,SLDAO方法能够控制组织结构调整代价的增长,因此面对不确定事件频繁发生的情况,SLDAO方法具有明显的优势。
The highly complexity and dynamic uncertainty of information warfare requires agile Command and Control (C2) organization to acquire and maintain the overall confrontation superiority. The agile C2 organization is characterized by well adaptability. How to timely carry out the adaptive optimization on the current organization structure, according to the effect of dynamic arriving uncertainty events on the C2 organization capabilities under mission environment, comes into being one of the primary problems in the research of C2 organization. The existing methods of organization structure adaptive optimization generally select the whole mission execution period as optimization horizon, and mostly adopt organization reconfiguration method, the effect of which is not ideal.The problem of C2 organization structure adaptive optimization still needs further research.
     Focusing on the capability measurement of C2 organization under uncertainty mission environment, adaptive optimization model of C2 organization structure and dynamic adaptive optimization method, this paper makes the following contributions:
     1. C2 organization capabilities measurement is proposed. The definition and description of C2 organization elements and organization structure are improved, and particularly, in order to measure decision capabilities requirement of mission and effect of uncertainty factors on the decision capabilities, the decision capability attributes of task and decision-makers are considered. The decision capabilities and resource capabilities provided by C2 organization to complete mission effectively are defined, the corresponding measurement parameters of which are proposed respectively, and then the definition and description of measurement parameters are given. The category, source of uncertainty factors and theirs influence on organization under uncertainty mission environment, as well as optimizing function of organization structure to organization capabilities are analyzed, optimal relation between organization structure variables and organization capabilities is established.
     2. Layered dynamic adaptive optimization method of C2 organization structure is proposed. The C2 organization structure adaptive optimization (COSAO) model to maximize organization capability is built based on the analysis of C2 organization capabilities under uncertainty mission environment. In view of complex association between structure variables and capabilities measurement, adaptive optimization strategy based on layered organization structure is proposed, which reduces the complexity of COSAO model solution. In view of dynamic uncertainty of COSAO model, through introducing rolling horizon theory, the dynamic adaptive optimization strategy based on rolling horizon is presented. Using horizon decomposition principle and optimization of multiple shorter horizons that triggered flexibly, this strategy is computationally efficient while adapting to the uncertainty change of environment. Combined with two adaptive optimization stategies, the layered dynamic adaptive optimization method of C2 organization structure (SLDAO) is proposed, which reduces dynamic uncertainty and complex association during COSAO model solution.
     3. Dynamic adaptive optimization of organization decision-layer structure based on rolling horizon procedure (RHP) is proposed. The mathematical model of measurement parameters for C2 organization decision capabilities is established, which reflects the satisfaction degree of mission decision capability requirements from the perspective of quantity and quality of completed task. The events of decision implementation capability loss and intensity change of task decision-load which influence on the decision capability are discussed. The uncertainty events parameters are defined. Based on the analysis of organization decision capability, the adaptive optimization model of decision layer structure is built, according to the dynamic uncertainty of which, the adaptive optimization method of decision-layer structure based on RHP (DLSDAO-RHP) is presented, RHP strategy elements including the prediction window, rolling window, optimization sub-problems and rolling mechanism are designed. This method can adjust the length of optimization horizon according to uncertainty degree under mission environment, and reduce the solution uncertainty by decomposing the initial problem into multiple optimization sub-problems in shorter horizon. According to optimization sub-problems in optimization horizon, the nested improved simulated annealing algorithm (NISA) is proposed. Case analysis and comparison experiments indicate that DLSDAO-RHP can improve the organizational decision capability under uncertainty mission environment through multiple sub-problems optimization in shorter horizons.
     4. Dynamic adaptive optimization method of C2 organization resource-layer structure based on key events is proposed. The mathematical model of measurement parameters for C2 organization resource capabilities is established, which reflects the satisfaction degree of mission resource capability requirements from the perspective of quantity and quality of completed task. The events of platforms loss, task addition and cancellation, and task-processing temporal variation are discussed. The uncertainty events parameters are defined. Based on the analysis of organization resource capability, the adaptive optimization model of resource-layer structure is built, according to the dynamic uncertainty of which, two-stage dynamic adaptive optimization method based on key events (TAOBKE) of resource-layer structure is presented. This method can trigger adaptive optimization of resource-layer structure in real-time through the effect of uncertainty events on organization resource capability. Case analysis and comparison experiments indicate that TAOBKE can improve the organization resource capability effectively under uncertainty mission environment.
     5. The comprehensive case to analyze dynamic adaptive optimization of C2 organization structure is designed. Taking a landing compaign in multi-arms combined operation for example, this paper synthetically discusses the effect of influencing events of decision capability and resource capability on C2 organization, and proves the presented SLDAO method. The case analysis illustrates the necessity of dynamic adaptive optimization and adjustment of organization structure under uncertainty mission environment as well as the well performance of SLDAO method. Through layered C2 organizaton structure, the SLDAO method reduces organization reconfiguration effectively, and ensures the stability of C2 organization structure. Along with the increasing of uncertainty events, SLDAO method can control the increase of structure adjustment cost, therefore which has the obvious advantages faced with the frequent occurrence of uncertainty events.
引文
[1] Alberts D S, Hayes R E. Power to the Edge: Command Control in the Information Age [M]. United States: Command and Control Research Program Publications, 2003.
    [2]修保新. C2组织结构设计方法及其鲁棒性、适应性分析[D].长沙:国防科学技术大学研究生院,2006.
    [3]刘振亚.面向C2组织效能测度的探索性分析方法研究[D].长沙:国防科技大学研究生院, 2009.
    [4] Adizes I. Organizational Passages: Diagnosing and Treating Life Cycle Problems of Organizations [J]. Organizational Dynamics, 1979, 8(1): 3-25.
    [5] Xin Y, Savage T. Adaptability in Organisms and Artifacts: A Multi Level Perspective on Adaptive Processes [J]. Cognitive Systems Research, 2010, 11: 231-242.
    [6] Irene H, Siu C. Organizational Socialization and Career Success of Asian Man Agrees [J]. The International Journal of Human Resource Management, 2002, 13(4): 720-737.
    [7] Kang D L, Sorensen A B. Ownership Organization and Firm Performance [J]. Annual Review of Sociology, 1999, 25: 121-144.
    [8] Brown J S, Duguid P. Knowledge and Organization: A Social-Practice Perspective [J]. Organization Science, 2001, 12(2): 198-213.
    [9] Kontoghiorghes C, Awbrey S M, Feurig P L. Examining the Relationship Between Learning Organization Characteristics and Change Adaptation, Innovation, and Organizational Performance [J]. Human Resource Development Quarterly, 2005, 16(2): 185-208.
    [10] Lomi A. The Population Ecology of Organizational Founding: Location Dependence and Unobserved Heterogeneity [J]. Administrative Science Quarterly, 1995, 40(1): 111-444.
    [11]吕鸿江,刘洪,程明.多重理论视角下的组织适应性分析[J].外国经济与管理, 2007, 29(12): 56-64.
    [12]彭璧玉.组织生态学理论述评[J].经济学家, 2006(5): 111-117.
    [13] Morel B, Ramanujam R. Through the looking Glass of Complexity: The Dynamics of Organizations as Adaptive and Evolving Systems [J]. Organization Science, 1999, 10(3): 278-293.
    [14] Amaral L A, Uzzi B. Complex Systems-A New Paradigm for the Integrative Study of Management, Physical, and Technological Systems [J]. Management Science, 2007, 53(7): 1033-1035.
    [15] Palmberg k. Complex Adaptive Systems as Metaphors for Organizational Management [J]. The Learning Organization, 2009, 16(6): 483-498.
    [16]刘洪.组织结构变革的复杂适应系统观[J].南开管理评论, 2004, 7(3): 51-56.
    [17] Carley K M. Organizational Learning and Personnel Turnover [J]. Organization Science, 1992, 3(1): 20-46.
    [18] Carley K M. Computational and Mathematical Organization Theory: Perspective and Directions [J]. Computational and Mathematical Organization Theory, 1995, 1(1): 39-56.
    [19] Carley K M. Computational Organizational Science and Organizational Engineering [J]. Simulation Modelling Practice and Theory 2002, 10: 253-269.
    [20] Timmermans J, Haan H, Squazzoni F. Computational and mathematical Approaches to Societal Transitions [J]. Computational and Mathematical Organization Theory, 2008, 14(4): 391-414.
    [21] Meyer M, Zaggl M A, Carley K M. Measuring CMOT’s Intellectual Structure and Its Development [J]. Computational and Mathematical Organization Theory, 2010.
    [22] Canio D, Stephen J, Dibble. Importance of Organizational Structure for the Adoption of Innovations [J]. Management Science, 2000, 46(10): 1285-1299.
    [23] Chakraborty, Ashok B. Organisational Design and Systems for Effective Safety and Environment Management[C]//Proceedings of SPE Annual Technical Conference and Exhibition.USA: Society of Petroleum Engineers, 1999: 237-239.
    [24]方卫国,周泓.不确定性环境中组织结构设计[J].管理科学学报, 2000, 3(2): 9-14.
    [25] Ford D N, Voyer J J. Building Learning Organizations in Engineering Cultures: Case study [J]. Journal of Management in Engineering, 2000, 16 (4): 72-83.
    [26] Takadama, K, Shimohara, K, Terano T. Agent-based Model toward Organizational Computing: From Organizational Learning to Genetics-based Machine Learning[C]//Proceedings of IEEE International Conference on Systems, Man and Cybernetics. Tokyo, 1999: 604-609.
    [27] Axelrod R. The Evolution of Strategies in the Iterated Prisoner’s Dilemma [M]. Genetic Algorithms and Simulated Annealing.London: Pitman, and Los Altos, CA: Morgan Kaufman, 1987: 32-41.
    [28] Axelrod R, Dion D. The Further Evolution of Cooperation [J]. Science, 1988, 242(4884): 1385-1390.
    [29] Crowston K. Evolving Novel Organizational Forms [M]. Computational Organization Theory. USA: Lawrence Erlbaum Associates, Inc., 1994: 19-38.
    [30] Holland J H, Miller J H. Artificial Adaptive Agents in Economic Theory [J].American Economic Review, 1991, 81(2): 365-370.
    [31] Padgett J F. The Emergence of Simple Ecologies of Skill: A Hypercycle Approach to Economic Organization [M]. The Economy as an Evolving Complex System. New Jersey: Addison-Wesley, 1997: 199-221.
    [32] Lawrence P R, Lorsch J W. Organization and Environment: Managing Differentiation and Integration [M]. Boston: Graduate School of Business Administration, Harvard University, 1967.
    [33] Hannan M T, Freeman J. The Population Ecology of Organizations [J]. American Journal of Sociology, 1977, 82(5): 929-964.
    [34] Rajan R G, Wulf J. The Flattening Firm: Evidence from Panel Data on the Changing Nature of Corporate Hierarchies [J]. Review of Economics and Statistics, 2006, 88(4): 759-773.
    [35] Chuma H. Increasing Complexity and Limits of Organization in the Microlithography Industry: Implications for Japanese Science-based Industries [J]. Research Policy, 2006, 35(3): 393-411.
    [36] Barr J, Nobuyuki H. Organizations Undertaking Complex Projects in Uncertain Environments [J]. Journal of Economic Interaction and Coordination, 2008, 3(2): 119-135.
    [37] Lin Z, Environmental Determination or Organizational Design: An Exploration of Organizational Decision Making Under Environmental Uncertainty [J]. Simulation Modelling Practice and Theory, 2006, 14(4): 438-453.
    [38] Carley K M, Svoboda D M. Modeling Organizational Adaptation as a Simulated Annealing Process [J]. Sociological Methods and Research, 1996, 25(1): 138-168.
    [39] DiMaggio P J, Powell W W. The Iron Cage Revisited: Institutional Isomorphism and Collective Rationality in Organizational Fields [J]. American Sociological Review, 1983, 48: 147-160.
    [40] Stinchcombe A. Organization-creating Organizations [J]. Society, 1965, 2(2): 34-35.
    [41] Romanelli E. The Evolution of New Organizational Forms [J]. Annual Review of Sociology, 1991, 17: 79-103.
    [42] Kilmann R H, Covin T J. Corporate Transformation: Revitalizing Organizations for a Competitive World [M]. San Francisco, CA: Jossey-Bass, 1988.
    [43] Butler R. The Evolution of the Civil Service-A Progress Report [J]. Public Administration, 1993, 71(3): 395-406.
    [44] March J G. Footnotes to Organizational Change [J]. Administrative Science Quarterly, 1981, 26(4): 563-577.
    [45] Mackenzie, K D. Organizational Design: The Organizational Audit and Analysis Technology [M]. Norwood, N.J: Ablex Pub. Co., 1986.
    [46] Carley K M. Organizational Adaptation [J]. Annals of Operations Research, 1998, 75: 25-47.
    [47] Papastavrou J D, Athans M. On Optimal Distributed Detection Architectures in a Hypothesis Testing Environment [J]. IEEE Transactions on Automatic Control, 1992, 37(8): 1154-1169.
    [48] Reibman A, Nolte L W. Design and Performance Comparison of Distributed Detection Networks [J]. IEEE Transactions on Aerospace and Electronic Systems, 1987, 23(6): 789-798.
    [49] Pete A, Kleinman D L, Pattipati K R. Structural Congruence of Tasks and Organizations[C]//Proceedings of the 1994 Symposium on Command and Control Research and Decision Aids, NPS, Monterey, CA, 1994: 168-175.
    [50] Levchuk, Y N, Pattipati K R, Curry M L. Normative Design of Organizations to Solve a Complex Mission: Theory and Algorithms[C]//Proceedings of the 1997 Command and Control Research and Technology Symposium, Washington, DC, 1997.
    [51] Levchuk Y N, Luo J, Levchuk G M, et al. A Multi-Functional Software Environment for Modeling Complex Missions and Devising Adaptive Organizations[C]//Proceedings of the 1999 Command and Control Research and Technology Symposium, NPS, Newport, RI, 1999.
    [52] Levchuk Y N, Levchuk G M, Pattipati K R.A Systematic Approach to Optimize Organizations Operating in Uncertain Environments: Design Methodology and Applications. [C]//Proceedings of the 7-th International Command & Control Research & Technology Symposium, Québec City, QC, Canada, 2002.
    [53] Levchuk G M, Levchuk Y N, Luo J, et al. Normative Design of Organizations-Part I: Mission Planning [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2002, 32(3): 346-359.
    [54] Levchuk G M, Levchuk Y N, Luo J, et al. Normative Design of Organizations -Part II: Organizational Structure [J]. IEEE Transactions on SMC, 2002, 32(3): 360-375.
    [55] Levchuk G M, Meirina C, Levchuk Y N, et al. Design and Analysis of Robust and Adaptive Organizations[C]// Proceedings of Command and Control Research and Technology Symposium (A2C2 session), Annapolis, MD, 2001.
    [56] Levchuk G M, Levchuk Y N, Meirina C, et al.Normative Design of Organizations-Part III: Modeling Congruent, Robust, and Adaptive Organizations [J]. IEEE Transactions on SMC, 2004, 34(3): 337-350.
    [57] Levchuk G M, Kleinman D L, Sui R, et al. Congruence of Human Organizations and Missions: Theory versus Data[C]//Proceedings of International Command and Control Research and Technology Symposium, Washington, DC, 2003.
    [58] Levchuk G M, Levchuk Y N, Pattipati K R, et al. Mapping Flows onto Networksto Optimize Organizational Processes[C]// Proceedings of the 7-th Command and Control Research and Technology Symposium, Monterey, CA, 2002.
    [59] Levchuk G M, Yu F, Pattipati K R, et al. From Hierarchies to Heterarchies: Application of Network Optimization to Design of Organizational Structures[C]//Proceedings of the 7-th Command and Control Research and Technology Symposium, 2002, Monterey, CA, 2002, 11-14.
    [60] Yang D S, Lu Y L, Liu Z. Research on Algorithms of Task Scheduling[C]// Proceedings of 2004 International Conference on Machine Learning and Cybernetics. Shanghai: IEEE Press, 2004: 42-47.
    [61] Yang D S, Zhang W M, Liu Z. Task Allocating among Group of Agents[C]// Proceedings of International Conference on Web Intelligence. Beijing: IEEE Press, 2004: 574-578.
    [62]杨春辉.基于CPN的面向任务指挥控制组织建模、仿真及优化方法研究[D].长沙:国防科学技术大学研究生院, 2008.
    [63]杨春辉,金卫东,陈洪辉等.面向任务的指挥控制组织的鲁棒性优化[J].系统工程, 2006, 24(10): 122-126.
    [64] Yang C H, Chen H H, Luo X S, Optimization for Designing the Robust Organization and Adaptive Organization[C]//Proceedings of the 13th International Conference on Industrial Engineering and Engineering Management. Shandong: IEEE Press, 2006: 2761-2765.
    [65]杨春辉,刘翔,陈洪辉等.动态使命环境下指挥控制资源动态规划组织的仿真研究[J].系统仿真学报, 2009, 21(1): 9-14.
    [66] Forney J, et al. The Viterbi algorithm[C]// Proceedings of the IEEE Conference, 1973, 61(3): 268-278.
    [67] Bertsekas D P. Dynamic Programming and Optimal Control [M]. Athena Scientific, Belmont, MA, 1995.
    [68] Busacker R, Saaty T. Finite Graphs and Networks: An Introduction with Applications [M]. New York: McGraw-Hill, 1965.
    [69] Yu F, Tu F, Pattipati K R. A Novel Congruent Organizational Design Methodology Using Group Technology and a Nested Genetic Algorithm [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2006, 36(1): 5-18.
    [70]修保新,张维明,刘忠等.基于粒度计算和遗传算法的C2组织结构设计方法[J].自然科学进展, 2007, 17(5): 662-671.
    [71]修保新,刘忠,张维明等.基于信息粒化理论的主体间任务分配方法[J].国防科技大学学报, 2007, 29(3): 71-75.
    [72]修保新,张维明,刘忠等.基于粒度计算的鲁棒性组织设计方法[J].系统仿真学报, 2007, 19(18): 4221-4225.
    [73]修保新,张维明,刘忠等. C2组织结构的适应性设计方法[J].系统工程与电子技术, 2007, 29(7): 1102-1108.
    [74] Nuschke P, Jiang X C. A Framework for Inter-organizational Collaboration and Sensemaking Integrating Communication and Knowledge Management Tools[C]//Proceedings of the 2007 Command and Control Research Technology Symposium, San Diego, California, 2007.
    [75] See K, Weil S A and Entin E E, et al. Test Environment for FORCEnet Concepts[C]//Proceedings of the 2007 Command and Control Research Technology Symposium, San Diego, California, 2007.
    [76] Weil SA, Diedrich F J, Entin, E E, et al.A2C2: Experiment 9-1[R].USA: Office of Naval Research, 2004.
    [77]黄广连,阳东升,张维明等.分布式作战体系的描述[J].舰船电子工程, 2007, 27(5): 3-6.
    [78]黄广连,阳东升,张维明等.分布式作战体系的自同步构建研究[J].舰船电子工程, 2007, 27(6): 1-6.
    [79] Kleinman D L, Young P and Higgins G S. The DDD-III: A Tool for Empirical research in Adaptive Organizations[C]// Proceedings of the 1996 Command and Control Research and Technology Symposium, Monterey, CA, 1996.
    [80] Kemple W G, Kleinman D L, Berigan M C. A2C2 Initial experiment: Adaptation of the Joint Scenario and Formalization[C]// Proceedings of the 1996 Command and Control Research and Technology Symposium, Monterey, CA, 1996: 837-846.
    [81] Levchuk Y N, Pattipati K R, Kleinman D L. Analytic Model Driven Organizational Design and Experimentation in Adaptive Command and Control [J]. Systems Engineering, 1999, 2(2): 89-97.
    [82] Burton R M, Obel B. Strategic Organizational Diagnosis and Design: Developing Theory for Application [M]. Holand: Kluwer Academic Publishers, 1998.
    [83] Duncan R. What Is the Right Organization Structure? Decision Tree Analysis Provides the Answer [J]. Organizational Dynamics, 1979, 7(3): 59-80.
    [84] Mintzberg, H. Structure in Fives: Designing Effective Organizations [M]. New Jersey: Prentice Hall, 1993.
    [85] Galbraith J R. Designing Organizations [M]. San Francisco: Jossey Bass, 1995.
    [86] Galbraith J R. Organization Design [M]. New Jersey: Addison-Wesley, 1977.
    [87] Lawrence P R, Lorsch J W. Organization and Environment [M]. Boston: Mass, Harvard University Press, 1967.
    [88] Miller D. Relating Porter’s Business Strategies to Environment and Structure: Analysis and Performance Implications [J]. Academy of Management Journal,1988, 31: 280-308.
    [89] Wood S.A Reappraisal of the Contingency Approach to Organization [J]. Journal of Management Studies, 1979, 16(3): 334-354.
    [90] Hollenbeck, John R, West, et al. Structural Contingency Theory and Individual Differences: Examination of External and Internal Person-Team Fit [J]. Journal of Applied Psychology, 2002, 87(3): 599-606.
    [91] Entin E, Serfaty D, Kerrigan C. Choice and Performance under Three Command and Control Architectures[C]//Proceedings for Command and Control Research and Technology Symposium. Monterey, CA, 1998: 132-137.
    [92] Entin, E. Optimized Command and Control Architectures for Improved Process and Performance[C]// Proceedings for Command and Control Research and Technology Symposium, Newport RI, 1999.
    [93] Diedrich F, Entin E S, Hutchins, et al. When Do Organizations Need to Change -Part I: Coping with Organizational Incongruence[C]//Proceedings for the International Command and Control Research and Technology Symposium, Washington, DC, 2003.
    [94] Entin E, Diedrich F, Kleinman D, et al. When Do Organizations Need to Change- Part II: Incongruence in Action[C]// Proceedings for the International Command and Control Research and Technology Symposium, Washington, DC, 2003.
    [95] Kleinman, D L, Levchuk G M, Hutchins S G, et al. Scenario Design for the Empirical Testing of Organizational Congruence[C]// Proceedings for the International Command and Control Research and Technology Symposium, Washington, DC , 2003.
    [96]高波.多Agent系统的组织构造与应用[D].武汉:华中科技大学, 2002.
    [97] DeLoach S A, Wood M F, Sparkman C H. Multiagent Systems Engineering [J]. The International Journal of Software Engineering and Knowledge Engineering, 2001, 11(3): 231-258.
    [98] Wooldridge M, Jennings N R, Kinny D. The Gaia Methodology for Agent-oriented Analysis and Design [J]. Journal of Autonomous Agents and Multi-Agent Systems, 2000, 3(3): 285-312.
    [99] DeLoach S A, Oyenan W H, Matson E T. A Capabilities-based Model for Adaptive Organizations [J]. Autonomous Agents and Multi-Agent Systems, 2008, 16(1): 13-56.
    [100] Ghijsen M, Jansweijer W N H, Wielinga B J. Adaptive Hierarchical Multi-agent Organizations [M]. Interactive Collaborative Information Systems, Springer-Verlag Berlin Heidelberg, 2010: 375-400.
    [101] Hoogendoorn M, Treur J. An Adaptive Multi-Agent Organization Model Based on Dynamic Role Allocation [J]. International Journal of Knowledge-Based andIntelligent Engineering Systems. 2009, 13(3-4): 119-139.
    [102]赵亚伟. Agent组织协作机制研究[D].北京:中国科学院研究生院, 2003.
    [103] Jin Y, Levitt R E. The Virtual Design Team: A Computational Model of Project Organizations [J]. Computational and Mathematical Organization Theory, 1996, 2(3): 171-196.
    [104] Levitt R E. The Virtual Design Team (VDT): A Computational Model of Project Teams[R]. California: Department of Civil and Environmental Engineering, Stanford University, 2007.
    [105] Kunz J C, Christiansen T R, Cohen G P, et al. The Virtual Design Team [J]. Communications of the ACM, 1998, 41(11): 84-91.
    [106] Levitt R E, Thomsen J, Christiansen T R etc. Simulating Project Work Processes and Organizations: Toward a Micro-Contingency Theory of Organizational Design [J]. Management Science, 1999, 45(11): 1479-1495.
    [107] KHosraviani B. An Evolutionary Approach for Project Organization Design: Producing Human-Competitive Results Using Genetic Programming [D]. Stanford University: 2005.
    [108] Daft R L. Organizational Theory and Design [M]. Singapore: Cengage Learning, 2007.
    [109]阳东升,张维明,刘忠等. C2组织的有效测度与设计[J].自然科学与进展, 2005, 15(3): 349-356.
    [110]阳东升. C2组织的有效测度与设计研究[D].长沙:国防科技大学, 2004.
    [111]谭跃进,陈英武,易进先.系统工程原理[M].长沙:国防科技大学出版社, 1999.
    [112] Mu L, Zhang W M, Xiu B X, et al. Layered Dynamic Adaptive Optimization of C2 Organization Structure Based on Capability Measurement[C]// Proceedings for the 2010 International Conference on Management Science and Information Engineering. Zhengzhou: IEEE Press, 2010: 426-430.
    [113] Perdu D M, Levis A H. Adaptation as a Morphing Process: A Methodology for the Design and Evaluation of Adaptive Command and Control Teams [J]. Computational and Mathematical Organization Theory, 1998, 4(1): 5-41.
    [114]彭小宏,阳东升,刘忠等.适应性兵力组织设计方法与应用研究[J].火力与指挥控制, 2009, 34(3): 12-15.
    [115]阳东升,刘忠,张维明.组织模型与自适应机理分析[J].系统工程与电子技术, 2008, 30(10): 1929-1933.
    [116]席裕庚.预测控制[M].北京:国防工业出版社, 1993.
    [117]席裕庚.动态不确定环境下广义控制问题的预测控制[J].控制理论与应用, 2000, 17(5): 665-670.
    [118]王冰.滚动时域调度方法及其性能分析研究[D].上海:上海交通大学, 2005.
    [119] Chand S, Hsu V N, Sethi S. Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography[J]. Management and Service Operations Management, 2002, 4(1): 25-43.
    [120]嘉晓岚.航班着陆调度的智能优化方法研究[D].合肥:中国科学技术大学, 2009.
    [121] Chand S, Traub R, Uzsoy R. Rolling Horizon Procedures for the Single Machine Deterministic Total Completion Time Scheduling Problem with Release Dates [J]. Annals of Operations Research, 1997, 70: 115-125.
    [122]王冰.动态单机调度的一种滚动时域策略及全局能力分析[J].系统工程理论与实践, 2004, 24(9): 65-71.
    [123]杨春节,何川.基于蚁群算法的供应链滚动优化决策方法[J].计算机集成制造系统,2010,16(1): 133-139.
    [124] Narayanan A, Robinson P. Evaluation of Joint Replenishment Lot-sizing Procedures in Rolling Horizon Planning Systems [J]. International Journal of Production Economics, 2010, 127(1): 85-94.
    [125]邵浩,陈华平,孙广中等.带有缓冲区的资源受限调度问题的滚动时域求解算法[J].系统工程理论与实践, 2010, 30(1): 119-125.
    [126]张纯钢.机器人滚动路径规划的方法研究[D].上海:上海交通大学, 2002.
    [127]李静,席裕庚.一种改进多机器人分布式滚动路径规划算法[J].控制工程,2007, 14(5):540-543.
    [128]张武梅.车队动态调度优化模型与算法研究[D].济南:山东大学, 2007.
    [129] Jia Y J, Gu H Y, Xi Y G. Rolling Horizon Scheduling Algorithm for Dynamic Vehicle Scheduling System [J]. Journal of Southeast University (English Edition), 2005, 21(1): 92-96.
    [130] Wen M, Cordeau J F, Laporte G, et al. The Dynamic Multi-period Vehicle Routing Problem [J]. Computers and Operations Research, 2010, 37(9): 1615-1623.
    [131] Li W, Wu Y, Petering M E H, et al. Discrete Time Model and Algorithms for Container Yard Crane Scheduling [J]. European Journal of Operational Research, 2009(198): 165-172.
    [132] He J, Chang D, Mi W, et al. A Hybrid Parallel Genetic Algorithm for Yard Crane Scheduling [J]. Transportation Research Part E, 2010(46): 136-155.
    [133]霍霄华.多UCAV动态协同任务规划建模与滚动优化方法研究[D].长沙:国防科技大学, 2007.
    [134]彭辉.分布式多无人机协同区域搜索中的关键问题研究[D].长沙:国防科技大学, 2009.
    [135]康立山,谢云,尤矢勇等.非数值并行算法—模拟退火算法[M].北京:科学出版社, 1994.
    [136] Mohan R, Akellaa, Battaa R, et al. Cellular Network Configuration with Co-channel and Adjacent-channel Interference Constraints [J]. Computers and Operations Research, 2008, 35: 3738-3757.
    [137] Abdelsalam H M. Optimization-based Architecture for Managing Complex Intergrated Product Development Project [D]. USA: Old Dominion University, 2003.
    [138] Chandra Sekhar Pedamallu, Linet Ozdamar. Investigating a Hybrid Simulated Annealing and Local Search Algorithm for Constrained Optimization [J]. European Journal of Operational Research, 2008, 185: 1230-1245.
    [139] Mishraa N, Prakashb M K. Tiwaria, et al. Hybrid Tabu-simulated Annealing based Approach to Solve Multi-constraint Product Mix Decision Problem [J]. Expert Systems with Applications, 2005 (29): 446-454.
    [140] Crama Y, Schyns M. Simulated Annealing for Complex Portfolio Selection Problems [J]. European Journal of Operational Research 2003, 150: 546-571.
    [141] Gutenschwager K, Niklaus C, Vo? S. Dispatching of an Electric Monorail System: Applying Metaheuristics to an Online Pickup and Delivery Problem [J]. Transport Science, 2004, 38(4): 434-446.
    [142]汪定伟.智能优化算法[M].北京:高等教育出版社, 2007.
    [143]牟亮,张维明,修保新等.基于滚动时域的C2组织决策层结构动态适应性优化.国防科技大学学报, 2011, 33(1): 125-131.
    [144] Mu L, Xiu B X, Huang J C, et al. The Optimization Design of C2 Organization Communication Network Based on Nested Genetic Algorithm[C]// Proceedings for the International Conference on Machine Learning and Cybernetics. Baoding: IEEE Press, 2009: 1877-1884.
    [145]阳东升,张维明,刘忠等.战役任务计划的数学描述与求解算法研究[J].系统工程理论与实践, 2006, 26(1): 26-34.
    [146]李敏强,寇纪淞,林丹.遗传算法的基本理论与应用[M].北京:科学出版社, 2002: 120-170.
    [147]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社, 2005.
    [148]王晓晴,唐加福,韩毅.分散搜索算法研究进展[J].系统仿真学报, 2009, 21(11): 3155-3160.
    [149]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社, 2004.
    [150] Shirazi B, Wang M F, Pathak G.Analysis and evaluation of Heuristic methods for static task scheduling [J]. Journal of Parallel and Distributed Computing, 1990, 10(3): 222-232.
    [151] Mu L, Feng Y H, Zhang W M, et al. The Adaptive Optimization of C2 Organization Decision Layer Structure Based on Nested Improved Simulated Annealing Algorithm[C]// Proceedings for the 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems. Xiamen: IEEE Press, 2010: 682-687.
    [152]牟亮,张维明,陈涛等.不确定性下C2组织结构的“任务—平台”关系设计模型及算法[J].系统工程与电子技术, 2010, 32(12): 2576-2583.
    [153]牟亮,冯旸赫,张维明等.基于关键事件的资源层结构动态适应性优化方法.系统工程理论与实践. (在审)
    [154]胡蓬,石纯一,王克宏.开放的分布式人工智能[J].软件学报, 1995, 6(10): 607-613.
    [155]王正光,梁晓辉,赵沁平.基于层次图变换的多Agent组织结构动态重组机制[J].软件学报, 2009, 20(1): 41-53.
    [156]李宪港,李中学.基于使命的Agent组织模型[J].计算机工程, 2008, 34(23): 187-195.
    [157] Bryan H, Victor L. A Survey of Multi-agent Organizational Paradigms [J]. The Knowledge Engineering Review, 2005, 19(4): 281-316.
    [158]侯新培,王要武,王海.基于多Agent系统的建设供应链协同决策[J].系统管理学报, 2008, 17(5): 548-552.
    [159]林杰,薛华成.多Agent协同工作模型在基于Web的群决策支持系统中的应用[J].计算机集成制造系统—CIMS, 2001, 7(6): 26-29.
    [160]史忠植,张子云.基于主体的智能协同决策支持系统[J].智能系统学报, 2008, 3(5): 377-383.
    [161]姚宗信,李明,陈宗基.多机协同作战任务决策方法多智能体结构框架[J].电光与控制, 2008, 15(3): 1-9.
    [162]姚宗信.基于多智能体的无人作战平台多机协同对抗多目标任务决策方法[J].航空科学技术, 2008(3): 20-24.
    [163]姚宗信,李明,陈宗基.多空中作战平台协同对抗多目标态势分析方法[J].系统工程与电子技术, 2008, 30(2): 292-296.
    [164]姚宗信,李明,陈宗基.基于博弈论模型的多机协同对抗多目标任务决策方法[J].航空计算技术, 2008, 37(3): 7-11.
    [165]浦鹏,张金春,陈钰宁等.基于多智能体的多机型协同作战决策系统模型研究[J].海军航空工程学院学报, 2007, 22(1): 173-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700