用户名: 密码: 验证码:
中高层大气气辉辐射研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中高层大气作为地球大气的重要组成部分,同时受到低层大气和大气圈之外的空间环境和空间条件的影响。在该区域内存在着多种光学现象和动力学过程。气辉是该区域内的重要光学现象之一。气辉是处于激发态的大气分子或者原子跃迁到较低能态是辐射出来的一定波长的光。因此,气辉辐射强度依赖于光化学辐射机制。此外,辐射强度还受到大气组分密度和大气动力学的影响。气辉因此而成为研究辐射区域内的大气组分密度、温度、以及能量和物质输送的重要工具。气辉研究中的一个基础课题是气辉辐射的光化学模式。光化学模式具有预报功能,但是理论模式的建立是以实验为基础的,它的正确与否最终要靠实验检验。因此,本论文有两个研究重点:研究气辉辐射的光化学模式及其应用;分析处理气辉辐射的实验观测资料。
     气辉辐射的光化学模式分析,气辉辐射光化学模式在中高层大气研究中的应用主要包括以下内容:
     1.详细分析了OH夜气辉辐射的光化学模式,探讨了反应HO_2 +O→OH(v≤6)+O_2对OH Meinel带夜气辉辐射中的振动带-转动带的影响。结果证明这个反应对初始振动能级低于7的振-转带的贡献很大,并且贡献随着初始振动能级的降低而增大。
     2.本文首次通过将模式计算得到的O_2夜气辉辐射率的高度-纬度分布与搭载在TIMED卫星上的SABER探测仪测量得到的相比较,研究O_2(1.27μm)夜气辉辐射的光化学模式。结果表明:反应O + O + M→O_2(Δ) + M和OH~* + O_2→O_2(Δ) + OH在O_2(1.27μm)夜气辉辐射中起着重要作用。其中,前者是88km以上高度范围内的O_2 (1.27μm)夜气辉辐射的主要源,后者是88km以下高度范围内的O_2 (1.27μm)夜气辉辐射的主要源。
     3. OH夜气辉辐射率高度分布剖面常被用于反演MLT区域内的原子氧密度高度分布剖面,反演时,输入参数的测量误差将对反演结果产生影响。在许多实际应用中,输入参数的测量误差对反演结果的影响还没有被全面地分析。本文对这种误差进行了系统的估算,找出其测量误差对反演结果影响最大的参数,这为在将来的实验中应精确测量哪些参数提供理论依据。
     4.建立了利用单一OI558nm夜气辉辐射强度反演MLT区域原子氧密度峰值的方法。由于我们观测OI558nm夜气辉强度的历史比较悠久,已拥有长期、多经、纬度上的大量OI558nm夜气辉强度的观测资料,这种方法的建立有助于从OI558nm夜气辉强度的时间和空间大尺度变化特征中提取出MLT区域原子氧密度峰值的相应时、空尺度的变化特征。
     此外,我们依据该方法,利用位于52°N地区的地基观测站在2000-2004年期间观测到的OI558nm夜气辉强度估算原子氧密度的峰值,分析了原子氧密度峰值的夜间变化特征和季节变化特征。
     在气辉辐射实验观测数据的分析处理方面,所做的主要工作如下:
     1.分析了2000-2004年期间,位于(52°N,103°E)地区的ISTP SD RAS的地球物理观测站地基测量得到的OI558nm和OI630nm气辉辐射强度的夜间变化特征和季节变化特征。
     2.统计分析了2000-2004年期间,ISTP SD RAS的地球物理观测站测量得到的OI558nm和OI630nm两种气辉强度的夜间变化特征之间的相关性。结果表明,二者之间有一定程度的相关性,相关系数在0.7-0.9之间的夜晚数占总夜晚数的比例最高,并且正相关的几率大于负相关的。由于在中纬地区,OI558nm气辉辐射层主要位于E区,OI630nm气辉辐射层主要位于F区,因此,可以利用两种气辉辐射之间的相关性研究E区和F区之间的耦合关系。
     3.分析了SABER在2002-2007年间测量得到的O2(1.27μm),OH(1.6μm)和OH(2.0μm)气辉辐射随时间、纬度和高度的统计特征。结果之一是,在夜间,三种辐射率的峰高(峰值所处的高度,下同)最小值都出现在赤道处,并且在中纬地区,冬季半球的峰高低于夏季半球的。
     4.利用SABER在2002-2007年间的测量资料,借助LS谱分析方法和谐波拟合法分析了大气温度、密度、O2(1.27μm)、OH(1.6μm)和OH(2.0μm)气辉辐射中的长周期波动特征和非周期变化特征。主要结果有:在这5个参数中,最强的波动是年变化和半年变化,此外,在赤道附近,大气温度、密度、以及夜间平均OH1.6气辉辐射和OH2.0气辉辐射的峰值和峰高中存在准两年变化特征。在纬度较高的中纬地区,气辉辐射的峰值和峰高中的年变化特征具有南、北半球反对称性。在赤道处,夜间平均OH1.6气辉和夜间平均OH2.0气辉辐射率峰高降低时,峰值增大。
The middle and upper atmosphere, as an important part of atmosphere of the earth, is affected by lower atmosphere as well as the space environment and space condition of outside earth atmosphere. In this region,there are many photochemical phenomena and dynamical processes. One of the photochemical phenomena is airglow. When excited atmospheric molecule or atom transmits to lower level, the light with some wavelength will emit. The light is referred to as airglow. The intensity of airglow depends on the photochemical emission mechanism, as well as the density and the dynamics of the atmosphere. Airglow is therefore a powerful tool in investigations of atmosoheric composition, temperature, and density in the emission region, and mass and energy movements to or from this region. A fundamental project in the study on airglow is the photochemical model for airglow emission. Photochemical model can predict the intensity of airglow. However, most theoretical models are founded on the basis of observation. The theoretical model is eventually tested and verified by observation. Therefore, the thesis has two emphases: investigate the photochemical model for airglow and its application; analyse and process the observational data for airglow.
     The researches on photochemical model and its application are composed of following contents.
     1. The thesis detailly analyse the photochemical model for OH nightglow emission and investigate the contribution of reaction HO_2 +O→OH(v≤6)+O_2 on the vibrational-rotational bands in OH Meinel band nightglow emission. The results indicate that the reaction has large contribution to the vibrational- rotational bands with initial vibrational level less than 7. Furthermore, the lower the initial vibrational level, the larger the contribution of the reaction.
     2. In this thesis, the photochemical model for O_2(1.27μm) nightglow is studied by comparing the height-latitude distributions of O_2 nightglow emission respectively calculated from model and observed by SABER. The results indicate that the most important reactions about O_2 nightglow emission are O + O + M→O_2(Δ)+ M and OH~* + O_2→O_2(Δ) + OH. The former is the main resource of O_2 nightglow above 88km and the latter is the main resource below 88km.
     3. OH nightglow emission rate is ofen used to infer the atomic oxygen density in the MLT region. However, the uncertainties of input parameters will affect the derived atomic oxygen density. In practical inversion, the inversion uncertainty due to the uncertainties of input parameters is not yet analysed completely. We systematically estimate the inversion uncertainties and find the papameters, the uncertainties of which have large contributions to inversion uncertainty. This is helpful to decide which parameters should be measured more accurately in the future.
     4. A method to derive the peak of the vertical distribution of atomic oxygen density in the MLT region is developed. This method changes the history that the intensities of three nightglow emissions must be measured simultaneously in order to derive the atomic oxygen density by using groundbased observation method. Because the intensity of OI558nm nightglow has been observed by many observatories at different latitudes and longitudes for many years, we have plenty of data for OI558nm nightglow. Our method is useful for extracting the longterm, large size spacial variation in the peak of atomic oxygen density.
     Using the method, we derive the peak density of atomic oxygen from the intensity of OI558nm nightglow observed at 52°N during 2000-2004. The nocturnal variation and seasonal variation in the peak density are analysed.
     The analyses on observational data of airglow emission maily include:
     1. We analyse the nocturnal and seasonal variations in the intensities of OI558nm nightglow and OI630nm nightglow observed by the geophysical observatory of ISTP SD RAS during 2000-2004.The observatory is situated at 52°N, 103°E.
     2. We analyse the correlation between the intensity of OI558nm nightglow and intensity of OI630nm nightglow observed by the geophysical observatory of ISTP SD RAS during 2000-2004. The results indicate they are correlative. The night number that correlation coefficient is between 0.7-0.9 is large and the probability for positive correlation is larger than that for negative correlation. The correlation between the two intensities reflects the coupling between E region and F region because the OI558nm nightglow emission layer is mainly situated in E region and the OI630nm nightglow emission layer is mainly situated in F region at middle latitude.
     3. The spacial and temporal distribution features of O_2(1.27μm)airglow, OH(1.6μm)aiglow and OH(2.0μm)airglow observed by SABER during 2002-2007 are analysed statistially. One of the results shows that the lowerest peak heights of three airglow emissions are all at equator, the peak heights at middle latitudes at winter hemisphere is lower than those at summer hemisphere.
     4. We analyse the long term periodic variation and nonperiodic variation in atmospheric temperature, density, O_2(1.27μm) airglow, OH(1.6μm)airglow and OH(2.0μm)airlow observed by SABER during 2002-2007 using Lomb-Scargle periodogram method and harmonic fit method. The results indicate that the strongest variations in these five paprameters are AO and SAO. Near equator, QBO in temperature, density, and peaks and peak heights of night average OH(1.6μm)airglow emission and night average OH(2.0μm)airglow emission near is strong. The AO in the peaks and peak heights of night average OH(1.6μm)airglow emission and night average OH(2.0μm)airglow emission at southern hemisphere is antisymmetric with that at northern hemisphere. At equator, the peaks of OH(1.6μm)airglow emission and OH(2.0μm)airglow emission increase with the peak heights decreasing.
引文
Abreu V J,Yee J H, Solomon S C,Dalgarno A. The quenching rate of O(1D) by O(3P). Planet.Space Sci.,1986, 34(11): 1143-1145
    Allen M, Lunine J I, Yung Y L. The vertical distribution of ozone in the mesosphere and lower thermosphere. J. Geophy. Res.,1984, 89(D3):4841-4872
    Babcock H D. A study of the green auroral line by the interference method. Astrophys J, 1923(57):209-221
    Baluja K L and Zeippen C J. M1 and E2 transition probabilities for states within the 2p4 configuration of the OI isoelectronic sequence. J Phys. B: At. Mol Opt Phys, 1988, 21:1455-1471
    Bishop R H, et al. Altitude profile of O_2(~1DELTA_g) at night. J. Atmos. Terr. Phys., 1972, 34:1477 - 1482
    Brenton June G, Silverman S M. A study of the diurnal variations of the 5577A[OI] airglow emission at selected IGY stations. Planet. Space Sci.,1970, 18: 641-653
    Cabanes J. Les raies rouges de l’oxygene dans le spectre du ciel nocturne, C.R.Hebd. Seances Acad Sci, 200:1905-1936
    Campbell I M and Gray C N. Chem. Phys. Letts, 1973, 18:607.
    Chalamala B R, Copeland R A. Collision dynamics of OH(X~2Π, v = 9). J. Chem. Phys., 1993, 99(8): 5807-5811
    Chamberlain, J W. Physics of Aurora and Airglow.london:Academic Press, 1961:347-350, 515-517
    Chen A, Johnsen R, and Biondi M A. Measurements of the O~++N2 and O~++O_2-reaction rates from 300 to 900K. J. Chem. Phys., 1978(69): 2688
    Clarke I D and Wayne R P. Chem Phys Letts, 1969, 3:405.
    Dandekar B S, Turtle J P. Atomic oxygen concentration from the measurement of the [OI]5577A emission of the airglow. Planet. Space Sci., 1971, 19:944-957
    David E S and William E S. A Comparison of Measurements of the Oxygen Nightglow and Atomic Oxygen in the Lower Thermosphere. Planet. Space Sci., 1991, 39:627-639
    Dodd J A, Lipson S J, Blumberg W A M. Formation and vibrational relaxation ofOH( X~2Πi, V )by O_2 and CO_2. J. Chem. Phys.. 1991, 95(8): 5752-5762
    Dyer M J, Knutsen K, Copeland R A. Energy transfer in the ground state of OH: Measurements of OH(v=8,10,11) removal. J. Chem. Phys.. 1997, 107(19): 7809-7815
    Evans W F J, et al. Altitude distribution of the O_2(~1Δ) nightglow emission. J. Geophys. Res., 1972, 77:4899– 4901
    Evans W F J, Hunten D M, Llewellyn E J and Jones A V. Altitude profile of the infrared atmospheric system of oxygen in the dayglow. J. Geophy. Res., 1968, 73:2885
    Frederick H M. Calculated vibrational transition probabilities of OH(X~2Π). Journal of Molecular Spectroscopy.,1974, 53:150-188
    Frerichs R. The singlet system of the oxygen arc spectrum and the origin of the green auroral line. Phys.Rev, 1930,(36):398-409
    Fukuyama K. Airglow variations and dynamics in the lower thermosphere and upper mesosphere—1.Diurnal variation and its seasonal dependency. J. Atmos. Terr. Phys., 1976, 38:1279-1287.
    Fukuyama K. Airglow variations and dynamics in the lower thermosphere and upper mesosphere-Ⅱ. Seasonal and long-term variations. J. Atmos. Terr. Phys., 1977(39):1-14.
    Fukuyama K. Airglow variations and dynamics in the lower thermosphere and upper mesosphere—Ⅲ.Variation during stratospheric warming events. J. Atmos. Terr. Phys., 1977, 39:317-331.
    Gattinger R L. Observations and interpretation of the airglow emissions. Can. J. Phys.,1968, 46:1613
    Gattinger R L. Interpretation of airglow in terms of excitation mechanisms. D Region Nightglow, The Radiating Atmosphere, Proceedings of a Symposium, org. by the Summer Advanced Study Institute, held at Queens's University, Kingston, Ontario, August 3-14, 1970, Dordrecht: Reidel, 1971, edited by B. M. McCormack. Astrophysics and Space Science Library, 24:51
    Gattinger R L. In: The radiating atmosphere(Ed. B. M.McCormac), p.51.D.Reidel, Dordrecht, Holland. Ghosh S N. The neutral upper atmosphere. Dordrecht Boston London: Kluwer academic publishers, 2002.
    Gobbi D, Takahashi H., Clemesha B R, Batista PP. Equatorial atomic oxygen profiles derived from rocket observations of OI 557.7nm airglow emission. Planet. Space Sci.,1992, 40:775-781.
    Good R.Earl,Determination of Atomic oxygen density from rocket borne measurement of hydroxyl airglow. Planet.Space Sci.,1976, 24:389-395
    Gush H P, Buijs H L. The near infrared spectrum of the night airglow observed from high altitude. Can. J. Phys., 1964, 42(6): 1037-1045
    Haley C S, McDade I C, Melo S M L. An assessment of a method for recovering atomic oxygen density profiles from column integerated nightglow intensity measurements. Adv. Space Res., 2001, 27:1147-1152
    Hampson R F, Garvin D. Reaction rate and photochemical data for atmospheric chemistry. NBS 513, Natl. Inst. of Stand.and Technol., Gaithersburg, Md., 1977
    Harries J E. Stratospheric composition measurements as tests of photochemical theory. J. Atmos. Terr. Phys.,1982, 44(7): 591-597
    Howell C D, Michelangell D V, Allen M, Yung Y L, Thomas R J. SME observations of O_2(a~1Δ_g) nightglow: An assessment of the chemical production mechanisms. Planet. Space Sci., 1990, 38(4):529-537.
    Huang, et al. Zonal-mean temperature variations inferred from SABER measurements on TIMEDcompared with UARS observations. J. Geophys. Res., 2006, 111:A10S07
    JPL, Jet Propulsion Laboratory, Chemical kinetics and photochemical data for use in stratospheric modeling, in Evaluation 10, JPL 92-20, 196pp., NASA Panel for Data Evaluation, Jet Propulsion Laboratory, Pasadena, Calif., 1992.
    Kaye J A. On the possible role of the reaction O+HO_2→OH+O_2 in OH airglow. J. Geophy. Res.,1988, 93(A1):285-288
    Klenerman D, Smith I W M. Infrared chemiluminescence studies using a SISAM spectrometer. J. Chem. Soc., Faraday Trans, 2, 1987, 83:229-241
    Knutsen K, Dyer M J, Copeland R A. Collisional removal of OH(X~2Π,v = 7) by O_2, N_2, CO_2 and N_2O. J. Chem. Phys..,1996, 104(15): 5798-5802
    Krassovsky V I, Shefov N N, Yarin V I. Atlas of the airglow spectrum 3000-12400A. Planet. Space Sci., 1962(9):883-915
    Lin C L, Leu M T. Temperature and third-body dependence of the rate constant for the reaction O+O_2+M→O_3+M. Int J Chem Kinet. 1982, 14(4): 417-434
    Llewellyn E J, Solheim B H. The excitation of the infrared atmospheric oxygen. bands in the nightglow. Planet. Space Sci., 1978(26):533-538
    López-Gonzalez M J, López-Moreno J J and Rodrigo R. Atomic oxygen concentration from airglow measurements of atomic and molecular oxygen emissions in the nightglow. Planet.Space Sci., 1992, 40:929-940
    Makhlouf U B, Picard R H, Winick J R, Photochemical-dynamical modeling of the measured response of airglow to gravity waves 1. Basic model for OH airglow. J. Geophys Res., 1995, 100(D6):11289-11311
    Maus S, Macmillan S, Chernova T, et al. The 10th generation international geomagnetic reference field. Physics of the Earth and Planetary Interiors, 2005(151 ), 320–322.
    McDade I C, et al. ETON 6: A rocket measurement of the O_2 Infrared Atmospheric (0-0) band in the nightglow. Planet. Space Sci., 1987, 35(12): 1541-1552
    McDade I C , Llewellyn E J. Mesospheric oxygn atom densities inferred from night-time OH meinel band emission rates. Planet.Space Sci., 1988, 36:897-905
    McLennan J C, Shrum G M. On the origin of the auroral green line 5577A and other spectra associated with aurora borealis. Proc Roy Soc(London),1925 (A108):501-512
    Melo S M L, McDade I, Hisao T. Atomic oxygen density profiles from ground-based nightglow measurements at 23°S. J. Geophys. Res., 2001, 106(D14): 15377-15384
    Mikhalev A V, et al. Characteristics of midlatitude aurorae during large geomagnetic storms within the current solar cycle. Atmos. Oceanic Opt., 2005, 18(1-2): 144-148
    Mikhalev A V, et al. Behavior of the atomic oxygen 557.7nm atmosoheric emission in the solar cycle 23. J. Adv. Space Res., 2007, doi:10.1016/j.asr.2007.07.017
    Mikhalev A V, Medvedeva I V, Beletsky A B, Kazimirovsky E S. An investigation of the upper atmospheric optical radiation in the line of atomic oxygen 557.7nm in East Siberia. J. Atmos. Terr. Phys., 2001, 63:865-868.
    Mikhalev A V, Medvdeva I V, Kazimirovsky E S, Potapov A S. Seasonal variation of upper-atmospheric emission in the atomic oxygen 558nm line over east Siberia. Adv. Space Res., 2003, 32(9):1787-1792
    Mlynczak M G, Nesbitt D J. The Einstein coefficient for spontaneous emission of the O_2(a~1Δ_g) state. Geophys.Res.Lett., 1995, 22(11):1381-1384
    Mlynczak M G, Olander D S. On the utility of the molecular oxygen dayglow emissions as proxies for middle atmospheric ozone. Geophys.Res.Lett.,1995, 22(11): 1377-1380
    Mlynczak M G, Solomon S, Zaras D S. An updated model for O_2(a~1Δ_g) concentrations in the mesosphere and lower thermosphere and implications for remote sensing of ozone at 1.27μm. J. Geophy. Res. 1993, 98(D10):18639-18648.
    Narayanan et al. Dayglow photometry- a new approach, Appl Opt, 1989(28):2138 Navin P. Mesosphere-Lower thermoshere-ionosphere coupling inferred from OH(7-2) band,OI557.7nm and OI630nm nightglow at Kolhapur(16.8N, 74.2E) India. Cospar, 2006
    Nelson Jr D D, Schiffman A, Nesbitt D J, et al. H+O_3 Fourier-transform infrared emission and laser absorption studies of OH(X 2Π) radical: An experimental dipole moment function and state-to-state Einstein A coefficients. J. Chem. Phys.. 1990, 93(10): 7003-7019
    Noxon J F, Vallance Jones A. Observation of the (0,0) band of the (1 g - 3 -g) system of oxygen in the day and twilight airglow. Nature, 1962(196):157-158
    Petttdidier M, Teitelbaum H. Lower thermosphere emission ans tides. Planet. Space Sci., 25:711-721.
    Ramachandra R V, Kulkani P V. Covariation of 6300 A and 5577 A emissions in tropical night airglow and the emission of 5577 A. from the F-region, Ann. Geophys., 1974. 30(2): 291-300
    Rao M N M and Murty G S N. A new method of deducing the atomic oxygen density profiles in the lower thermosphere using ground-based night airglow observations. J. Atmos. Terr. Phys., 1981, 43:1253-1264
    Rayleigh L. The light of the night sky: Its intensity variation when analysed by colour filters Proc Roy Soc(London), 1924(A106):117-137
    Rayleigh L. The light of the night sky: Its intensity variation when analysed by colour filters. II. Proc Roy Soc(London),1925(A109):428-444
    Reed E I and Chandra S. The Global Characteristics of Atmospheric Emission in the Lower Thermosphere and Their Aeronomic Implications. J.Geophys. Res., 1975, 80:3053-3062
    Rensberger K J, Jeffries J B, Crosley D R. Vibrational relaxation of OH(XΠ_(i,v) = 2). J.Chem.Phys.,1989. 90(4): 2174-2181
    Rodrogo R J, López-Moreno J, López-Gonzalez M J, García-Alvarez E. Atomic oxygen concentrations from OH and O_2 nightglow measurements. Planet. Space Sci., 1989, 37(1):49-60
    Russell J P. Atomic oxygen in the mesopause region derived form WINDII hydroxyl airglow measurements. Ph.D. Thesis, The University of Western Ontario,2001
    Russell J P, et al. Atomic oxygen profiles (80 to 115 km) derived from Wind Imaging Interferometer/Upper Atmospheric Research Satellite measurements of the hydroxyl and greenline airglow: Local time–latitude dependence. J. Geophys. Res., 2005, 110, D15305.
    Russell J P, Lowe R P. Atomic oxygen profiles (80-94 km) derived from Wind Imaging Interferometer/Upper Atmospheric Research Satellite measurements of the hydroxyl airglow: 1. Validation of technique. J. Geophys. Res., 2003, 108 :ACH 5-1
    Sappey A D, Copeland R A. Collision dynamics of OH(X 2Πi , v= 12). J,Chem,Phys.,1990, 93(8): 5741-5746
    Shimazaki T. The photochemical time constants of minor constituents and their families in the middle atmosphere. J. Atmos. Terr. Phys., 1984, 46(2): 173-191
    Sivjee G G, Hamwey R M. Temperature and Chemistry of the polar mesopause OH. J. Geophy. Res. 1987, 92(A5):4663-4672
    Slipher V M. OH the general auroral illumination of the sky and the wavelength of the chief aurora line. Astrophys J, 1919(49):266-275
    Smith L L, Steigher, W R. Night airglow intensity variations in the [OI]5577A, [OI]6300A, and Na 5890-96A Emission Lines. J.Geophys Res,1968, 73(7):2531-2538.
    Sobral J H A, et al. O(~1S) and O(~1D) quantum yields from rocket measurements of electron densities and 557.7 and 630.0nm emissions in the nocturnal F-region. Planet. Space Sci., 1992, 40(5):607-619
    Spencer J E, Glass G P. Some reactions of OH(v=1). Int J Chem Kinet. 1977, 9(1): 111-122
    Sridharan R et al. First results of OI 630.0nm dayglow measurements from equatorial latitudes. J. Atmos. Terr. Phys.,1991(53):521
    Stella M, Melo L, Hisao Takahashi, Clemesha B R, Batista Paulo P, Simonich D M. Atomicoxygen concentrations from rocket airglow observations in the equatorial region. J. Atmos. Terr. Phys., 1996, 58:1935-1942
    Steven Adler-Golden, et al. Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements. J. Geophys Res., 1997, 102(A9): 19969-19976
    Streit G E, Howard C J, Schmeltekopf A L, Davidson J A, Schiff H I. Temperature dependence of O 1-D rate constants for reactions with O_2, N2, CO_2, O_3, and H_2O. J. Chem. Phys., 1976, 65:4761-4764.
    Swenson G R, Gardner C S. Analytical models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves. J. Geophy. Res.,1998, 103(D6):6271-6294
    Takahashi H, Batista P P. Simultaneous measurements of OH(9,4),(8,3),(7,2), (6,2)and (5,1) bands in the airglow. J. Geophys Res., 1981, 86(A7): 5632-5642
    Takahashi H, et al. Equatorial F-region OI 6300A and 5577A emission profiles observed by rocket-borne airglow photometers. Planet. Space Sci.,1990, 38:547
    Takahashi H, Sahai Y, Batista P P. Tidal and solar cycle effects on the OI 5577A,NaD and OH(8,3) airglow emissions observed at 23oS. Planet. pace Sci., 984, 32(7):897-902
    Thomas R J, et al. Solar mesosphere explorer near-infrared spectrometer: Measurements of 1.27-micron radiances and the inference of mesospheric ozone. J. Geophys Res., 1984, 89: 9569-9580
    Turnbull D N, Lowe R P. New hydroxyl transition probabilities and their importance in airglow studies. Planet. Space Sci., 1989, 37(6): 723-738
    Vallance Jones A, and Harrison A W. ~1Δ_g- ~3∑_g~--O_2 infrared emission band in the twilight airglow spectrum. J. Atoms. Terr. Phys., 1958, 13 (1-2): 45-60
    Walls F L and Dunn G H. Measurements of total cross-sections for election recombination of NO+ and O_2+ using ion storage techniques. J. Geophys. Res., 1974, 79:1911
    Wasser B, Donahue T M. Atomic oxygen between 80 and 120 km-evidence for a latitudinal variation in vertical transport near the mesopause. J. Geophys. Res.,1979(84) (A4): 1297-1309
    Witasse O, Lilensten J,Lathuillere C. Modeling the OI630.0 and 557.7nm thermospheric dayglow during EISCAT-WINDII coordinated measurements. J. Geophys. Res.,1999, 104(A11):24639-24655
    Xu J Y,Gao H,Mikhalev A V. The nonlinear model of the response of airglow to gravity waves. Chin. J.Space Sci., 2005, 25(5):490-495
    Xu J Y, Liu H-L, Yuan W, Smith A K, Roble R G, Mertens C J, Russell III J M, and Mlynczak M G. Mesopause structure from Thermosphere, Ionosphere, Mesosphere,Energetics, and Dynamics (TIMED)/Sounding of the AtmosphereUsing Broadband Emission Radiometry (SABER) observations. J.Geophys Res, 2007, 112: D09102
    Xu J Y, Smith A K, Wu Q. A retrieval algorithm for satellite remote sensing of the nighttime global distribution of the sodium layer. J Atmos Sol-Terr Phy, 2005, 67(7): 739-748
    Xu J Y, Smith, A K, Yuan, W, Liu H-L. Global structure and long-term variations of zonal mean temperature observed by TIMED/SABER. J.Geophys. Res., 2007, 112: D24106
    Yntema L.On the brightness of the sky and total amount of starlight. Publ. Ast. Groningen, 1909(22):1-55
    Zhang S P. Gravity waves from O_2 airglow. Ph.D. Thesis, Graduate Programme in Earth and Space Science, York University, North York Ontario, 1991
    Zhang S P, Shepherd Gordon G. Solar influence on the O(1D) dayglow emission rate: Global-scale measurements by WINDII on UARS. Geophys. Res. Lett., 2004, 31: L07804
    Zhang S P, Shepherd Gordon G. On the response of the O(1S) dayglow emission rate to the Sun’s energy input: An empirical model deduced from WINDII/UARS global measurements. J. Geophys. Res., 2005a, 110:A010887
    Zhang S P, Shepherd Gordon G. Aurora and diurnal tides in the daytime O(1S) emission rates from WINDII/UARS measurements. SPIE, 2005b,5979:308-314
    Zhang S P, Shepherd Gordon G. On the response of the atomic oxygen red line emission rates to the Sun's energy input: an empirical model deduced from WINDII/UARS global measurements. SPIE, 2006, 5979: 315-324
    赫兹堡G .分子光谱与分子结构,第1卷,双原子分子光谱,王鼎昌译,北京:科学出版社,1983
    姜国英.中间层-低热层大气中的行星波研究. Ph.D. Thesis,中科院武汉数学物理研究所,2007
    刘仁强,易帆.极区夏季中层顶大气波的共振非线性相互作用.中国科学G辑,2003, 33(2):158-167
    孙晓斌,肖人彬,基于最大几何特征谱求解的机构轨迹精简数值表示方法.自然科学通报,2002,12(7):775-779
    王咏梅,王英鉴.OH气辉对重力波响应的模式研究.地球物理学报,1998,41(4):455-462
    王咏梅,徐寄遥,王英鉴,等.重力波诱导OH气辉分布的变化.地球物理学报,2004,47(1):6-9
    王咏梅,王英鉴.利用光谱拟合法反演中间层顶大气温度.空间科学学报,1997,17(4):348-352
    熊建刚,易帆.中层顶波非线性相互作用的甚高频雷达观测研究.电波科学学报,2000, 15(1):84-89
    徐寄遥,纪巧,袁韡,马瑞平. TIMED卫星探测的全球大气温度分布及其与经验模式的比较.空间科学学报,2006, 26(3): 177-182
    周秀骥等.高等大气物理学.北京,气象出版社,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700