用户名: 密码: 验证码:
大气水汽变化与我国旱涝关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年全球增暖背景下,干旱和洪水事件频发,给我国造成了严重的经济损失。一个地区的旱涝状况同该地区水汽状况有直接关系。水汽状况主要包括大气中水汽含量以及水汽输送两个方面。大气中的水汽含量叫做可降水量。本文主要利用再分析资料的可降水量、水平风速、湿度等数据研究了大气水分的变化与我国旱涝的关系。首先验证了不同纬度带四种再分析资料地面水汽压与可降水量的对应关系以及中国区域内四种再分析资料年代际变化的可靠性;然后利用ERA-40逐日、月平均水平风场以及湿度场资料,对我国整层积分的平均气流水汽输送、涡动水汽输送、总水汽输送的通量场和散度场做了气候态和年代际变化的分析;最后研究了近十三年水汽输送的异常,着重了分析2009年西南干旱的水汽输送状况,得到以下结论:
     对比ERA-40、JRA-25、NCEP/DOE、NCEP/NCAR四种再分析资料地面水汽压和可降水量的关系公式可知,再分析资料可降水量数据在中纬度地区可信度较高。在中国区域内,ERA-40再分析资料可降水量数据可信度最高,可以作为探空资料的代替资料使用。分析四种再分析资料对可降水量年代际变化的描述能力发现,ERA-40可降水量的年代际变化最贴近实际,因此在做大气水分年代际变化研究时使用ERA-40可降水量数据最可靠。对我国大部分地区而言,ERA-40可降水量存在50年代末到80年代明显减少,90年代以后明显增多的年代际变化过程。在华南、西南以及西北地区,温度的变化趋势同可降水量一致,而在华北、长江中下游地区,温度的增长伴随着可降水量的减少。温度并不是可降水量变化的决定性因子。
     从气候平均来看:平均气流水汽输送通量以纬向输送为主,而涡动水汽输送通量则以经向输送为主,总水汽输送通量以纬向输送为主,与平均气流水汽输送通量相似。我国北方地区为平均气流水汽辐散以及涡动水汽辐合,南方地区为平均气流水汽辐合以及涡动水汽辐散。总水汽辐合辐合的区域与平均气流水汽辐合辐散区域基本一致。
     70年代末,华北地区出现反气旋式平均气流水汽输送以及向南的涡动水汽输送增加的年代际变化,对应平均气流水汽辐散和涡动水汽辐合。长江中下游地区,存在向南和向东的平均气流水汽输送增加,向东的涡动水汽输送增加的年代际变化,对应平均气流水汽辐合和涡动水汽辐散。涡动水汽通量散度的年代际变化量级与平均气流水汽通量散度的年代际变化量级相同,只是数值上略小。华北地区总水汽辐散,降水明显减少,出现非常严重的旱灾。长江中下游地区总水汽辐合,降水增加,出现非常严重的涝灾。涡动水汽通量散度对于旱涝的缓解具有积极的意义。
     近十年以来夏季,东北和华北地区位于反气旋性平均气流水汽输送距平的控制下,同时这些区域还存在从大陆到海洋的东南向的涡动水汽输送距平,使得平均气流水汽辐散、涡动水汽辐合。在两者的共同作用下,总水汽辐散,对应东北和华北大旱。淮河流域存在向西的平均气流水汽输送距平以及东南向、西北向涡动水汽输送距平的交汇,平均气流水汽辐散,涡动水汽辐合,该地区的雨涝灾害,与强涡动水汽辐合有关。
     2009年9-12月,我国西南地区发生了严重的干旱。秋季中纬度位势高度较常年偏高,孟加拉湾的水汽供应非常弱,干旱的成因与水汽输送减少有关。12月份我国西南地区水汽输送增加,但贝加尔湖低压较常年异常偏强,使得冷空气偏东偏北,西南地区冷暖空气不能交汇,不利于降水的发生。12月份西南干旱与我国冬季冷空气异常有关。
In the context of global warming, drought and flooding disaster frequently occured caused serious economic damage to our country. Drought-flood conditions in one area had a direct relationship with water condition in the atmospheric, which included two aspects:water vapor content and water vapor transfer. Water vapor content in the atmospheric can also be called precipitable water. Based on precipitable water, wind and humidity data from reanalysis data, the relationship between atmospheric water vapor and drought-flood in China were researched. Firstly, by means of four reanalysis data, the relationship between precipitable water and surface vapor pressure in various latitudes and the reliability of the interdecadal characteristics of the precipitable water were validated; Secondly, based on wind and moisture from daily and monthly ERA-40 reanalysis data, the climatology and interdecadal change of vertical integrated moisture flux and diversity were analyzed in mean circulation transport, eddy transport and total transport. Finally, the anomalous vapor transportation in the past thirteen years was researched, the transportation of water vapor in southwest China from September to December in 2009 was analysised specifically. The mainly conclusions were as follows:
     Compared the empirical regressions between precipitable water and surface vapor pressure from the ERA-40,JRA-25, NCEP/NCAR and NCEP/DOE reanalysis data, the precipitable water were more credible at mid-latitude regions. In China area, the ERA-40 reanalysis data of precipitable water was the most reliable, and can be used as instead of sounding data. Evaluated the reliability of the interdecadal characteristics of the precipitable water from four kinds of reanalysis data, It was founded that the interdecadal change of the precipitable water from ERA-40 was the most consistent with the fact, so it was the best choice for researching the interdecadal change of moisture content of the atmosphere. In the greater part of China, the annual average of precipitable water decreased continuing during the late 1950s to the late 1980s, but it increased since the early 1990's. In south, southwest and northwest of China, the precipitable water showed the same trend as the temperature, but different in the lower and middle Yangzi valley and north of China. For the precipitable water, temperature may not prove decisive.
     From the view of climatological state, the zonal transport was dominant in mean circulation moisture transport, but in eddy moisture transport, the meridional transport was noticeable, the total moisture transport was consistent with the mean circulation moisture transport. There were mean circulation moisture divergence and eddy moisture convergence in the north of China, on the contrary, mean circulation moisture convergence and eddy moisture divergence in the south of China. The area of convergence and divergence in total moisture transport were similar with that in mean circulation moisture transport.
     After the late 1970's, accompanied with mean circulation moisture divergence and eddy moisture convergence, there existed interdecadal change of anti-cyclone form of mean circulation moisture transport and remarkable southerly eddy moisture transport in North China. In the middle and lower reaches of the Yangtze River, easterly and southerly mean circulation moisture transport and easterly eddy moisture transport turned up, which caused mean circulation moisture convergence and eddy moisture divergence. The moisture convergence in eddy and mean circulation moisture transport had the same magnitude, but smaller in value. In North China, the drought frequently increased because the total moisture diverged and the rainfall declined; in the middle and lower reaches of the Yangtze River, the flood disaster frequently increased because the total moisture converged and the rainfall enhanced. The convergence and divergence in eddy moisture transport played an important role in alleviating drought and flood.
     In recent decades, anticyclonic departure of mean circulation transport and southeasterly eddy transport appeared over north east and North China, which led to mean circulation moisture divergence, eddy moisture convergence and total moisture divergence. These were helpful to increase the intensity and frequency of drought in north east and North China. With the departure of west mean circulation transport and the convergence of eddy transport which from southeast and northwest, there were mean circulation moisture divergence and eddy moisture convergence in Haihe river basin. The notable eddy moisture convergence caused waterlogging in Haihe river basin.
     Severe drought took place in south-west region of China from September to December in 2009. The higher geopotential height existed in middle latitudes and the water vapor come from the Bay of Bengal drastically reduced. Severe drought in autumn caused of the reducing of water vapor transportation. In December, there was increased water vapor transportation in southwest China, but the low pressure located in the lake Baikal developed obviously, which make cold air shifted eastward and northward, the convergence of cold and warm air and rainfall can't happen easily. The severe drought in December was largely the result of abnormal cold air.
引文
[1]吴伯熊.中国的平均可降水量[J].南京大学学报.1959(6):43~47.
    [2]陆渝蓉.高国栋.中国水分气候图集[M].北京:气象出版社,1984.
    [3]刘国纬.水文循环的大气过程[M].北京:科学出版社,1984.
    [4]邹进上,刘惠兰.我国平均水汽含量分布的基本特点及其控制因子[J].地理学报,1981,36(4):377~392.
    [5]翟盘茂,周琴芳.中国大气水分气候变化研究[J].应用气象学报,1997,18(3):342~351.
    [6]刘世祥,王遂缠,刘碧,黄玉霞,王有生,蒲肃.兰州市空中水汽含量和水汽通量变化研究[J].干旱气象,2006,24(1):18~22.
    [7]杨景梅,邱金桓.用地面湿度参量计算我国整层大气可降水量及有效水汽含量方法的研究[J].大气科学,2002,26(1):9~22.
    [8]周允华.青藏高原地面长波辐射经验计算方法[J].地理学报,1984,39(2):148~161.
    [9]王炳忠,刘庚山.我国大陆大气水汽含量的计算[J].地理学报,1993,48(3):244~253.
    [10]杨景梅,邱金桓.我国可降水量同地面水汽压的经验表达式[J].大气科学,1996,20(5):620~626.
    [11]张学文.可降水量与地面水汽压的关系[J].气象,2004,30(2):9~11.
    [12]刘众雄.地基GPS技术遥感香港地区大气水汽含量[J].武汉测绘科技大学学报,1999,28(3):245~248.
    [13]宋淑丽,朱文耀.地基GPS气象学研究的主要问题及最新进展[J].地球科学进展,2004,19(2):250~251.
    [14]袁招洪,丁金才,陈敏.GPS观测资料应用于中尺度数值预报模式的初步研究[J].气象学报,2004,62(2):200~212.
    [15]李国平.地基GPS遥感大气可降水量及其在气象中的应用研究[D].西南交通大学博士学位论文.2007.
    [16]曹丽青,余锦华,葛朝霞.地区大气水汽含量特征及其变化趋势[J].水科学进展,2005,16(3):439~433.
    [17]蔡英,钱正安,吴统文.青藏高原及周围地区大气可降水量的分布、变化与各地多变的降水气候[J].高原气象,2004,23(1):1~10.
    [18]周长艳,蒋兴文,李跃清,蔚国才.高原东部及邻近地区空中水汽资源的气候变化特征 [J].高原气象,2009,28(1),1~10.
    [19]俞亚勋,王劲松,李青燕.西北地区空中水汽时空分布及变化趋势分析[J].冰川冻土,2003,25(2),149~156.
    [20]J. Fasullo, P. J. webster. A Hydrologieal Definition of Indian Monsoon Onset and withdrawal[J]. Journal of Climate,2003,16,3200-3211.
    [21]田红,郭品文,陆维松.中国夏季降水的水汽通道特征及其影响因子分析[J].热带气象学报,2004,4,401~408.
    [22]黄荣辉,张振洲,黄刚,任保华.夏季东亚季风区水汽输送特征及其与南亚季风区水汽输送的差别[J].大气科学,1998,4,460~469.
    [23]柳艳菊,丁一汇,宋艳玲.1998年夏季风爆发前后南海地区的水汽输送和水汽收支[J].热带气象学报,2005,1,55~62.
    [24]张人禾.来自印度季风区的水汽输送与东亚上空水汽输送和中国夏季降水的关系(英文)[J]. Advances in Atmospheric Sciences,2001,5,1005-1017
    [25]刘国伟,崔一峰,中国上空的涡动水汽输送[J].水科学进展,1991,2(3),145~153
    [26]伊兰,陶诗言,定常波和瞬变波在亚洲季风区大气水循环中的作用[J].气象学报,1997,55(5),532~544.
    [27]周天军,张学洪,王绍武.全球水循环的海洋分量研究[J].气象学报,1999,57(3):264~282.
    [28]赵瑞霞.中国长江、黄河流域水分收支与水分循环[D].中国科学院研究生院.2005.
    [29]何金海.1979年夏季亚洲季风区域40-50天周期振荡的环流及其水汽输送场的变化南京气象学院学报[J],1984,2,163~175.
    [30]金祖辉.1979年夏季南海地区水汽收支[A]《会议文集》编辑组.全国热带夏季风学术会议文集[C].昆明:云南人民出版社,1981:112~164.
    [31]蒋兴文,李跃清,王鑫.中国地区水汽输送异常特征及其与长江流域旱涝的关系[J].地理学报,2008,63(5),482~490.
    [32]王庆,刘诗军.影响山东夏季降水的季风水汽输送特征分析[J].气象科学,2006,26(2):197~202.
    [33]徐祥德,陶诗言,王继志.青藏高原—季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系[J].气象学报,2002,60(3):259~265.
    [34]Uppala S, Kallberg P, Angeles H, et al. ERA-40:ECMWF 45-year reanalysis of the global atmosphere and surface conditions 1957-2002[J]. ECMWF Newslett Meteorol,2004,101: 2-21.
    [35]Kazutoshi Onogi. The JRA-25 Reanalysis [J]. J. Meteor. Soc. Japan,2007,85(3):369-432.
    [36]Kanamitsu M, Wesley E, Woolen J, et al. NCEP-DOE AMIP-II reanalysis. (R-2) [J]. Bull. Amer. Meteor. Soc.,2002,83:1631 -1643.
    [37]Kistler R, Kalnay E, Collins W, et al. The NCEP-NCAR 50-year reanalysis:monthly means CD-ROM and documentation [J].Bull. Amer. Meteor. Soc.,2001,82:247-67.
    [38]Kalnay, E. M., and Coauthors. The NCEP/NCAR 40-year reanalysis project [J].Bull. Amer. Meteor. Soc.,1996,77:427-471.
    [39]Basist A N. Comparison of tropospheric temperatures derived from the NCEP/NCAR reanalysis, NCEP operational analysis,and the microwave sounding unit [J].Bull. Amer. Meteor. Soc.,1997,78 (7):1431-1447.
    [40]Poccard I, Janicot S, Camberlin P. Comparison of rainfall structure between NCEP/NCAR reanalysis and observed data over tropical Africa[J]. Climate Dynamics,2000,16(12): 897-915.
    [41]Shen S S P, Dzikowski P, Li Guilong, et al. Interpolation of 1961-1997 daily temperature and precipitation data onto albertapolygons of ecodistrict and soil landscapes of data[J]. J Appl Meteor,2001,40 (12):2162-2177.
    [42]Reid P A, Jones P D, Brown O, et al. Assessments of the reliability of NCEP circulation data and relationship with surface by direct comparison with station based data[J]. Climate Research,2001,17 (3):247-261.
    [43]Josey S A. A comparison of ECMWF, NCEP/NCAR, and SOC surface heat fluxes with moored buoy measurements in the subduction region of the Northeast Atlantic[J]. Journal of Climate,2001,14(8):1780-1789.
    [44]Renfrew I A, Moore GW K, Guest P S, et al. A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalysis[J]. J Phys Oceanogra,2002,32 (2):384-400.
    [45]http://www. noc. soton.ac.uk/ooc/WGASF/CATALOG/ncep2_rnl/ncep2_rnl. html.
    [46]赵天保NCEP与ERA-40再分析资料的可信度分析与研究[D].中国科学院研究生院博士论
    文.2006.
    [47]DH Bromwich, RL Fogt.Strong Trends in the Skill of the ERA-40 and NCEP-NCAR Reanalyses in the High and Midlatitudes of the Southern Hemisphere,1958-2001[J]. Journal of Climate,2004,17(8):4603-4619.
    [48]DH Bromwich, SH Wang. Evaluation of the NCEP-NCAR and ECMWF 15-and 40-Yr Reanalyses Using Rawinsonde Data from Two Independent Arctic Field Experiments[J]. Monthly Weather Review,2005,133(12),3562-3578.
    [49]John Turner, SCAR/CliC/ICPM Workshop on High Latitude Reanalysis British Antarctic Survey,10-12 April 2006.
    [50]Kazutoshi Onog and Coauthors. JRA-25:Japanese 25-year reanalysis project-progress and status[J]. Q. J. R. Meteorol. Soc,2005,131:3259-3268.
    [51]TD Mitchell and Coauthors.A comprehensive set of high-resolution grids of monthly climate for Europe and the globe:the observed record (1901-2000)and 16 scenarios (2001-2100).
    [52]Mitchell T, Jones P D. An improved met hod of const ructinga database of monthly climate observations and associated high-resolution grids[J]. Int. J. Climatol.,2005,25:693-712.
    [53]Wexler A, Greenspan L. Vapor pressure equation for water in the range 0 to 100 [J]. J. Res. Nation. Bur. Stand.,1971,75:213-230.
    [54]Wexler A. Vapor Pressure Formulation for Ice [J]. J. Res. Nation. Bur. Stand.,1979,81(1): 5-19.
    [55]赵柏林,张霭琛.大气探测原理[M].北京:气象出版社.1987.
    [56]罗丽,王晓蕾.饱和水汽压计算公式的比较研究[J].气象水文海洋仪器,2003,4:24~27.
    [57]Bolsenga S U. The Relationship Between Total Atmospheric Water Vapor and Surface Dew-point on a Mean Daily and Hourly Basis [J]. J. Appl. Meteor.,1965,4:430-432.
    [58]Karalis J D. Precipitable Water and Its Relationship to Surface Dew Point and Vapor Pressure in Athens [J]. J. Appl. Meteor.,1974,13(1):760-766.
    [59]H. Annamalai, J. M. Slingo. The Mean Evolution and Variability of the Asian Summer Monsoon:Comparison of ECMWF and NCEP-NCAR reanalysis [J]. Mon. Wea. Rev., 1999,127,1157-1186.
    [60]L Bengtsson, S Hagemann, K I Hodges.Can Climate Trends be Calculated from Re-Analysis
    Data? [J]. J. Geophys. Res.,2004b, D1111,dor:10.1029/2004 JD004536.
    [61]Claudio Tomasi. Determination of the Total Precipitable Water by Varying the Intercept in Reitan's Relationship [J].J. Appl. Meteor.,1981,9:1058-1069.
    [62]Reitan C H. Surface dew point and water vapor aloft [J].J. Appl. Meteor.,1963,6:776-779.
    [63]戴莹,杨修群.我国大陆上空可降水量的时空变化特征[J].气象科学,2009,29(2):143~149.
    [64]Imke Durre, Claude N. Williams Jr, Xungang Yin, Russell S. Vose1. Radiosonde-based trends in precipitable water over the Northern Hemisphere:An update. J. Geophys. Res. [J]. VOL. 114,D05112.
    [65]李崇银,李桂龙,龙振夏.中国气候年代际变化的大气环流形势对比分析[J].应用气象学报,1999,10(supple-ment):1~8.
    [66]苏明峰,中国近半个世纪气候冷暖与干湿配置关系的研究[D],中国科学院大气物理研究所硕士论文,2005年.
    [67]黄荣辉,徐予红,周连童.我国夏季降水的年代际变化及华北干旱化趋势[J].高原气象,1999,18(4):465~476.
    [68]Gaffen D J, Ellio tW P and Robok A. Relationsh ip between tropo sphericwater vapor and surface temperature as observed by radio sondes.Geophys. Res. Lett.,1992,19:1839-1879.
    [69]谢坤,任雪娟.华北夏季大气水汽输送特征及其与夏季旱涝的关系[J].气象科学,2008,28(5):508~514.
    [70]靳立亚,符娇兰,陈发虎.近44年来中国西北降水量变化的区域差异以及对全球变暖的响应[J].地理科学,2005,25(5),567~572.
    [71]Starr.V.P and White.R.M. Balance requirements of the general circulation[J].Geophvs Res Pap.Cambridge.Mass.1954.33.
    [72]陶诗言,伊兰.青藏高原在亚洲季风区水分循环中的作用:∥陶诗言,陈联寿,徐祥德,等.第二次青藏高原大气科学试验理论研究进展(一).北京:气象出版社,1999:204~215.
    [73]吴国雄.大气水汽的输送和收支及其对副热带干早的影响[J].大气科学,1990,14(1):53~63.
    [74]周长艳,何金海,李薇,陈隆勋.夏季东亚地区水汽输送的气候特征[J].南京气象学院学报,2005,28(1),18~27.
    [75]高国栋,翟盘茂.长江流域旱涝典型年大气水汽输送[J].水科学进展,1993,4(1):10~16.
    [76]马开玉,高国栋.长江流域典型旱涝年夏季大气中的水汽输送[J].气象科学,1992,12(1):48~56.
    [77]陆渝蓉,高国栋,朱超群.江淮地区旱涝灾害年份的水分气候研究[J].地球物理学报,1996,39(3):313~321.
    [78]杨辉.长江中下游严重旱涝时期大气环流以及热源和水汽汇的异常[J].Advances in Atmospheric Sciences,2001,5,972-983.
    [79]丁一汇,胡国权.1991年江淮暴雨时期的能量和水汽循环研究[J].气象学报,2003,2,146~163.
    [80]丁一汇,胡国权.1998年中国大洪水时期的水汽收支研究[J].气象学报,2003,2,129~145.
    [81]施能,陈家其,屠其璞.中国近100年来4个年代际的气候变化特征[J].气象学报,1995,53(4),431~439.
    [82]张琼,钱永甫,张学洪.南亚高压的年际和年代际变化[J]..大气科学,2000,24(1),67~78.
    [83]戴念军,谢安,张勇.南海夏季风活动的年际和年代际特征[J],气候与环境研究,2000,5(4),365~276
    [84]李春,孙照渤,陈海山.华北夏季降水的年代际变化及其与东亚地区大气环流的联系.南京气象学院学报[J].2002,25(4),456~462.
    [85]李崇银,朱锦红,孙照渤.年代际气候变化研究[J].气候与环境研究,2002,7(2),209~219.
    [86]潘婕,彭京备,王盘兴,纪立人.夏季欧亚中高纬持续流型特征Ⅱ:年代际变化和外源强迫[J].气象科学,2002,24(3),253~260.
    [87]韦志刚,黄荣辉,董文杰.青藏高原气温和降水的年际和年代际变化[J].大气科学,2003,27(2),157~170.
    [88]戴新刚,汪萍,丑纪范.华北汛期降水多尺度特征与夏季风年代际衰变[J].科学通报,2003,48(23),2483~2487.
    [89]刘华强,孙照渤,朱伟军.青藏高原积雪与亚洲季风环流年代际变化的关系[J].南京气象学院学报,2003,26(6),733~739.
    [90]张庆云,卫捷,陶诗言.近50年华北干旱的年代际和年际变化及大气环流特征[J].气候与环境研究,2003,8(3),307~316.
    [91]琚建华,任菊章,吕俊梅.北极涛动年代际变化对东亚北部冬季气温增暖的影响[J].高原气象,2004,23(4),201~211.
    [92]陆日宇.华北夏季不同月份降水的年代际变化[J].高原气象,1999,18(4),509~519.
    [93]施小英,中纬度关键区水汽输送结构特征及其对长江流域夏季降水异常的影响[D],中国气象科学研究院,2007.
    [94]郝志新,葛全胜,郑景云,李艳旗.2006年重庆大旱的历史透视[J].地理研究,2007,26(4),828~834.
    [95]宗志平.淮河流域出现流域性大洪水江南华南等地持续高温干旱—2007年7月[J].气象,2007,33(10),118~123.
    [96]丁一汇,王遵娅,宋亚芳,张锦.中国南方2008年1月罕见低温雨雪冰冻灾害发生的原因及其与气候变暖的关系[J],气象学报,2008,66(5),808~825.
    [97]http://ncc.cma.gov.cn/Website/index.php?NewsID=4753.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700