用户名: 密码: 验证码:
痕量有毒金属元素在农田土壤—作物系统中的生物地球化学循环
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化过程的加速和人类活动的干扰,有毒金属元素通过各种途径进入土壤环境。金属元素在土壤中不能被微生物分解,可逐步累积,并通过食物链在生物体中富集,或转化为毒性更大的有机化合物,导致土壤环境质量下降,农作物出现中毒,进而影响人类健康;同时还会造成水环境污染和生态环境的进一步恶化,二十世纪发生的十大环境公害事件中有两起直接是由金属元素污染引起的。因此土壤有毒金属元素污染已成为全球环境变化研究的重大问题之一,是近年来国内外环境领域研究的热点。
     在国家自然科学基金项目“饮用水源地底泥重金属再悬浮释放与水源地水质安全研究”、上海市环保局招标项目“饮用水源地持久性毒害污染物调研及对策”、“上海市持久性毒害污染物溯源调查及对策研究”和上海市基础研究重点项目“上海市饮用水中内分泌干扰物的环境污染过程与控制技术”的资助下,本文对生物毒性较大的痕量金属元素Cd、Pb、As、Hg和Cr在上海土壤中的污染特征进行了详细研究,并对其大气干湿沉降过程、农田土壤-植被迁移过程、农田地表径流输移过程、土壤渗漏淋失过程等生物地球化学行为进行了系统探讨,较完整地估算了有毒金属元素在农田系统中的输入输出通量;此外,论文对pb~(2+)和Hg~(2+)的等温吸附过程进行了深入探讨。主要得到以下几个方面的结论:
     (1)上海农田土壤金属元素累积较轻,基本符合农业种植要求,地表灰尘金属元素累积较明显;绝大多数金属元素在农田表层土壤呈现一定的富集。表层土壤Cd以可还原态和弱酸提取态为主,Pb和As均以残渣态为主,Hg则以可还原态和残渣态为主,各元素形态分布在土壤不同深度无明显差异;Cd、Pb、As和Hg在表层土壤的迁移系数分别为36.43%、0.17%、1.08%和2.76%,生物有效态含量占总量的比例依次为Cd>Hg>Pb>As。施肥、工业或生活垃圾肥田等是农田土壤金属积累的主要原因,交通和工业污染是地表灰尘金属元素的主要来源。
     (2)城市土壤各金属元素含量高于农田土壤,在地表灰尘中的累积更严重;在上海市区,金属元素污染的“热点”区域多分布于城市中心区、主要道路交叉口和工业区附近。溯源分析表明Pb、Zn和Cu主要来自交通污染,土壤Ni则主要来自土壤母质,Cd主要来自工业污染,地表灰尘中的Cr和Ni主要源于大气沉降
     (3)小麦植株金属元素含量在不同生长时期表现出明显差异;各器官有毒金属元素含量相比较,果实均较低,而根系普遍高于其它器官;虽然与小麦均为禾本科被子植物,狗尾草对有毒金属元素的累积存在较大差异,果实含量较高,而根的含量相对较低;不同种类的蔬菜对金属元素累积能力存在显著差异,金属元素在蔬菜根中更容易累积。总体来看植物对Cd的富集能力相对较强,对As的富集能力则普遍较弱。土壤中有毒金属元素有效态含量是影响植物体含量的最主要因素,二者符合三次函数关系。作物中有毒金属元素的健康风险评估结果表明,食用小麦和青菜存在一定的致癌风险,食用小麦和蔬菜引起的非致癌风险可以忽略。
     (4)上海降水pH较低,表现出明显的酸性,Eh主要分布在120mV-200mV间,EC值在夏季相对较低,冬季相对较高。NO_3~-与SO_4~(2-)当量浓度比表明酸雨为H_2SO_4主导型,H_2SO_4对酸雨的贡献率表现为市区<郊区<远郊;TN含量范围为0.37 mg·L~(-1)-11.69 mg·L~(-1),空间上表现为市区>郊区>远郊;TC平均含量为19.48mg·L~(-1),与TN表现出相同的空间变化规律,降水中TOC占TC的90%以上。降水各金属元素含量表现为Pb>Cr~(6+)>As>Cd>Hg,空间上表现为市区较高,郊区和远郊较低;各金属元素在降雨中污染较严重,污染程度表现为Hg>Pb>Cd>As≈Cr~(6+);从时间变化看,降雨中Cd、Pb和As在12月含量相对较高,夏季月份含量相对较低。就降雨中形态分布而言,有毒金属元素主要以溶解态存在,各金属元素分配系数K值均大于1。降雨量大小和风向可直接影响各化学成分的含量;降雨中~(206)pb/~(207)pb变化范围为1.1620-1.1748,~(207)pb/~(208)pb在0.40878-0.41103间变化;降雨中N、Cd、Pb和As主要源于交通污染,Cr和TIC主要源于地表灰尘及建筑尘埃,TOC和Hg主要源于燃煤排放。
     (5)市区金属元素湿沉降通量较高,郊区和远郊相对较低;Cd、Pb、As和Hg在上海地区的大气干湿沉降通量分别为404、1 5500、2934和283μg·m~(-2)·yr~(-1),湿沉降对干湿沉降总量的贡献相对较高;从大气干湿沉降通量的空间分布来看,市区最高,郊区其次,远郊最低,人类活动密集程度的不同导致了有毒金属元素大气沉降通量的差异;分析发现上海是全球大气环境有毒金属元素污染的重要输出地。
     (6)农田地表径流溶解态金属元素的含量普遍低于降雨;无植被覆盖农田径流溶解态金属含量初始阶段相对较低,随着径流的进行逐渐增大,达到峰值后逐步减小;径流颗粒物粒径小于土壤,金属元素含量则明显高于土壤,其变化趋势同溶解态相似;径流过程颗粒态和总量有毒金属元素的流失表现出明显的初始冲刷效应。植被覆盖地径流中溶解态金属元素含量随径流过程无明显的变化规律;颗粒态金属元素含量随径流浊度的降低而增加;径流事件中溶解态金属元素的EMC值表现为Cr~(6+)As>Pb>Cd≈Hg,地表径流初始冲刷效应不明显。Cd、Pb和Hg在径流过程中以吸附为主,As和Cr~(6+)以解析为主;降雨中金属元素含量是吸附/解析过程发生的最主要影响因素,Cd、Pb、As和Hg发生吸附/解析过程的临界降雨含量分别为0.095、1.068、1.049和0.066μg·L~(-1);无植被覆盖农田径流中溶解态Cd、Pb和Hg含量及颗粒物含量明显高于植被覆盖地,As和Cr~(6+)则相反。农田地表径流中各元素的固-液分配系数LgK_d表现为As≈Pb>Hg≈Cd,均存在显著的“颗粒物浓度效应”;径流中颗粒态金属元素的含量主要取决于颗粒物粒径大小和物理性粘粒的含量。
     (7)土壤渗漏液中各金属元素含量较低,表现为Cr~(6+)>Pb>As>Hg>Cd;各元素在不同土层渗漏液中含量变化不一致,Cd和Hg表现为20cm<40cm<60cm,Cr~(6+)含量变化表现出相反的规律,Pb和As则无明显的规律;植物根系分泌大量酸性物质使土壤中金属元素的活性增加,植被覆盖土壤渗漏液中金属元素含量普遍高于裸地土壤渗漏液;土壤颗粒对降雨中Cd、Pb、As和Hg起到明显的吸附作用,使得渗漏液含量明显低于降雨,而Cr~(6+)则相反。总体来看渗漏量主要受降雨量的影响,二者呈线性相关;生源要素C、N的年渗漏通量在不同深度土层中均表现为20cm<40cm<60cm;金属元素渗漏通量大小表现为Cr~(6+)Pb>As>Hg>Cd,在各土层渗漏液中的变化无明显规律。两种溶液相比较,Cd、As及Cr~(6+)在地表径流中含量更高,Pb和Hg则在渗漏液中含量较高,吸附作用的差异是造成径流和渗漏液含量不同的主要原因。
     (8)随溶液中沉积物质量增大,Pb~(2+)达到吸附平衡所需时间变短,单位沉积物吸附量和达到吸附平衡后溶液中Pb~(2+)浓度变低;沉积物含量大于0.6g·L~(-1)时对溶液中Pb~(2+)的去除率超过95%;沉积物吸附pb~(2+)符合Langmuir和Redlich-Peterson等温吸附模型,表现出对Pb~(2+)较强的单层吸附能力;pb~(2+)在沉积物上吸附的动力学过程符合假二级动力学模型,该模型拟合的平衡吸附量也更接近真实值;Pb~(2+)初始吸附速率与初始溶液中沉积物质量无明显的相关性;随溶液中沉积物浓度的增加,吸附速率常数逐渐增大,化学吸附所起的作用也越显著;较高浓度沉积物吸附Pb~(2+)的动力学机制能较好符合Elovich方程,但较低浓度沉积物时则相对较差;从吸附速率来看,溶液中沉积物质量较高时,内扩散是整个吸附过程速率的控制步骤,沉积物含量较低时,吸附速率存在多级线性过程,初始阶段非均相扩散是主要控制步骤,但随着时间的延长,其吸附过程转变为沉积物内部的扩散过程。溶液pH值、沉积物粒径、沉积物HA含量、EDTA共存等均可对吸附过程产生影响,Pb~(2+)浓度较低情况下Zn~(2+)的共存不能对pb~(2+)的吸附产生显著影响。Hg~(2+)初始含量为10μg·L~(-1)时,沉积物以物理吸附为主,0.3min时沉积物对Hg~(2+)的吸附率均在97%以上;沉积物质量、pH、EDTA共存、沉积物HA含量对Hg~(2+)的吸附可产生明显影响,由于吸附质含量较低,Cd~(2+)共存和沉积物粒径对Hg~(2+)吸附无显著影响。
     (9)静态柱状沉积物吸附Pb~(2+)相对较慢,初始含量越低,平衡浓度越低,从水相向沉积物相的扩散速率也越小;整个静态吸附过程中扩散速率和扩散通量与Pb~(2+)初始浓度呈显著的线性正相关关系。研究发现,水葫芦茎粉末是一种高效的生物吸附剂,对溶液中pb~(2+)(含量范围0.1-40 mg·L~(-1))的吸附率在90%以上;初始Pb~(2+)浓度越高,吸附剂质量越低,水葫芦粉末的平衡吸附量越大,吸附过程中活化能增加也越大;假二级动力学模型能较准确的模拟水葫芦粉末对pb~(2+)的吸附过程,吸附过程中化学吸附是主要的速率控制步骤;水葫芦粉末吸附pb~(2+)的过程存在明显的“两级线性过程”。
     (10)大气干湿沉降对农田土壤有毒金属元素的输入贡献率均在90%以上;农田系统中Cd、Pb、As和Hg的输入通量分别为0.4020、15.711、3.139和0.250mg·m~(-2)·yr~(-1),均大于输出通量,分别为0.3247、10.5033、1.4944和0.0960mg·m~(-2)·yr~(-1)。进入农田中的各金属元素,80%以上的Cd累积在植物体中,近50%的Pb以地表径流形式进入地表水环境,残留在土壤和进入地表水环境的As超过80%,近60%的Hg残留在土壤中。
     本论文的主要特色:
     (1)从多学科交叉、宏观现象认识与微观机理实验模拟相结合的研究方法,围绕农田系统中金属元素的“输入”和“输出”过程,深入探讨了金属元素在农田土壤-植物系统中的环境行为。
     (2)本论文强调“自然条件”与“野外定点观测”,不同与以往对金属元素生物地球化学循环过程(如地表径流、渗漏输移等)研究过多依赖于室内模拟的状况。
     (3)自行设计了研究金属元素生物地球化学循环过程的若干装置和设备,建立了基于SINEO MDS系列密闭微波制样系统的环境样品处理方法。
     (4)首次系统研究了上海市大气有毒金属元素的干湿沉降特征及通量,发现上海是全球大气环境中有毒金属的重要输出地。
     (5)利用同位素示踪技术,对农田系统中金属元素的主要来源进行了分析。
     (6)对金属离子在城郊小河流沉积物上吸附的动力学过程和影响机制进行了深入探讨,并对一种新型的生物吸附材料进行了探索。
     (7)系统估算了常规种植条件下,农田系统中有毒金属元素的输入输出通量,计算了有毒金属元素在农田土壤中的累积速率。
With the development of urbanization and the interference of intensiveanthropogenic activities,a large amount of toxic metals from such contamination,asindustry,traffic and sewage,were emitted to the soil.The metals,persistent inenvironment,can not be degraded by the microorganism in soil.On the one hand,theaccumulated metals in agriculture soils can be transferred through food chains andconsequently cause adverse health effects on humans.On the other hand,toxic metalsin soil can be transformed to the more harmful organic metal compounds.In addition,under such dynamic conditions,as runoff,resuspension,leaching,and weathering,soils could contribute metals to the hydrosphere and the atmosphere.As a result,theecological environment is becoming deteriorated increasingly.It is noticeable that 2 ofthe 10 major environmental crises in the 20th century were associated to metalpollution.Therefore,toxic metal pollution in soil is one of the major globalenvironmental puzzles,accordingly,arouses a worldwide concern of the researchersand governments.
     With the support of the National Nature Science Foundation,the bidding projects ofShanghai Environmental Protection Bureau and the Key Program of Shanghai ScienceFoundation,the toxic metal (e.g.,Cd,Pb,As,Hg and Cr) pollution characteristics inShanghai soils were studied.The environmental biogeochemical cycles of metals infarmland were investigated in an all-round way,including atmospheric deposition,transfer in soil-plant system and surface runoff,as well as the leakage in soils.Additionally,the varied in-out put fluxes of metals in farmland were listed.Besides,the isothermal adsorption of Pb~(2+) and Hg~(2+) were explored deeply.The mainconclusions can be summed up as follows.
     (1) Metals in the agriculture soils were relatively low,up to the national soilstandards for the plants,whereas metals in surface dust have been accumulatedsignificantly.Metals in surface soils accumulated distinctly.Cd in surface soils wasmainly in weak acid-soluble and reducible fractions,while Pb and As were controlledby residual fraction,with the residual and reducible fractions for element of Hg.Thespeciation of metals in the soils of different profile was similar.Moveable coefficientsof Cd,Pb,As and Hg in surface soils were 36.43%,0.17%,1.08% and 2.76%,respectively.The order for bioavailable percentages of metals was as following:Cd>Hg>Pb>As.Fertilization,industrial and domestic wastes were the dominant sources of metals in the farmland soils,while the metal accumulation in dust wasassociated with contaminants introduced by traffic and industry.
     (2) Metal contents in urban soils were much higher than those in farmland soils,and metal pollution was even severer in urban dust.In Shanghai urban area,thepollution hotspots tended to associate with city core area,major road junctions,andthe regions close to industrial zones.In attempt of identifying the source of metalsthrough geostatistical and multivariate statistical analyses,it was concluded as follows:Pb,Zn and Cu mainly originated from traffic contaminants;soil Ni was associatedwith natural concentration;Cd largely came from point-sourced industrial pollution;and Cr,Ni in dust were mainly related to atmospheric deposition.
     (3) Metal contents in wheat were varied during the different growing stages.As forthe wheat organs,wheat fruit accumulated less metal,whereas metal contents in rootwere elevated.Although both Setaria viridis and wheat belongs to Gramineae,theaccumulation of metals in Setaria viridis was different,with higher metal contents infruits and low values for roots.Vegetable species could influence metal concentrations.Generally,higher metal enrichment was present in vegetable roots.Among theinvestigated metals,the bioconcentration factor of Cd in plants was the highest,lowvalue in plants for As.Metal contents in plants were dominated by bioavailablefraction in surface farmland soils,and a cubic function was fitted well.The results ofhealth risk assessment indicated that carcinogenic metals (Cd and As) in wheat andBrassica campestris L.ssp.Chinnesis could cause high risks,and the risk ofnoncarcinogenic metals (Pb and Hg) in vegetables and wheat can be ignored.
     (4) The rainwater in Shanghai was the acid rain,with a relatively low pH.Redoxpotential of the rain arranged from 120mV to 200mV mainly,and electricalconductivity in rainfall showed elevated values in winter,low numbers for summer.The ratios of NO_3~-contents to SO_4~(2-) levels revealed that H_2SO_4 controlled the acidityin the rainwater.Spatial analysis indicated that contributing rate of H_2SO_4 in the acidprecipitation was high in the rural area,followed by suburb and the city.Totalnitrogen (TN) contents in rain were from 0.37 mg·L~(-1) to 11.69 mg·L~(-1),and the averagevalue was 19.48mg.L~(-1) for total carbon (TC).Spatial distribution of TN and TC inrains was regular,and the higher contents were in urban precipitation,with the lowervalues in rural rains.Total organic carbon was the main component of TC in therainwater.Metal contents in rains varied in the order of Pb>Cr~(6+)>As>Cd>Hg,with thepollution degree of Hg>Pb>Cd>As≈Cr~(6+).As to the metal concentration varieties in rainfalls,higher metal contents were present in urban rain,while low values were insuburban and rural precipitation.Metal concentrations in rains were different in variedmonths,in general,Cd,Pb and As in December rainfall were elevated,with the lowvalues in summer.The value of K,solid-liquid distribution coefficients of metals inrainwater,was larger than 1,meaning that soluble fraction was dominant.There werebetter correlations between metal contents in rainwater and precipitation as well aswind directions.The stable isotope compositions of Pb in rains were 1.1620-1.1748for ~(206)pb/~(207)pb and 0.40878-0.41103 for ~(207)pb/~(208)Pb.Sources identification ofpollutants in rains demonstrated that N,Cd,Pb and As were from the trafficcontaminants,while Cr and TIC (total inorganic carbon) were mainly correlated withsurface dust and building site dust,TOC and Hg related to coal combustion.
     (5) Wet atmospheric deposition fluxes of metals in urban area were higher thanthose in suburban and rural areas.It was computed that bulk atmospheric depositionfluxes of Cd,Pb,As and Hg in Shanghai were 404,15500,2934 and 283μg·m~(-2)·yr~(-1)severally,and wet atmospheric deposition made a major contribution to the totaldeposition.It was concluded that various types and intensities of human activitieswere the main reasons for the spatial variation of metal atmospheric deposition fluxes.According to the atmospheric deposition and emissions of metals,it could be gottenthat there were more than 200t (Pb) and 7t (Hg) transported to other regions.
     (6) Dissolved metal concentrations (DMC) in farmland runoff were lower thanthose in the rainfall.For the DMC in bare farmland runoff,the values increasedsteadily with relatively small valuesat the beginning,subsequently,the numbersdecreased after the peak contents.Meanwhile,metal contents of particles (PMC) inthe runoff were higher than those in surface soils,of which the grain size wasrelatively larger.The change of PMC in the process of runoff events was similar to theDMC trend.As a whole,particle and total metals losses in bare farmland runoff couldbe characterized by the first flush effect.Compared the DMC in bare land runoff,there were no consistent trend of DMC in plant-covered farmland runoff processes,whereas the PMC increased with the reduction of turbidity of runoff.Event meanconcentrations of dissolved metals in the plant-covered land runoff were present in theorder of Cr~(6+)>As>Pb>Cd≈Hg,and the first-flush phenomenon of these elements werenot obvious.Metals of Cd,Pb and Hg in rainwater were absorbed significantly by thesoil particles in the runoff,and desorption of soils was dominant for As and Cr~(6+).Particle levels and dissolved cotents of Cd,Pb and Hg in bare land runoff were higher than those in plant-covered land runoff,but As and Cr~(6+) showed the oppositediscipline.It was the metal contents of rainwater what determines which process wasdominant,adsorption or desorption.The critical levels of Cd,Pb,As and Hg in rainswere 0.095,1.068,1.049 and 0.066μg·L~(-1) respectively.Furthermore,the solid-liquiddistribution coefficient (lgK_d) was varied among metals (As≈Pb>Hg≈Cd),on whichthe particle concentration effect was remarkable.The grain size and clay content ofthe particles in runoff determined the PMC in farmland runoff.
     (7) Metal levels in the in soil leaching solution were relatively low,and the value ofCr~(6+) was highest,followed by Pb>As>Hg>Cd.As for the contents variation indifferent layers of soil leaching solution,Cd and Hg contents in the depth of 20cmwere higher than those in the depth of 40 cm,the lowest for 60 cm.However,Cr~(6+)was present the opposite distribution.There were no consistency and regularity for theelement Pb and As contents.Broadly speaking,metal levels in the plant-coveredfarmland soil leaching solution were higher than those in the bare land solution,whichwas caused by the acidic component of root exudates.Cd,Pb,As and Hg wereadsorbed by soil particles significantly,leading to lower levels in soil leachingsolution,meantime Cr was desorbed from the soils and higher value was investigatedin the leaching solution.There was a better linear correlation between precipitationand leakage.The elements of C and N leakage fluxes in different depth of soil layerswere present in the order of 20cm<40cm<60cm,and metals were quite different,noconsistent tendency observed in varied layer soil solution.Among the 5 studied metals,Cr~(6+) leakage flux was the largest,followed by the descending order of Pb,As,Hg andCd.Comparison of metal levels in varied solutions showed that Cd,As and Cr~(6+)contents in runoff were higher than those in soil leaching solution,the oppositediscipline observed for Pb and Hg.Adsorption intensity was the primary cause ofdifferent metal levels in the two types of solutions.
     (8) Equilibrium time of adsorption increased with the increase of sediment mass insolution,while both adsorbed Pb~(2+) on per unit of sediment and Pb~(2+) concentration inthe solution after equilibrium decreased.More than 95% of Pb~(2+) in solution wasremoved when sediment contents larger than 0.6g·L~(-1).The experimental data closelyfollowed by both Langmuir and Redlich-Peterson isotherms,and sediment had aconsiderably high Langmuir monolayer capacity of Pb~(2+).Both pseudo-first-order andpseudo-second-order kinetics were tested and it was found that the latter gave a betterexplanation of the adsorption process.The equilibrium adsorption capacities calculated from the pseudo-second-order model could represent the true value.Therewas no significant correlation between initial adsorption rate of Pb~(2+) and the amountof sediment in solution.However,the pseudo-second-order rate constant increased inthe solution with more adsorbent,namely chemical adsorption controlled the process.Elovich equation could explain the mechanism of sorption in the solution with highercontents of sediment;nevertheless,the process of low concentration of adsorbentadsorbing Pb~(2+) disagreed well with Elovich equation.In terms of adsorption rate inthe sorption,intra-particle diffusion dominated in the more sediment solution.On theother hand,multi-linearity was presented for the adsorption rate in less adsorbentsolution.The first,sharper portion represented adsorption on the external surface.Thesecond portion indicated Pb~(2+) diffused gradually into the interior of particles andintra-particle diffusion controlled.pH of the solution,co-existence of EDTA,sedimentgrain size and humic acid level could influence the adsorption of Pb~(2+) onto sedimentgreatly.Adsorption rate of Hg~(2+) on sediment was greater than 97% after 0.3 min withthe initial content of 10μg·L~(-1),and physical adsorption controlled in the process.Theimpacting factors of Hg~(2+) adsorbed on sediment mainly included adsorbent amount,pH of solution,co-existence of EDTA and sediment humic acid content.It wasobserved that the co-existence of Cd~(2+) could not impact adsorption of Hg~(2+) due to thetrace initial level of adsorbate.
     (9) Adsorption rate of Pb~(2+) onto sediment core statically was relatively smaller.Lower initial level of Pb~(2+) resulted in the lower equilibrium content and smallerdiffusion rate in interface between water and sediment,and initial contents of Pb~(2+)were correlated well with diffusion rates and diffusion fluxes.Stem powder ofEichhornia crassipes (SPE) could truly be termed as a high-effective and low-costadsorbent,and the adsorption rate of Pb~(2+) with varied initial levels of 0.1-40 mg·L~(-1)was above 90%.Both elevated initial Pb~(2+) and less SPE could conduce to greaterequilibrium uptake and activation energy variation.It was revealedpseudo-second-order kinetics provided a better explanation of the adsorption of Pb~(2+)on SPE.In terms of adsorption rate in the sorption,chemical adsorption controlled theadsorption rate.Furthermore,two-step linearity was presented for the adsorption rate.
     (10) Suppose the farmland was a black box,inputs of toxic metals in the farmlandwere dominated by atmospheric deposition,with the contribution rates of more than90%.The input fluxes ofCd,Pb,As and Hg were 0.4020,15.711,3.139 and 0.250mg·m~(-2)·yr~(-1) respectively,which were smaller than the outputs values of 0.3247, 10.5033,1.4944 and 0.0960 mg·m~(-2)·yr~(-1).As far as the environmental fates of themetals introduced to farmland were concerned,more than 80% of Cd wasaccumulated in plants;about 50% of Pb was transported to surface water by runoff;larger than 80% of As was accumulated in soils and lost with runoff;residue of Hg insoils accounted for nearly 60% the input.
     Innovations of this PhD dissertation are mainly:
     (1) Based on the intersecting of several subjects and the combination ofmacroscopic phenomena and microcosmic mechanisms,the environmental behaviorsof toxic metals in soil-plant system were investigated according to the input-output ofmetals in farmland.
     (2) Paying more attention to the natural conditions and field observations,the studyon biogeochemical cycles was improved greatly;and the traditional researches toomuch relied on the simulation experiment.
     (3) Some new equipment for sampling and observation were developed in thisstudy;and methodology for sample preparation was conducted with tha aid of SINEOMDS micro-wave digestion system.
     (4) Wet and dry deposition of toxic metals in Shanghai was studied completely,andit was found that waste gas discharge of Shanghai was a main source of metals in theglobal atmosphere.
     (5) Major sources of toxic metals in soils and atmosphere were identified by use ofisotope tracer technique.
     (6) Kinetics and isotherms adsorption of metal ions onto small rever sedimentswere investigated thoroughly;and a new type of biological material adsorbing metalion was explored.
     (7) The input-output fluxes of toxic metals in farmand were estimated systemically,and the accumulation rates of metals in soils were computed.
引文
[1]Abrahams,P.W.Soils:their implications to human health.Science of the Total Environment, 2002,291:1-32.
    [2]Alloway B.J.Heavy Metals in Soils,Blackie,London(1995).
    [3]Andreu V.,Gimeno-Garcia E.Evolution of heavy metals in marsh areas under rice farming. Environmental Pollution,1999,104:271-282.
    [4]ASTM,American Society of Testing Materials.ASTM D2972.Standard Test Methods for Arsenic in Water.2003.
    [5]Bettinelli M.,Beone G.M.,Spezia S.,et al.Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis.Analytica Chimica Acta,2000,424(2):289-296.
    [6]Biasioli,M.,Barberis,R.,Ajmone-Marsan,F.The influence of a large city on some soil properties and metals content.Science of the Total Environment,2006,356:154-164.
    [7]Bocca,B.,Alimonti,A.,Petrucci,F.,et al.Quantification of trace elements by sector field inductively coupled plasma spectrometry in urine,serum,blood and cerebrospinal fluid of patients with Parkinson's disease.Spectrochim Acta Part B,2004,59:559-566.
    [8]Bogdan K,Schenk M K.Arsenic in Rice(Oryza sativa L.)Related to Dynamics of Arsenic and Silicic Acid in Paddy Soils.Environmental Science and Technology,2008,42(21): 7885-7890.
    [9] Bruemmer G. W., Gerth J., Herms U. Heavy metal species, mobility and availability in soils. Zeitschrift fur Pflanzenernahrung und Bodenkunde, 1986, 149(4): 382-389.
    
    [10] Camobreco V. J., Richards B. K., Steenhuis T. S., et al. Movement of heavy metals through undisturbed and homogenized soil columns. Soil Science, 1996, 161(11): 740-750.
    [11] Chen Z., Liu P., Xu S. Spatial distribution and accumulation of heavy metals in tidal flat sediments of Shanghai coastal zone. Science in China (Series B), 2001, 44(Supp.): 197-208.
    [12] Chen, T.B., Zheng, Y.M., Lei, M. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 2005, 60: 542-551.
    [13] Chirenje T, Ma L.Q., Reeves M. Lead distribution in near-surface soils of two Florida cities: Gainesville and Miami. Geoderma, 2004, 119: 113-120.
    [14] Chon, H.T., Ahn, J.S.G, Jung, M.C. Metal contamination of soils and dusts in Seoul metropolitan city, Korea. Environmental Geochemistry and Health, 1995, 17: 23-37.
    [15] Czarnowska, K. Akumulacja metali ciezick w glebach, oslinachi niektoych zwieretach na erenie. Warzawy Rocz Glebozn, 1980, 31: 77-115.
    [16] Davis S, Waller P, Buschbom R, et al. Quantitative estimates of soil ingestion in normal children between the ages of 2and 7 years: population-based estimates using aluminium, silicon, and titanium as soil tracer elements. Arch Environment Health, 1990, 45: 112-122.
    [17] Davydova S. Heavy metals as toxicants in big cities. Microchemical Journal, 2005, 79: 133-136.
    [18] De Miguel, E., Jimenez de Grado, M., Llamas, J.F., et al. The overlooked contribution of compost application to the trace element load in the urban soil of Madrid (Spain). Science ofthe Total Environment, 1998,215: 113-122.
    [19] Dekimple C R, Morel J-L. Urban soil management: a growing concern. Soil Sci., 2001, 65 (1): 31-40.
    [20] Duffus J H. "Heavy Metal"-a Meaningless Term? (IUPAC Technical Report). Pure Appl. Chem. 2002, 74 (5): 793-807.
    [21] Gibson, M.G., Farmer, J.G. Multi-step chemical extraction of heavy metals from urban soils. Environmental Pollution Series B, 1986, 11: 117-135.
    
    [22] Graney J.R., Halliday A.N., Keeler G.J., et al. Isotopic record of lead pollution in lake sediments from the northeastern United States. Geochimica et Cosmochimica Acta, 1995,59(9): 1715-1728.
    
    [23] Hakanson L. An ecological risk index for aquatic pollution control-a sedimentological approach. Water Research, 1980, 14:975-1001.
    [24] Imperato, M., Adamo, P., Naimo, D., et al. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental Pollution, 2003,124:247-256.
    [25] Jarvis B. Investigation of Stormwater Runoff from Highway Catchment, Department of Environmental Engineering, University of Western Australia, Nedlands, WA Thesis (honor),1992. 124pp.
    [26] Jinadasa K.B.P.N., Milham P.J., Hawkins C.A., et al. Heavy metals in the environment-survey of cadmium levels in vegetables and soils of Greater Sydney, Astralia. J.Environ Qual, 1997,26: 924-933.
    [27] Kabata-Pendias A, Pendias H. Trace Elements in Soils and Plants, CRC Press, London(2001).
    [28] Kahle, P. Schwermetallstatus Rostocker Gartenb(o|¨)den. Journal of Plant Nutrition and Soil Science, 2000, 163: 191-196.
    [29] Kloke A.D., Saverbeck R. Changing Metal Cycles and Human health. Berlin:Springer-verlag, 1984, pp. 113-141.
    [30] Klumpp A., Hintemann T., Lima J.S., et al. Bioindication of air pollution effects near a copper smelter in Brazil using mango trees and soil microbiological properties.Environmental Pollution, 2003,126(3): 313-321.
    [31] Lee P. Heavy metal contamination of settling Particle in a retention pond along theA-71 motorway in Sologne, France. Sci. Total Environ., 1997, 201 (1) :1-15
    [32] Li, X.D., Poon, C.S., Pui, S.L. Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 2001, 16:1361-1368.
    [33] Lin Z, Harsbo K, Ahlgren M, et al. The source and fate of Pb in contaminated soils at the urban area of Falun in central Sweden. The Science of the Total Environment, 1998, 209:47-58.
    [34] Loppi S., Frati L., Paoli L., et al. Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy) . Science of The Total Environment, 2004,29(1-3): 113-122.
    [35] Lux, W. Shhwermetallgehalte und isoplethen in Boden, subhydrishen Ablagerung und Pflanzen im Sudosten Hamburgs. Hamburger Bodenkudliche, Arbeiten. 1986.
    [36] Madrid, L., Díaz-Barrientos, E., Madrid, F. Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere, 2002,49: 1301-1308.
    [37] Manta, D.S., Angelone, M., Bellanca, A., et al. Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 2002, 300: 229-243.
    
    [38] Marin B., Chopin E.I.B., Jupinet B., et al. Comparison of microwave-assisted digestion procedures for total trace element content determination in calcareous soils. Talanta, 2008, 77(1): 282-288.
    
    [39] Melaku S., Dams R., Moens L. Determination of trace elements in agricultural soil samples by inductively coupled plasma-mass spectrometry: Microwave acid digestion versus aqua regia extraction. Analytica Chimica Acta, 2005, 543 (1-2): 117-123.
    [40] Merian E., Anke M., Ihnat M., et al. Elements and their Compound in the Environment. 2:Metals and their Compounds, Wiley-VCH, Weinheim, Germany (2004).
    
    [41] Mielke, H.W., Gonzalez, C.R., Smith, M.K., et al. The urban environment and children's health: soils as an integrator of lead, zinc and cadmium in New Orleans, Louisiana, USA.Environmental Research, 1999, 81: 117-129.
    
    [42] Miller J.R., Hudson-Edwards K.A., Lechler P.J., et al. Heavy metal contamination of water, soil and produce within riverine communities of the Río Pilcomayo basin, Bolivia. Science of the Total Environment, 2004, 320: 189-209.
    
    [43] M(o|¨)ller, A., Müller, H.W., Abdullahm, A., et al. Urban soil pollution in Damascus, Syria:concentrations and patterns of heavy metals in the soils of the Damascus Ghouta. Geoderma, 2005, 124:63-71.
    [44] Mulla D.J., Page A.L., Ganje T.J. Cadmium accumulation and bioavailability in soils from long term phosphorus fertilization. J Environ Qual, 1980, (9): 408-412.
    
    [45] Nordberg G, the ChinaCad Group. Cadmium and human health: Aperspective based on recent studies in China. The Journal of Trace Elements in Experimental Medicine, 2003, 16:307-319.
    [46] Nriagu, J. O. A Global Assessment of Natural Sources of Atmospheric Trace Metals. Nature, 1989,338:47-49.
    [47] Nriagu, J. O., Pacyna, J. M. Quantitative Assessment of World-wide Contamination of Air, Water and Soils by Trace Metals. Nature, 1988, 333: 134-139.
    [48] Nriagu, J.O. Cadmium in the Atmosphere and in Precipitation, Cadmium in the Environment, Part 1, Ecological Cycling, John Wiley & Sons, 1980, pp. 71-114.
    [49] Paterson, E., Sanka, M., Clark, L. Urban soils as pollutant sinks-a case study from Aberdeen, Scotland. Applied Geochemistry, 1996, 11: 129-131.
    [50] Pierzynsky G.M., Sims J.T, Vance G.F. Soils and Environmental Quality, CRC Press, Taylor & Francis, New York, USA (2005).
    [51] Pirrie D., Power M.R., Wheeler P.D., et al. Geochemical signature of historical mining: Fowey Estuary, Cornwall, UK. Journal of Geochemical Exploration, 2002, 76(1): 31-43.
    [52] Ramachandran V., Souza T.J.D. Chemical speciation of cadmium in contrasting Indian soil types. Chemistry Speciation Bioavailability, 1997, 9: 121-135.
    [53] Rasmussen, P.E., Subramanian, S.K., Jessiman, B.J. A multi-element profile of housedust in relation to exterior dust and soils in the city of Ottawa, Canada. Science of the Total Environment, 2001, 267: 125-140.
    [54] Ruby M V. Advances in evaluation the oral bioavailability using a physiological based extraction test. Environmental Science and Technology, 1999, 33:3697-3705.
    [55] Ruby M V. Estimation of lead and arsenic bioavailability using a physiological based extraction test. Environmental Science and Technology, 1994, 30:422-430.
    [56] Salim R.S., Ai M., Atallah A. Effects of root and foliar treatments with lead cadmium, and copper on the uptake distribution and growth of radish plants. Environment International, 1993,9(4): 440-445.
    [57] Salonen, V.P., Korkka-Niemi, K. Influence of parent sediments on the concentration of heavy metals in urban and suburban soils in Turku, Finland. Applied Geochemistry, 2007,22:906-918.
    [58] Sandroni V., Smith C.M.M. Microwave digestion of sludge, soil and sediment samples for metal analysis by inductively coupled plasma-atomic emission spectrometry. Analytica Chimica Acta, 2002,468 (2): 335-344.
    [59] Sastre J., Sahuquillo A., Vidal M., et al. Determination of Cd, Cu, Pb and Zn in environmental samples: Microwave-assisted total digestion versus aqua regia and nitric acid extraction. Analytica Chimica Acta, 2002,462 (1): 59-72.
    [60] Schulin R, Geiger G, Furrer G. Heavy metal retention bys soil organic matter under changing environmental conditions. In: Salomons W, Stigliani W M, eds. Biogeodynamics of Pollutants in Soil sand Sediments-Risk Assessment of Delayed and Non-Linear Responses. Springer, Berlin, 1995, 53-85.
    [61] Sezgin N., Ozcan H.K., Demir G., et al. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway. Environment International, 2004,29(7): 979-985.
    [62] Shi G, Chen Z, Xu S, et al. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environmental Pollution, 2008, 56: 251-260.
    [63] Shuman L.M. Organic waste amendments effect on zinc fractions of two soils. Journal of Environmental Quality, 1999,28: 1442-1447.
    [64] Stigliani W M, Doelman P, Salomons W, et al. Chemical time bombs-Predicting the unpredictable. Environment, 1991, 33: 4-30.
    [65]Taylor M.D.,Theng B.K.G.Sorption of cadmium by complexes of kaolinite with humic acid.Communication in Soil Science and Plant Analysis,1995,26(5-6):765-776.
    [66]Tessier A.,Compbell P.G.C.,Bisson M.Sequential Extraction Procedure for the Speciation of Particulate Trace Metals.Analytical Chemistry,1979,51(7):844-850.
    [67]Thornton,I.Metal contamination of soils in urban areas.In:Bullock,P.,Gregory,P.J.(Eds.), Soils in the urban environment.Blackwell,London,1991.pp.47-75.
    [68]US EPA.Method 3052-Microwave assisted acid digestion of siliceous and organically based matrices.1996.
    [69]US EPA.National water quality inventory,report to congress executive summary. Washington DC:USEPA,1995.
    [70]Van Gestel,C.A.M.,Hensbergen P.J.Interaction of Cd and Zn toxicity for Folosomia candida Willem(Collembola:Isotomidae).Environmental Toxicology and Chemistry,1997, 16:1177-1186.
    [71]Van Wijnen JH,Clausing P,Brunekreef B.Estimated soil ingestion by children.Environ Res.,1990,51:147-162.
    [72]Waisberg,M.,Joseph,P.,Hale,B.,et al.Molecular and cellular mechanisms of cadmium carcinogenesis.Toxicology,2003,192:95-117.
    [73]Wenzel W W,Jockwer F.Accumulation of heavy metals in plants grown on mineralized soils of the Austrian Alps.Environmental Pollution,1999,104:145-155.
    [74]WHO.Enviromental Health Criteria 18.Arsenic Geneva,WHO,1981,86,146.
    [75]Wilcke,W.,Muller,S.,Kanchanakool,N.,et al.Urban soil contamination in Bangkok: heavy metal and aluminium partitioning in topsoils.Geoderma,1998,86:211-228.
    [76]Wong C.S.C.,Li X,Thornton I.Urban environmental geochemistry of trace metals. Environmental Pollution,2006,142:1-16.
    [77]Yuana Y,Hall K,Oldham C.A preliminary model for predicting heavy metal contaminant loading from an urban catchment.Science of the Total Environment,2001,266:299-307.
    [78]Zhang M.,He Z.,Calvert D.V.,et al.Spatial and temporal variations of water quality in drainage ditches within vegetable farms and citrus groves.Agricultural Water Management, 2004,65:39-57.
    [79]Zhao X,Qing C,Wei S.Heavy Metal Runoff in Relation to Soil Characteristics.Pedosphere, 2001,11(2):137-142.
    [80]Zurera-Cosano G.,Moreno-Rojas R.,Salmeron-Egea J.,et al.Heavy metal uptake from greenhouse border soils for edible vegetables.J Sci Food Agric,1989,49:307-3 14.
    [81]毕春娟.长江口滨岸带潮滩重金属环境生物地球化学研究.上海:华东师范大学,2004. 171 pp.
    [82]常静.城市地表灰尘—降雨径流系统污染物迁移过程与环境效应.上海:华东师范大学,2007.
    [83]常青山,马祥庆,王志.南方重金属矿区重金属的污染特征及评价.长江流域资源与环境,2007,16(3):395-399.
    [84]陈怀满著.土壤中化学物质的行为与环境质量.北京:科学出版社,2002.
    [85]陈怀满.环境土壤学.北京:科学出版社,2005,547pp.
    [86]陈建芳,戎秋涛,刘建明,等.模拟酸雨对不同层次的红壤元素迁移作用的影响.农业环境保护,1996,15(4):150-154.
    [87]陈明,曹晓娟,谭科艳,等.土壤环境中化学定时炸弹的研究现状与展望.地质学报,2006,80(10):1607-1615.
    [88]陈喜保,章申,唐以剑,等.白洋淀地区农田径流中重金属迁移转化的模拟研究.白洋淀地区水污染控制研究,1995,89-100.
    [89]陈英旭,林琦,陆芳,等.有机酸对铅、镉植株危害的解毒作用研究.环境科学学报,2000,20(4):467-472.
    [90]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展.土壤通报,2004,35(3):366-370.
    [91]戴清文,曾志明,王继玉,等.江西省主要金属厂矿对畜牧业影响的初步调查.农业环境保护,1993,12(3):124-126.
    [92]邓南圣,吴峰.环境中的内分泌干扰物.北京:化学工业出版社,2004.pp.5-12.
    [93]高芹,邵劲松,余云飞.微波消解原子吸收光谱法测定土壤中铅镉铬铜.农业环境与发展,2006,3:99-101.
    [94]龚子同,黄标.关于土壤中“化学定时炸弹”及其触爆因素的探讨.地球科学进展,1998,13(2):184-191.
    [95]管东生,陈玉娟,阮国标.广州市及近郊土壤重金属含量特征及人类活动的影响.中山大学学报(自然科学版),2001,40(4):93-97.
    [96]郭朝晖,廖柏寒,黄昌勇.酸雨中SO_4~(2-)、 NO_3~-、 Ca~(2+)、 NH_4~+对红壤中重金属的影响.中国环境科学,2002,22(1):6-10.
    [97]郭朝晖,廖柏寒,黄昌勇.酸雨对污染环境中重金属化学行为的影响.环境污染质量技术与设备,2003,4(9):7-11.
    [98]韩凤祥,胡霭堂,秦怀英.不同土壤环境中镉的形态分配及活性研究.环境化学,1990,9(1):49-53.
    [99]和文祥,黄英锋.汞和镉对土壤脲酶活性影响.土壤学报,2002,39(3):412-416.
    [100]康如彤,钟燕,刘康香.学龄儿童血铅与身高、体重发育等级的关系.实用预防医学, 2005,12(3):610-611.
    [101]李天杰主编.土壤环境学.北京:高等教育出版社,1995.334pp.
    [102]李雪梅,王祖伟,邓小文.天津郊区菜田土壤重金属污染环境质量评价.天津师范大学学报(自然科学版),2005,25(1):69-72.
    [103]李英伦,蒲富永.铜铅镉砷在紫色丘陵农田中的径流迁移.农业环境保护,1992,11(2):66-71.
    [104]李正文,张艳玲,潘根兴,等.不同水稻品种籽粒Cd,Cu和Se的含量差异及其人类膳食摄取风险.环境科学,2003,24(3):112-115.
    [105]梁涛,王浩,张秀梅,等.不同土地类型下重金属随暴雨径流迁移过程及速率对比.应用生态学报,2003,14(10):1756-1760.
    [106]廖利,全宏东,吴学龙,等.深圳盐田垃圾场对周围土壤污染状况分析.城市环境与城市生态,1999,12(3):51-53.
    [107]廖敏,黄昌勇,谢正苗.pH对镉在土水系统中的迁移和形态的影响.环境科学学报,1999,19(1):81-86.
    [108]廖自基编著.环境中微量重金属元素的污染危害与迁移转化.北京:科学出版社,1986.325pp.
    [109]刘荣乐,李书田,王秀斌,等.我国商品有机肥料和有机废弃物中重金属的含量状况与分析.农业环境科学学报,2005,24(2):392-397.
    [110]刘廷良,高松武次郎,左濑裕之.日本城市土壤的重金属污染研究.环境科学研究,1996,9(2):47-51.
    [111]卢瑛,龚子同,张甘霖.城市土壤磁化率特征及其环境意义.华南农业大学学报,2001,22(4):26-28.
    [112]卢瑛,龚子同,张甘霖.城市土壤的特性及其管理.土壤与环境,2002,11(2):206-209.
    [113]罗厚枚,王宏康.土壤重金属复合污染对作物的影响.环境科学,1994,13(5):427-432.
    [114]孟昭福,薛澄泽,张增强,等.土壤中重金属复合污染的表征.农业环境保护,1999,18(2):87-91.
    [115]莫争,王春霞,陈琴,等.重金属Cu,Pb,Zn,Cr,Cd在水稻植株中的富集和分布.环境化学,2002,21(2):110-116.
    [116]南忠仁,程国栋.干旱区污灌农田作物系统重金属Cd、 Pb生态行为研究.农业环境保护,2001,20(4):210-213.
    [117]牛世全,宁应之,马正学,等.重金属复合污染土壤中原生动物的群落特征.甘肃科学学报,2002,14(3):44-48.
    [118]潘海峰.铬渣堆存区土壤重金属污染评价.环境与开发,1994,9(2):268-270.
    [119]秦俊法,李增禧.镉的人体健康效应.广东微量元素科学,2004,11(6):1-10.
    [120]沈振国,刘友良.超积累重金属植物研究进展.植物生理学通讯,1998,34(2):133-139.
    [121]师利明,郭军庆,罗德春.对公路两侧土壤中铅积累模式的理论探讨.西安公路交通大学学报,1998,18(3):13-15.
    [122]史贵涛,陈振楼,许世远,等.上海城市公园土壤及灰尘中重金属污染特征.环境科学,2007,28(2):14-18.
    [123]汤奇峰,杨忠芳,张本仁,等.成都经济区As等元素大气干湿沉降通量及来源研究,地学前缘,2007,14(3):213-222.
    [124]唐翔宇,朱永官.土壤中重金属对人体生物有效性的体外试验评估.环境与健康杂志,2004,21(3):183-185.
    [125]万双秀,王俊东.汞对人体神经的毒性及其危害.微量元素与健康研究,2005,22(2):67-69.
    [126]王国梁,周生路,赵其国,等.菜地土壤剖面上重金属元素含量随时间的变化规律研究.农业工程学报,2006,22(1):79-84.
    [127]王亚平,鲍征宇.土壤及沉积物中重金属的环境地球化学研究.环境科学与技术,1998(1):18-21.
    [128]王英辉,陈学军,赵艳林,等.铅锌矿区土壤重金属污染与优势植物累积特征.中国矿业大学学报,2007,36(4):487-493.
    [129]吴新民,李恋卿,潘根兴,等.南京市不同功能城区土壤中重金属Cu、 Zn、 Pb和Cd的污染特征.环境科学,2003,24(3):105-111.
    [130]吴新民,潘根兴.城市不同功能区土壤重金属分布初探.土壤学报,2005,42(3):513-517.
    [131]吴燕玉,王新,梁仁禄,等.Cd、 Pb、 Cu、 Zn、 As复合污染在农田生态系统的迁移动态研究.环境科学学报,1998,18(4):407-414.
    [132]徐东慧,陈志宾,蔡固平.硫酸锰废渣特性及综合利用研究.湖南有色金属,2005,21(1):32-35.
    [133]徐红宁.土壤环境中重金属污染对小麦的影响.中国环境科学,1994,18(5):435-432.
    [134]徐衍忠,秦绪娜,刘祥红,等.铬污染及其生态效应.环境科学与技术,2002,25(增刊)8-9,28.
    [135]许嘉琳,杨居荣.陆地生态系统中的重金属.北京:中国环境科学出版社,1995.449pp.
    [136]杨居荣,黄翌.植物对重金属的耐性机理.生态学杂志,1994,13(6):20-26.
    [137]杨元根,E.Paterson,C.Campbell.城市土壤中重金属元素的积累及其微生物效应.环境科学,2001,22(3):44-48.
    [138]杨志泉,周少奇.广州大田山垃圾填埋场渗滤液有害成分的检测分析.化工学报,2005,56(11):2183-2188.
    [139]袁旭音,陈骏,季峻峰,等.太湖沉积物和湖岸土壤的污染元素特征及环境变化效应沉积学报,2002,20(3):427-434.
    [140]咎启杰,王勇军,王伯荪.深圳福田红树林无瓣海桑与海桑群落的重金属积累和循环环境科学,2002,23(4):81-88.
    [141]张辉,马东升.城市生活垃圾向土壤释放重金属研究.环境化学,2001,20(1):43-47
    [142]张金屯,Pouyat R.“城-郊-乡”生态样带森林土壤重金属变化格局.中国环境科学,1997,17(5):410-413.
    [143]张菊.上海城市街道灰尘重金属污染研究.上海:华东师范大学,2005.101 pp.
    [144]张磊,宋凤斌,王晓波.中国城市土壤重金属污染研究现状及对策.生态环境,2004,13(2):258-260.
    [145]张乃明.大气沉降对土壤重金属累积的影响.土壤与环境,2001,10(2):91-93.
    [146]张秀梅,章申,唐以剑,等.白洋淀地区农田径流中氮磷与重金属元素变化规律的模拟研究.白洋淀地区水污染控制研究,1995,101-108.
    [147]张祖锡.改良城市污水农灌的植物与土壤效应田.农业环境保护,1998,6(2):33-34.
    [148]章明奎,郑顺安,王丽平.粪肥添加明矾对降低农田磷和重金属流失的作用.水土保持学报,2007,21(1):65-67.
    [149]赵其国.21世纪土壤科学展望.地球科学进展,2001,16(5):704-709.
    [150]赵其国.发展与创新现代土壤科学.土壤学报,2003,40(3):321-327.
    [151]赵其国.土壤圈物质循环研究与土壤学的发展.土壤,1991,23(1):1-3,15.
    [152]周青,张辉.镧对Cd胁迫下菜豆幼苗生长的影响.环境科学,2003,24(4):48-52.
    [153]周焱,陆若辉,董越勇,等.浙江省复混肥料、有机—无机复混肥料和有机肥料品质的研究.植物营养与肥料学报,2007,13(1):148-154.
    [154]朱定祥,倪守斌.铬的生物地球化学及生物效应.广东微量元素科学,2004,11(4):1-9.
    [155]朱定祥,倪守斌.人类活动对铬生物地球化学循环的影响.上海环境科学,2005,24(3):124-128.
    [156]朱亮,邵孝侯.耕作层中重金属Cd形态分布规律及植物有效性研究.河海大学学报(自然科学版),1997,25(3):50-56.
    [157]朱志良,张华,陈玲,等.模拟酸雨对污泥中重金属元素的淋洗作用研究.清洗世界,2006,22(1):1-4.
    [158]卓慕宁,吴志峰,王继增,等.珠海城区降雨径流污染特征初步研究.土壤学报,2003,40(5):775-778.
    [1]National Population and Family Planning Commission of China,2006.Shanghai:the resident population.Available: http://www.chinapop.gov.cn/rkzh/rk/tjzlzg/t20060320-57335.htm.
    [2]潘振玉.化肥与都市农业(上).化肥工业,2003,32(1):8-12.
    [3]上海市统计局.上海2008统计年鉴,online edition.Available:http://www.stats-sh.gov.cn/2004shtj/tjnj/tjnj2oo8.htm.
    [4]宋秀杰,陈博.北京市农药化肥非点源污染防治的技术措施.环境保护,2001,9:30-32.
    [5]王云.上海市土壤环境背景值.北京:中国环境科学出版社出版,1992,37.
    [6]徐启新,杨凯,许世远.上海高速城市化进程对水环境的影响及对策探讨.世界地理研究,2003,12(1):54-59.
    [7]许世远.上海城市自然地理图集.上海:中华地图学社,2004,65pp.
    [1]Azimi S,Rocher V,Garnaud S,et al.Decrease of atmospheric deposition of heavy metals in an urban area from 1994 to 2002(Paris,France).Chemosphere,2005,61:645-651.
    [2]US EPA.Method 3052-Microwave assisted acid digestion of siliceous and organically based matrices.1996.
    [1]Abrahams PW.Soils:their implications to human health.Sci.Total Environ.,2002,291:1-32.
    [2]Adachi,K.,Tainosho,Y.Characterization of heavy metal particles embedded in tire dust.Environment International,2004,30:1009-1017.
    [3]Alloway,B.J.Heavy Metals in Soils.Blackie,London,1990.
    [4]Biasioli,M.,Barberis,R.,Ajmone-Marsan,F.The influence of a large city on some soil properties and metals content.Science of the Total Environment,2006,356:154-164.
    [5]Bruemmer,G.W.,Gerth,J.,Tiller,K.G.Reaction kinetics of the adsorption and desorption of nickel,zinc and cadmium by goethite:1.Adsorption and diffusion of metals.Journal of Soil Science,1988,39:37-52.
    [6]Charlesworth,S.,Everett,M.,McCarthy,R.,et al.A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birminghman and Coventry,West Midlands,UK.Environment International,2003,29: 563-573.
    [7]Chen T.B.,Wong JWC,Zhou HY,et al.Assessment of trace metal distribution and contamination in surface soils of Hong Kong.Environmental Pollution,1997,96(1):61-68.
    [8]Chen,T.B.,Zheng,Y.M.,Lei,M.,et al.Assessment of heavy metal pollution in surface soils of urban parks in Beijing,China.Chemosphere,2005,60:542-551.
    [9]Chen Z Y,Saito Y,Kanai Y,et al.Low concentration of heavy metals in the Yangtze estuarine sediments China:a diluting setting.Estuarine Coastal&Shelf Science,2004,60: 91-100.
    [10]Cyrys,J.,Stolzel,M.,Heinrich,J.,et al.Elemental composition and sources of fine and ultrafine ambient particles in Erfurt,Germany.Science of the Total Environment,2003,305: 143-156.
    [11]Davis S,Waller P,Buschbom R,et al.Quantitative estimates of soil ingestion in normal children between the ages of 2 and 7 years:population-based estimates using aluminium, silicon,and titanium as soil tracer elements.Arch Environment Health,1990,45:112-122.
    [12]De Miguel,E.,Llamas,J.F.,Chacon,E.,et al.Origin and patterns of distribution of trace elements in street dust:unleaded petrol and urban lead.Atmos.Environ.,1997,31: 2733-2740.
    [13] Galley F A, Lloyd O L. Grass and surface soils as monitors of atmospheric metal pollution in central Scotland. Water, Air, and Pollution, 1985,24: 1-18.
    [14] Gray, C.W., McLaren, R.G, Roberts, A.H.C. Atmospheric accessions of heavy metals to some New Zealand pastoral soils. Science of the Total Environment, 2003,305: 105-115.
    [15] Green-Ruiz C, Pez-Osuna F. Heavv metal anomalies in lagoon sediments related to intensive agriculture in Altata-Ensenada del Pabell a coastal system (SE Gulf of California).Environ Int, 2001,26: 265-273.
    [16] Shi G, Chen Z, Xu S, et al. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environmental Pollution, 2008,56: 251-260.
    [17] Han, Y., Du, P., Cao, J., et al. Multivariate analysis of heavy metal contamination in urban dusts of Xi'an, Central China. Science of the Total Environment, 2006, 355:176-186.
    [18] Huang WW, Zhang J. Effect of particle size on transition metal concentrations in the Changjiang (Yangtze River) and Huanghe (Yellow River), China. Science of The Total Environment, 1990,94: 187-207.
    [19] Jiries, A.G., Hussein, H.H., Halash, Z. The quality of water and sediments of street runoff in Amman, Jordan. Hydrological Processes, 2001, 15: 815-824.
    [20] Kabala, C., Singh, B. R. Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. Journal of Environmental Quality, 2001, 30: 485-492.
    [21] Li X D, Poon C S, Liu P S. Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 2001,16: 1361-1368.
    [22] Li X, Huang C. Environment impact of heavy metals on urban soil in the vicinity of industrial area of Baoji city, P.R. China. Environmental Geology, 2007, 52: 1631-1637.
    [23] Lisiewicz M., Heimburger R., Golimowski J. Granulometry and the content of toxic and potentially toxic elements in vacuum-cleaner collected, indoor dusts of city of Warsaw. Sci.Total Environ., 2000, 263: 69-78.
    [24] Lu, Y., Zhu, F., Chen J., et al. Chemical fractionation of heavy metals in urban soils of Guangzhou, China. Environmental Monitoring and Assessment, 2007, 134: 429-439.
    [25] Manno, E., Varrica, D., Dongarrà G. Metal distribution in road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily. Atmospheric Environment, 2006,40:5929-5941.
    [26] Manta, D.S., Angelone, M., Bellanca, A., et al. Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 2002, 300:229-243.
    [27] Menon M G, Gibbs R J, Phillips A. Accumulation of muds and metals in the Hudson River estuary turbidity maximum. Environmental Geology, 1998, 34: 214-222.
    [28] Muller G. Index of geoaccumulation in sediment of the Rhine river. Geological Journal,1969,2 (3): 108-118.
    
    [29] Nicholson K.W. A review of particle resuspension. Atmos. Environ., 1988, 22: 2639-3651.
    [30] Omar, N.Y.M.J., Abas, M.R.B., Rahman, N.A., et al. Levels and distributions of organic source tracers in air and roadside dust particles of Kuala Lumpur, Malaysia. Environmental Geology, 2007, 52: 1485-1500.
    [31] Pueyo, M., Sastre, J., Hernandez, E., et al. Prediction of trace element mobility in contaminated soils by sequential extraction. Journal of Environmental Quality, 2003, 32:2054-2066.
    [32] Qian J, Shan X Q, Wang Z J, et al. Distribution and plant availability of heavy metals in different particle-size fractions of soil. Science of the Total Environment. 1996, 187: 131-141.
    [33] Rapant S, Kordik J. An environmental risk assessment map of the Slovak Republic:Application of data from geo chemical atlases. Environmental Geology, 2003, 44(4):400-407.
    [34] Robertson, G.P., Klingensmith, K.M., Klug, M.J., et al. Soil resources, microbial activity,and primary production across an agricultural ecosystem. Ecological Applications, 1997, 7:158-170.
    [35] Rogge, W.F., Mazurek, M.A., Hildemann, L.M., et al. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment, 1993, 27A: 1309-1330.
    [36] Rose N L, Boyle J F, Du Y, et al. Sedimentary evidence for changes in the pollution status of Taihu in the Jiangsu region of eastern China. J Paleolimnol, 2004, 32: 41-51.
    [37] Rossini Oliva S., Fernandez Espinosa A.J. Monitoring of heavy metals in topsoils,atmospheric particles and plant leaves to identify possible contamination sources.Microchemical Journal, 2007, 86: 131-139.
    [38] Roussiez V, Ludwig W, Probst J L, et al. Background levels of heavy metals in surficial sediments of the Gulf of Lions (NW Mediterranean): an approach based on ~(33)Cs normalization and lead isotope measurement. Environmental Pollution, 2005, 138: 167-177.
    [39] Sabin, L.D., Lim, J.H., Venezia, M.T., et al. Dry deposition and resuspension of particle-associated metals near a freeway in Los Angeles. Atmospheric Environment, 2006,40: 7528-7538.
    [40]Sauv(?)S.,Hendershot W.,Allen H.E.Solid-solution partitioning of metals in contaminated soils:dependence on pH,total metal burden,and organic matter.Environmental Science and Technology,2000,34:1125-1131.
    [41]Sehmel,G.A.Particle resuspension:a review.Environ.Int.,1980,4:107-127.
    [42]Sezgin N,Ozcan H K,Demir G,et al.Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway.Environment International,2004,29(7):979-985.
    [43]Shen,L.,Cheng,S.,Gu,S.,et al.Environmental policy and law for sustainable natural resources development-issues and challenges.Environmental Policy and Law,2002,32: 91-98.
    [44]Van Wijnen JH,Clausing P,Brunekreef B.Estimated soil ingestion by children.Environ Res.,1990,51:147-162.
    [45]Wilcke,W.,Muller,S.,Kanchanakool,N.,et al.Urban soil contamination in Bangkok: heavy metal and aluminium partitioning in topsoils.Geoderma,1998,86:211-228.
    [46]Zhang C S,Wang L J,Li G S,et al.Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay,China.Applied Geochemistry,2002,17: 59-68.
    [47]白世强,卢升高.洛阳市工业区及郊区土壤的重金属含量分析与评价.农业环境科学学报,2007,26(1):257-261.
    [48]陈静生.论小于63μm粒级作为水体颗粒物重金属研究介质的合理性及有关粒级转换模型研究.环境科学学报,1994,14(4):419-425.
    [49]陈玉娟,温琰茂,柴世伟.珠江三角洲农业土壤重金属含量特征研究.环境科学研究,2005,18(3):75-77.
    [50]丁振华,贾洪武,刘彩娥,等.黄浦江沉积物重金属的污染及评价.环境科学与技术,2006,29(2):64-66.
    [51]郭观林,周启星.污染黑土中重金属的形态分布与生物活性研究.环境化学.2005,24(4):383-388.
    [52]胡克林,张凤荣,吕贻忠,等.北京市大兴区土壤重金属含量的空间分布特征.环境科学学报,2004,24(3):463-468.
    [53]梁涛,王浩,张秀梅,等.不同土地类型下重金属随暴雨径流迁移过程及速率对比.应用生态学报,2003,14(10):1756-1760.
    [54]廖自基.环境中微量重金属元素的污染危害与迁移转化.北京:科学出版社,1986.
    [55]刘恩峰,沈吉,朱育新.沉积物金属元素变化的粒度效应-以太湖沉积岩芯为例.湖泊科学,2006,18(4):363-368.
    [56]刘素美,张经.沉积物中重金属的归一化问题-以Al为例.东海海洋,1998,16(3):48-55.
    [57]刘晓端,徐清,葛晓立,等.密云水库沉积物中金属元素形态分析研究.中国科学D辑,2005,35(增刊Ⅰ):288-295.
    [58]史贵涛,陈振楼,王利,等.上海城市公园灰尘重金属污染及其潜在生态风险评价.城市环境与城市生态,2006,19(4):40-43.
    [59]史贵涛,陈振楼,许世远,等.上海市区公园表层土壤铅含量及其污染评价.土壤,2006,38(3):287-291.
    [60]史贵涛,陈振楼,许世远,等.上海市区公园土壤重金属含量及其污染评价.土壤通报,2006,37(3):490-494.
    [61]史贵涛,陈振楼,张翠,等.黄浦江上游周边农田土壤、蔬菜及道路灰尘中汞的累积.环境化学,2008,27(1):100-104.
    [62]田应兵,程水源,周建利,等.城郊菜地土壤重金属含量及其影响因素.湖北农业科学,2005,2:66-70.
    [63]王初.公路路域生态环境安全评价与预警研究.上海:华东师范大学.2007.65-70.
    [64]王金达,刘景双,于君宝,等.沈阳市城区土壤和灰尘中铅的分布特征.中国环境科学,2003,23(3):300-304.
    [65]王军,陈振楼,王初,等.上海崇明岛蔬菜地土壤重金属含量与生态风险预警评估.环境科学,2007,28(3):647-653.
    [66]王利,陈振楼,许世远,等.上海市延安高架道路绿地土壤与沿线灰尘中铅的分布特征.环境污染与防治,2007,29(2):132-133.
    [67]王学军,陈静生.我国东部平原土壤微量元素共生组合特征及含量预测.地球化学,194,23(增刊):124-133.
    [68]王云.上海市土壤环境背景值.北京:中国环境科学出版社出版,1992,pp.37.
    [69]巫和昕,胡雪峰,张国莹,等.上海市宝山区土壤重金属含量及其分异特征.上海大学学报,2004,10(4):400-405.
    [70]吴新民,李恋卿,潘根兴,等.南京市不同功能城区土壤中重金属Cu、 Zn、 Pb和Cd的污染特征.环境科学,2003,24(3):105-111.
    [71]袁旭音,陈骏,季峻峰,等.太湖沉积物和湖岸土壤的污染元素特征及环境变化效应.沉积学报,2002,20(3):427-434.
    [72]赵永存,汪景宽,王铁宇,等.吉林公主岭土壤中砷、铬和锌含量的空间变异性及分布规律研究.土壤通报,2002,33(5):372-376.
    [73]左伟,王桥,王文杰,等.区域生态风险评价指标与标准研究.地理学与国土研究,2002,18(1):67-71.
    [1]Alexande P.D.,Alloway B.J.,Dourado A.M.Genotypic variations in the accumulation of Cd, Cu,Pb and Zn exhibited by six commonly grown vegetables.Environmental Pollution,2006, 144:736-745.
    [2]Cacador I,Vale C.,Catarino F.Accumulation of Zn,Pb,Cu,C r and Ni in sediments between root s of the Tagus Estuary salt marshes,Portugal.Estuarine Coastal and Shelf Science,1996,(42):393-403.
    [3]Chojnacka K.Bioavailability of heavy metals from polluted soils to plants.Science of the Total Environment,2005,337:175-182.
    [4]Egler S G.,Rodrigues-Filho S,Villas-B(?)as R C,et al.Evaluation of mercury pollution in cultivated and wild plants from two small communities of the Tapaj(?)s gold mining reserve, Par(?)State,Brazil.Science of the Total Environment,2006,368:424-433.
    [5]EPA.Superfund Public Health Evaluation Manual.EPA/540/186060,1986.
    [6]Jin CW.Lead contamination in tea garden soils and factors affecting its bioavailability. Chemosphere,2005,59(8):1151-1159.
    [7]Kalliomaa K,Haag-Gronlund M,Victorin K.A New Model Function for Continuous Data Sets in Health Risk Assessment of Chemicals Using the Benchmark Dose Concept. Regulatory Toxicology and Pharmacology,1998,27(2):98-107.
    [8]SFT.Guidelines on Risk Assessment of Contaminated Sites,SFT report 99.06.Norwegian Pollution Control Authority,1999.
    [9]Steinemann A.Rethinking human health impact assessment.Environmental Impact Assessment Review,2000,20:627-645.
    [10]Tokalioglu S,Kartal S,G(?)ness AA.Statistical evaluation of bioavailability of metals to grapes growing in contaminated vineyard soils using single extractans.Int J Environ Anal Chem,2004,84:691-705.
    [11]Xu MG,Zhang YP,Sun BH.Mechanisms for the movement of Fe,Mn,Cu and Zn to plant roots in Loessal soil and Lou soil.Pedosphere,1996,6(3):245-24.
    [12]毕春娟,陈振楼,郑祥民,等.根际环境重金属地球化学行为及其生物有效性研究进展.地球科学进展,2001,16(3):387-393.
    [13]仇付国,王晓吕.污水再生利用的健康风险评价方法.环境污染与防治,2003,25(1):49-51.
    [14]高继军,张力平,黄圣彪,等.北京市饮用水源水重金属污染物健康风险的初步评价.环境科学,2004,25(2):47-50.
    [15]高永华,王金,赵莉,等.污灌区土壤-植物系统中重金属分布与迁移转化特征研究.河北农业大学学报,2006,29(5):52-56.
    [16]纪淑娟,王俊伟,王颜红,等.土壤有效态Pb和Cd与大蒜吸收Pb和Cd的关系.沈阳农业大学学报,2008,39(2):237-239.
    [17]李秀兰,胡雪峰.上海郊区蔬菜重金属污染现状及累积规律研究.化学工程师,2005,5:36-38.59.
    [18]李泽琴.成都市某蔬菜基地重金属污染状况分析.地质灾害与环境保护,2002,13(4):24-27.
    [19]刘洪莲.苏南部分地区土壤-作物系统中重金属及其食物安全风险探讨.南京:南京农业 大学,2006,44pp.
    [20]刘建武.郑州市郊区不同灌区土壤-作物系统有害元素富集规律研究.郑州:河南农业大学,2001.68pp.
    [21]毛小苓,刘阳生.国内外环境风险评价研究进展.应用基础与工程科学学报,2003,11(3):266-273.
    [22]钱家忠,李如忠,汪家权等.城市供水水源地水质健康风险评价.水利学报,2004,8:90-93.
    [23]王大坤,李建新.健康危害评价在环境质量评价中的应用.环境污染与防治,1995,17(5):9-12.
    [24]王焕校.污染生态学基础.云南:云南大学出版社,1990,71-148.
    [25]王新,吴燕玉.重金属在土壤-水稻系统中的行为特.生态学杂志,1997,16(4):10-14.
    [26]王学锋,王磊,师东阳,等.新乡市污灌区蔬菜地重金属污染状况调查分析.安徽农业科学,2007,35(36):11980-11981.
    [27]谢正苗,李静,王碧玲,等.基于地统计学和GIS的土壤和蔬菜重金属的环境质量评价.环境科学,2006,27(10):2110-2116.
    [28]袁顺全,赵烨,李武艳,等.弥河流域重金属在冬小麦不同器官中的富集特征.中国农学通报,2008,24(3):341-344.
    [29]曾光明,卓利,钟政林,等.水环境健康风险模型及其应用.水电能源科学,1997,15(4):28-32.
    [30]张丽,张兴昌.植物生长过程中水分、氮素、光照的互作效应.干旱地区农业研究,2003,21(3):43-46.
    [31]张祖锡,白瑛.改良城币污水农灌的作物与土壤效应.农业环境保护,1988,7(2):23-24.
    [3]Airey D.Contributions from coal and industrial materials to mercury in air,rainwater and snow.The Science of The Total Environment,1982,25(1):19-40.
    [4]Al-Khashman O A.Chemical characteristics of rainwater collected at a western site of Jordan Atmospheric Research,2009,91(1):53-61.
    [5]Al-Khashman O A.Study of chemical composition in wet atmospheric precipitation in Eshidiya area,Jordan.Atmospheric Environment,2005,39:6175-6183.
    [6]Al-Khashman,O A.Ionic composition of wet precipitation in the Petra region,Jordan.Atmos Res.,2005,78:1-12.
    [7] Al-Momani I.F., Ya'qoub A.-R.A., Al-Bataineh B.M. Atmospheric deposition of major ions and trace metals near an industrial area, Jordan. J. Environ. Monit.. 2002, 4:985-989.
    [8] Al-Momani, I.F. Trace elements in atmospheric precipitation at northern Jordan measured by ICP-MS: acidity and possible sources. Atmos. Environ., 2003,37:4507-4515.
    [9] Avila, A., Alarcon, M. Relationship between precipitation chemistry and metrologica) situations at a rural site in NE Spain. Atmos. Environ., 1999, 33:1663-1667.
    [10] Azimi S, Rocher V, Garnaud S, et al. Decrease of atmospheric deposition of heavy metals in an urban area from 1994 to 2002 (Paris, France). Chemosphere, 2005, 61: 645-651.
    [11] Azimi, S., Ludwig, A., Thevenot, D. R. et al. Trace metal determination in total atmospheric deposition in rural and urban areas. Sci. Total Environ., 2003, 308: 247-256.
    [12] Baez, A., Belmont, R., Garcia, R. et al. Chemical composition of rainwater collected at a southwest site of Mexico City, Mexico. Atmospheric Research, 2007, 86(1): 61-75.
    [13] Baez, A.P., Belmont, R.D., Garcia, R.M., et al. Rainwater chemical composition at two sites in Central Mexico. Atmos. Res., 2007, 80: 67-85.
    [14] Balasubramanian, R., Victor, T., Chun, N. Chemical and statistical analysis of precipitation in Singapore. Water Air Soil Pollut., 2001, 130:451-456.
    [15] Bayraktar, H., Turalioglu, F.S. Composition of wet and bulk deposition in Erzurum, Turkey.Chemosphere, 2005, 59: 1537-546.
    [16] Bilos C, Colombo J.C., Skorupka C.N., et al. Sources, distribution and variability of airborne trace metals in La Plata City area, Argentina. Environmental Pollution, 2001, 111: 149-158.
    [17] Chester, R., Bradshaw, G. F., Corcoran, P. A. Trace metal chemistry of the North Sea particulate aerosol: Concentrations, sources and sea water fates. Atmos. Environ., 1994, 28:2873-2883.
    [18] Colin, J.L., Jaffrezo, J.L., Gros, J.M. Solubility of major species in precipitation: factors of variation. Atmos. Environ., 1990, 25A: 537-544.
    [19] Conko, K.M., Rice, K.C., Kennedy, M.M. Atmospheric Wet Deposition of Trace Elements to a Suburban Environment, Reston, Virginia, USA. Atmospheric Environment, 2004, 38(24):4025-4033.
    [20] da Silva GS, Jardim WF, Fadini PS. Elemental gaseous mercury flux at the water/air interface over the Negro River basin, Amazon, Brazil. Science of The Total Environment, 2006, 368(1):189-198.
    [21] Davis, A.P., Shokouhian, M., Ni, S. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere, 2001,44: 997-1009.
    [22] Deboudt, K., Flament, P., Laure Bertho, M. Cd, Cu, Pb and Zn concentrations in atmospheric wet deposition at a coastal station in Western Europe. Water, Air, and Soil Pollution, 2004, 151:335-359.
    [23] Desboeufs, K., Losno, R., Colin, J.L. Factors influencing aerosol solubility during cloud processes. Atmos. Environ., 2001, 35: 3529-3537.
    [24] Dianne, L.L., Baker, J.E. Atmospheric deposition of organic contaminants to the Chesapeake Bay. Atmospheric Environment, 1994,28: 1499-1520.
    [25] Didyk B M, Simoneit B R T , Pezoa L A , et al . Urban aerosol particles of Santiago, Chile: organic content and molecular characterization. Atmospheric Environment, 2000, 34 (8) :1167-1179.
    [26] Duzgoren-Aydin N S, Li X D, Wang S C. Lead contamination and isotope signatures in the urban environment of Hong Kong. Environment International, 2004, 30: 209-217.
    [27] Farooqi A, Masuda H, Firdous N. Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources.Environmental Pollution, 2007, 145(3): 839-849.
    [28] Flues, M., Hamma, P., Lames, M.J.L. Evaluation of the rainwater acidity of a rural region due to a coal-fired power plant in Brazil. Atmos. Environ., 2002, 36: 2397-2404.
    [29] Fujita S, Takahashi A, Weng J, et al. Precipitation chemistry in East Asia. Atmospheric Environment, 2000, 34 (4): 525-537.
    [30] Galloway J N, Likens G E, Hawley M E. Acid Precipitation: Natural Versus Anthropogenic Components. Science, 1984, 226(4676): 829-831.
    [31] Galloway, J. N., Thorton, J. D., Norton, S. A., et al. Trace metals in atmospheric deposition: A review and assessment. Atmos. Environ., 1982, 16: 1677-1700.
    [32] Garland J.A.D. Dry and wet remove of sulphur form the atmosphere. Atmos Environ., 1978,12:349-362.
    [33] Garnaud, S., Mouchel, J.M., Chebbo, G., et al. Heavy metal concentrations in dry and wet atmospheric deposits in Paris district: comparison with urban runoff. Sci. Total Environ, 1999,235: 235-245.
    [34] Gulson B L. A Brief Review of the Lead Isotope Fingerprinting Method. Proceedings of the International Conference on Lead Prevention & Treatment, February 8-10 1999, Bangaloce. India pp. 129-138.
    [35] Heaton R.W., Rahn K.A., Lowental D.H. Regional apportionment of sulfate and tracer elements in Rhode Island precipitation. Atmos. Environ, 1992, 26A: 1529-1543.
    [36] Helme N, Neme C. Acid Rain: The problem. EPA Journal, 1991, 17( 1): 18-26.
    [37] Herut, B., Starinsky, A., Katz, A., et al. Relationship between the acidity and the chemical composition of rainwater and climatological conditions a long a transition zone between large deserts and Mediterranean climate. Israel. Atmos. Environ., 2000, 34: 1281-1292.
    [38] Hu G.P., Balasubramanian R. Wet deposition of trace metals in Singapore. Water Air Soil Pollut., 2003,144: 285-300.
    [39] Jaworowski Z., Bysiek M., Kownacka A. Flow of metals into the global atmosphere. Geochim Cosmochim Acta, 1981,45:2185-2199.
    [40] Kanellopoulou, E.A. Determination of heavy metals in wet deposition of Athens. Global Nest: The International Journal, 2001, 3 (1): 45-50.
    [41] Kaya G., Tuncel G. Trace element and major ion composition of wet and dry deposition in Ankara, Turkey. Atmos. Environ., 1997, 31: 3985-3998.
    [42] Kim K.H., Kim M.Y. The effects of anthropogenic sources on temporal distribution characteristics of total gaseous mercury in Korea. Atmos. Environ., 2000, 34: 3337-3347.
    [43] Kloke AS. Changing Metal Cycles and Human health. Berlin: Springer-verlag, 1984,113-141.
    [44] Klumpp A, Hintemann T, Lima JS, et al. Bioindication of air pollution effects near a copper smelter in Brazil using mango trees and soil microbiological properties. Environmental Pollution, 2003, 126(3): 313-321.
    [45] Kurkjian R, Dunlap C, Flegal A R. Lead isotopic tracking of atmospheric response to post-industrial conditions in Yerevan, Armenia. Atmospheric Environment, 2002, 36 :1421-1429.
    [46] Le Bolloch O, Guerzoni S. Acid and alkaline deposition in precipitation on the western coast of Sardinia, central Mediterranean (40 °N, 8 °E), Water air soil pollut, 1995, 85: 2155-2160.
    [47] Li M., Kang S., Zhang Q., et al. Major ionic composition of precipitation in the Nam Co region, Central Tibetan Plateau, Atmos. Res., 2007, 85: 351-360.
    [48] Likens G E, Edgerton E S, Galloway J N. The composition and deposition of organic carbon in precipitation. Tellus, 1983 ,35B: 16-24.
    [49] Lindberg S.E. Factors influencing trace metal, sulfate and hydrogen ion concentrations in rain. Atmospheric Environ, 1982, 18: 1701-1709.
    [50] Loppi S, Frati L, Paoli L, et al. Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy). Science of The Total Environment, 2004, 29(1-3):113-122.
    [51] Martuzevicius, D., Grinshpun, S.A., Reponean, T., et al. Spatial and temporal variations of PM_(2.5) concentration and composition throughout an urban area with high freeway density-the Greater Cincinnati study. Atmospheric Environment, 2004, 38: 1091-1105.
    [52] Meij R. The fate of mercury in coal-fired power plants and the influence of wet flue-gas desulphurization. Water, Air, and Soil Pollution, 1991, 56: 21-23.
    [53] Melaku S, Morris V, Raghavan D, Hosten C. Seasonal variation of heavy metals in ambient air and precipitation at ti single site in Washington, DC. Environmental Pollution, 2008,155(l):88-98.
    [54] Migliavacca, D., Teixeira, E.C., Wiegand, F., et al. Atmospheric precipitation and chemical composition of an urban site, Guaiba hydrographic basin, Brazil. Atmos. Environ., 2005, 39:1829-1844.
    [55] Migon C., Alleman L., Leblond N., et al. Evolution of atmospheric lead over the northwestern Mediterranean between 1986 and 1992. Atmospheric Environ, 1993, 27A:2161-2167.
    [56] Morselli, L., Olivieri, P., Brusori, B., et al. Soluble and insoluble fractions of heavy metals in wet and dry atmospheric depositions in Bologna, Italy. Environ. Pollut., 2003, 124: 457-469.
    [57] Pan L., Carmichael GR., Adhikary B, et al. A regional analysis of the fate and transport of mercury in East Asia and an assessment of major uncertainties. Atmospheric Environment,2008,42: 1144-1159.
    [58] Pattenden, N.J., Branson, J.R., Fisher, E.M.R. Trace elements measurements in wet and dry deposition and airborne particulate at an urban site. In: Georgii, H. W. and Pankrath, J.Editors, 1982. Deposition of atmospheric pollutants, pp. 173-184.
    [59] Pirrie D, Power M R, Wheeler P D, et al. Geochemical signature of historical mining:FoweyEstuary, Cornwall, UK. Journal of Geochemical Exploration, 2002, 76(1): 31-43.
    [60] Remoudaki, E., Bergametti, G., Losno, R. On the dynamics of the atmospheric input of Copper and Manganese into the western Mediterranean Sea. Atmos. Environ., 1991, 25:733-744.
    [61] Rose, S., Crean, M.S., Sheheen, D.K., et al. Comparative zinc dynamics in Atlanta metropolitanregion stream and street runoff. Environmental Geology, 2001, 40: 983-992.
    [62] Roy S. Utilisation des isotopes du Pb et du Sr comme traceurs des apports anthropiques et naturels dans les precipitations et les rivieres du Bassin de Paris. PhD thesis, Université de Paris 7, 1996,320 pp.
    [63] Roy S., Négrel P. A Pb isotope and trace element study of rainwater from the Massif Central (France), Sci. Total Environ., 2001, 277: 225-239.
    [64] Sanderson M.E., Marchand D. Lead and cadmium in precipitation in the Essex region of South-western Ontario. 1AHS, 1988, 150: 215-222.
    [65] Sandroni, V., Migon, C. Atmospheric deposition of metallic pollutants over the Ligurian Sea: labile and residual inputs. Chemosphere, 2002,47: 753-764.
    [66] Sazakli E., Alexopoulos A., Leotsinidis M. Rainwater harvesting, quality assessment and.utilization in Kefalonia Island, Greece, Water Research, 2007, 41(9): 2039-2047.
    [67] Sezgin N, Ozcan H K, Demir G, et al. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway. Environment International, 2004,29(7): 979-985.
    [68] Shahin, U., Yi, S., Paode, R.D., et al. Long-term elemental dry deposition fluxes measured around Lake Michigan with an automated dry deposition sampler. Environmental Science and Technology, 2000, 34: 1887-1892.
    [69] Shi G., Chen Z., Xu S., et al. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environmental Pollution, 2008, 56: 251-260.
    [70] Skov H, Christensen JH, Goodsite ME, et al. Fate of elemental mercury in the Arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the Arctic.Environmental Science and Technology, 2004, 38: 2373-2382.
    [71] Staelens J., Schrijver A.D., Avermaet P.V., et al. A comparison of bulk and wet-only deposition at two adjacent sites in Melle, Atmos. Environ., 2005,39: 7-15.
    [72] Tasic, M., Rajsic, S., Novakovic, V., et al. Contribution to the methodology of dry deposition measurements. Fres. Environ. Bull., 2001,10: 305-309.
    [73] Tuncer, B., Bayer, B., Yesilyurt, C, et al. Ionic composition of precipitation at the central Anatolia, Turkey. Atmos. Environ., 2001, 35:5989-6002.
    [74] Turpin B J, Lim H J. Species Contribution to PM2.5 Concentrations: Revising Common Assumptions for Estimating Organic Mass. Aerosol Sci. Technol., 2001,35: 602-610.
    [75] Wang J., Guo P., Li X., et al. Source Identification of Lead Pollution in the Atmosphere of Shanghai City by Analyzing Single Aerosol Particles (SAP). Environmental Science and Technology, 2000, 34: 1900-1905.
    [76] Weckwerth, G. Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmospheric Environment, 2001, 35: 5525-5536.
    [77] Willey, J.D., Kieber, R.J., Eymin, M.S., et al. Rainwater dissolved organic carbon: concentrations and global flux. Global Biogeochemical Cycles, 2000, 14: 139-148.
    [78] Wong C S C, Li X D, Zhang G, et al. Atmospheric deposition of heavy metals in the Pearl River Delta, China. Atmospheric Environment, 2003, 37: 767-776.
    [79] Zheng J., Tan M., Shibata Y., et al. Characteristics of lead isotope ratios and elemental concentrations in PM|0 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline. Atmospheric Environment, 2004, 38: 1191-1200.
    [80]成广兴.酸雨对水生生物的影响.安庆师范学院学报(自然科学版),1999,5(3):108-110
    [81]冯宗炜.中国酸雨对陆地生态系统的影响和防治对策.中国工程科学,2000,2(9):5-11
    [82]胡健,张国平,刘丛强.贵阳市大气降水中的重金属特征.矿物学报,2005,25(3):2527-262.
    [83]蒋益民,曾光明,张龚,等.长沙市大气湿沉降化学及变化特征.城市环境与城市生态,2003,16(增刊):23-25.
    [84]李宽良.天然水氧化还原电位Eh的概念及Eh-pH测法研究.水文地质工程地质,1981, 5:60-53.
    [85]李里特,关东胜.水的功能和利用.食品工业科技,1998,1:71-73.
    [86]李显芳,刘咸德,李冰,等.北京大气PM_(2.5)中铅的同位素测定和来源研究.环境科学, 2006,27(3):401-407.
    [87]李相文.赤峰市降水电导率变化及其相关因素的探讨.干旱环境监测,1994,8(3):176-179.
    [88]刘彬.酸雨的形成、危害及防治对策.环境科学与技术,2001,4:21-23.
    [89]刘君峰,宋之光,许涛.广州地区雨水化学组成与雨水酸度主控因子研究.环境科学,2006,27(10):1998-2002.
    [90]柳泽文孝,贾疏源,赤田尚史,等.成都市2001年9月和10月雨水的化学组成.四川 环境,2002,21(3):51-55.
    [91]聂国朝.采石场大气污染物源强分析研究.资源调查与环境,2003,24(4):287-294.
    [92]圣隆佐.空中死神-酸雨.环境污染及其防治,2006,10:65-67.
    [93]盛斐君,齐立文.广州春季降雨的物理化学特征.环境科学研究,1989,2(1):31-37.
    [94]宋道军,余增亮,徐登益.生物体衰老的部分生化机理.大自然探索,1997,16(2):58-61.
    [95]唐信英.南京市江北工业区大气降水酸性及化学成分研究分析.南京:南京信息工程大学,2007,72pp.
    [96]万奇,冯新斌,郑伟,等.长白山地区大气气态总汞含量的季节性特征研究.环境科学,2008,29(2):296-299.
    [97]王起超,沈文国,麻壮伟.中国燃煤汞排放量估算.中国环境科学,1999,19(4):318-321.
    [98]王书肖,刘敏,蒋靖坤,等.中国非燃煤大气汞排放量估算.环境科学,2006,27(2):2401-2406.
    [99]王婉,刘咸德,鲁毅强,等.北京冬季大气颗粒物中铅的同位素丰度比的测定和来源研究.质谱学报,2002,23(1):21-28.
    [100]王文兴,刘红杰,张婉华,等.中国东部沿海地区酸雨来源研究.中国环境科学,1997,17(5):387-392.
    [101]王艳,刘晓环,金玲仁,等.泰山地区湿沉降中重金属的空间分布.环境科学,2007,28(11):2562-2568.
    [102]吴鹏鸣.环境空气监测质量保证手册.北京:中国环境科学出版社,1989:25-28.
    [103]谢媚.“九五,,广州地区酸雨污染基本特征研究.环境科学研究,2002,15(1):31-33.
    [104]徐华成,徐晓军,王凯,等.饮用水氧化还原电位的影响因素分析.苏州科技学院学报(工程技术版),2007,20(2):63-66.
    [105]许涛,宋之光,刘君峰,等.雨水中碳丰度季节性特征及对酸雨形成的贡献.环境科学,2008,29(2):322-326.
    [106]尹军,刘志生,赵可,等.饮用水中无机成分与氧化还原电位的关系.环境与健康杂志,2006,23(2):148-151.
    [107]尹军,谭学军,赵可,等.饮用水深度处理技术若干研究进展.吉林建筑工程学院学报,2004,21(2):7-13.
    [108]张桂林,谈明光,李晓林,等.上海市大气气溶胶中铅污染的综合研究.环境科学,2006,27(5):831-836.
    [109]赵岚,郭俊生.碱性离子水及其研究进展.国外医学-卫生学分册,2004,31(6):346-349.
    [1]Ankley GT,Ditoro DM,Hansen DJ,et al.Technical basis and proposal for deriving sediment quality criteria for metals.Environmental.Toxicology and Chemistry,1996,15:2056-2066.
    [2]Bertrand Krajewski JL,Chebbo G,Saget A.Distribution of pollutant mass vs volume in stormwater discharges and the first flush phenomenon.Water Research,1998,32(8): 2341-2356.
    [3]Bosznay M.Generalization of SCS curve number method.Journal of irrigation and drainage engineering,1989,155(1):139-144.
    [4]Boughton W C.A review of the USDA SCS curve number method.Journal of Soil Research, 1989,27:511-523.
    [5]Cappuyns V.,Swennen R.,Verhulst J.Assessment of acid neutralizing capacity and potential mobilisation of trace metals from land-disposed dredged sediments,Sci.Total Environ.,2004, 333:233-247.
    [6]Chen Z Y,Saito Y,Kanai Y,et al.Low concentration of heavy metals in the Yangtze estuarine sediments China:a diluting setting.Estuarine Coastal&Shelf Science,2004,60:91-100.
    [7]Clemente R.,Walker D.J.,Roig A.Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcollar (Spain). Biodegradation, 2003, 14: 199-205.
    [8] Conrad CF, Chisholm-Brause CJ. Spatial survey of trace metal contaminants in the sediments of the Elizabeth River, Virginia. Marine Pollution Bulletin, 2004,49: 319-324.
    [9] Covelo E F, Andrade ML, Vega F A. Heavy metal adsorption by humic umbrisols: selectivity sequences and competitive sorption kinetics. J Colloid Interface Sci, 2004,280:1-8.
    [10] Davide V, Pardos M, Diserens J, et al. Characterisation of bed sediments and suspension of the river Po (Italy) during normal and high flow conditions. Water Research, 2003, 37:2847-2864.
    [11] de Vries, W., Schutze, G., Lofts, S., et al. Calculation of critical loads for cadmium, lead and mercury. Background Document to a Mapping Manual on Critical Loads of Cadmium, Lead and Mercury. Alterra Report 1104. Alterra: Wageningen, The Netherlands, 2005.
    
    [12] Deletic A B, Maksimovic C T. Evaluation of Water Quality Factors in Storm Runoff from Paved Areas. Journal of Environmental Engineering. 1998,124(9): 869-879.
    [13] Geiger W F. Characteristics of combined sewer runoff. Proceeding of the 3~(rd) International Conference on Urban Storm Drainage, Goteberg, Sweden. 1984, 851-860.
    [14] Gupta K. Saul A J. Specific relationships for the first flush load in combined sewer flows. Water Research, 1996, 30 (5): 1244-1252.
    [15] Haag I, Kern U, Westrich B. Erosion investigation and sediment quality measurements for a comprehensive risk assessment of contaminated aquatic sediments. Science of the Total Environment, 2001, 266: 249-257.
    [16] Hajime O, Takashi Doi, Yayoi Hongo, et al. Manganese, cerium and iron in the Sulu, Celebes and Philippine Seas. Deep-Sea Research Ⅱ, 2007, 54: 38-49.
    [17] Hanna K., Lassabatere L., Bechet B. Zinc and lead transfer in a contaminated roadside soil:Experimental study and modeling. Journal of Hazardous Materials, 2009, 161(2-3):1499-1505.
    [18] Huang, R. H. 1986. The mobility of As in the Yellow River. China Environmental Sciences (in Chinese) 8(3): 53-58.
    [19] Lado L R, Hengl T, Reuter H I. Heavy metals in European soils: A geostatistical analysis of the FOREGS Geochemical database. Geoderma, 2008, 148(2): 189-199.
    [20] Latimer JS, Davis WR, Keith DJ. Mobilization of PAHs and PCBs from in-place contaminated marine sediments during simulated resuspension events. Estuary, Coastal and Shelf Science, 1999,49:577-595.
    [21] Li P, Wang X, Allinson G, et al. Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang,China.Journal of Hazardous Materials,2009, 161(1):516-521.
    [22]Lin Y.P.,Teng T.P.,Chang T.K.Multivariate analysis of soil heavy metal pollution and landscape pattern in Changhua county in Taiwan.Landsc.Urban Plan.,2002,62(1):19-35.
    [23]Martin J M,Guan D M,Flbaz F,et al.Preliminary assessment of the distributions of some trace elements in a pristine aquatic environment.Marine Chemistry,1993,43(1/4):185-199.
    [24]Nayar S,Goh BPL,Chou LM.Environmental impact of heavy metals from dredged and resuspended sediments on phytoplankton and bacteria assessed in situ mesocosms. Ecotoxicology and Environmental Safety,2004,59:349-369.
    [25]Ngoc M N,Dultz S,Kasbohm J.Simulation of retention and transport of copper,lead and zinc in a paddy soil of the Red River Delta,Vietnam.Agriculture,Ecosystems & Environment,2009,129(1-3):8-16.
    [26]Price NB,Karageorgis AP,Kaberi H,et al.Temporal and spatial variations in the geochemistry of major and minor particulate and selected dissolved elements of Thermaikos Gulf,Northwestern Aegean Sea.Continental Shelf Research,2005,25:2428-2455.
    [27]Roussiez V,Ludwig W,Probst J L,et al.Background levels of heavy metals in surficial sediments of the Gulf of Lions(NW Mediterranean):an approach based on 33Cs normalization and lead isotope measurement.Environmental Pollution,2005,138:167-177.
    [28]Sch(?)fer J,Blanc G,Audry S,et al.Mercury in the Lot-Garonne River system(France): Sources,fluxes and anthropogenic component.Applied Geochemistry,2006,21:515-527.
    [29]Xu,Q.The summary of non-point chemical fertilizers and pesticide pollution in China. Agro-ecological Environment,1996,12(2):39-42.
    [30]Zhang C S,Wang L J,Li G S,et al.Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay,China.Applied Geochemistry,2002,17: 59-68.
    [31]常静.城市地表灰尘-降雨径流系统污染物迁移过程与环境效应.上海:华东师范大学,2007.
    [32]陈静生.我国东部平原土壤微量元素共生组合特征及含量预测.地球化学,1994,23(增刊):124-133.
    [33]陈云增,杨浩,张振克,等.相平衡分配法在滇池沉积物环境质量评价中的应用研究.环境科学学报,2006,26(9):1545-1552.
    [34]郭建青,钱碧华,党爱翠,等.厦门九龙江河口区海水中溶解和颗粒态Cu、 Pb、 Cd的地球化学行为.厦门大学学报(自然科学版),2007,46(增刊1):54-61.
    [35]郭旭东,陈利顶,傅伯杰.土地利用/土地覆被变化对区域生态环境的影响.环境科学进 展,1999,7(6):66-75.
    [36]霍文毅,陈静生.我国部分河流重金属水-固分配系数及在河流质量基准研究中的应用.环境科学,1997,18(4):10-14.
    [37]李英伦,蒲富永.铜铅镉砷在紫色丘陵农田中的径流迁移.农业环境保护,1992,11(2):66-71.
    [38]梁涛,王浩,张秀梅,等.不同土地类型下重金属随暴雨径流迁移过程及速率对比.应用生态学报,2003,14(10):1756-1760.
    [39]孟广涛,袁春明,方向京,等.滇中高原山地4种人工群落径流量和土壤流失量的研究.水土保持学报,2006,20(1):35-38.
    [40]杨居荣,车宇瑚,刘坚.重金属在土壤-植物系统的迁移、累积特征及其与土壤环境条件的关系.生态学报,1985,5(4):306-314.
    [1]Basu U,Basu A,Taylor GJ.Differential exudation of polypeptides by looks of aluminum-resistan t and sensitive cultivars of Triticum aestivum L.in response to aluminum stress.Plant Physiol.,1994,106:151-158.
    [2]Jones D L.Organic acids in the rhizosphere-a critical review.Plant Soil,1998,205(1):25-44.
    [3]Lipton DS,Blanchar RW,Blevins DG.Citrate,malate and succinate concentration in exudation from P-sufficient and P-stressed,Medicago sativa L.seedling.Plant Physiol,1987, 85:315-317.
    [4]Mucha A P,Almeida C M R,Bordalo A A,et al.Exudation of organic acids by a marsh plant and implications on trace metal availability in the rhizosphere of estuarine sediments. Estuarine,Coastal Shelf Sci,2005,65(1-2):191-198.
    [5]Silviera,D.J,Sommers L E.Extractability of Copper,Zinc,Cadmium,and Lead in Soils Incubated with Sewage Sludge.Journal of Environmental Quality,1997,6:47-52.
    [6]Strobel B W.Influence of vegetation on low-molecular-weight carboxylic acids in soil solution.Geoderma,2001,99(3-4):169-198.
    [7]Zhang F S,Shen J,Li L,et al.An overview of rhizosphere processes under major cropping systems in China.Plant Soil,2004,260(1-2):89-99.
    [8]傅柳松,吴杰民,杨雪江,等.模拟酸雨对浙江省主要类型土壤活性铝溶出规律研究.农业环境保护,1993,12(3):114-119.
    [9]孔繁翔,桑伟莲,蒋新,等.铝对植物毒害及植物抗铝作用机理.生态学报,2000,20: 855-62.
    [10]孔维屏,陈家坊,武玫玲.土壤中铜的形态及其转化.环境科学学报,1987,7(1):78-85.
    [11]刘文菊,张西科,张福锁.根际分泌物对难溶性镉的活化作用及对水稻吸收、运输镉的影响.生态学报,2000,20:448-451.
    [12]孟范平,李桂芳.酸雨对土壤元素化学行为的影响.中南林学院学报,1998,18(1):27-34.
    [13]史刚荣.植物根系分泌物的生态效应.生态学杂志,2004,23(1):97-101.
    [14]王家臣,王广寿,张奕侠,等.模拟酸雨对冲积性水稻土和水稻及叶菜作物生长的影响.农业环境保护,1993,12(3):122-123.
    [15]王力军,青长乐,牟树森.模拟酸雨对土坡化学及蔬菜生长的影响,农业环境保护,1993,12(1):19-20.
    [1]Abate G,Masini J C.Influence of pH,ionic strength and humic acid on adsorption of Cd(Ⅱ) and Pb(Ⅱ)onto vermiculite.Colloid Surface A,2005,262:33-39.
    [2]Aharoni C,Ungarish M.Kinetics of activated chemisorption.Part 2.-Theoretical models.J Chem Soc Perk T 1,1977,73:456-464.
    [3]Al-Subu MM.The interaction effects of cypress(Cupressus sempervirens),cinchona (Eucalyptus longifolia)and pine(Pinus halepensis)leaves on their efficiencies for lead removal from aqueous solutions.Advances in Environmental Research,2002,6(4):569-576.
    [4] An H.K., Park B.Y., Kim D.S. Crab shell for the removal of heavy metal from aqueous solution. Water Research, 2001, 35(15): 3551-3556.
    [5] Anoop Krishnan K., Anirudhan T.S. Removal of mercury(Ⅱ) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: kinetics and equilibrium studies. Journal of Hazardous Materials, 2002,92(2): 161-183.
    [6] Azizian S. Kinetic models of sorption A theoretical analysis. J Colloid Interf Sci, 2004, 276 (1):47-52.
    [7] Barbier F., Duc G., Petit-Ramel M. Adsorption of lead and cadmium ions from aqueous solution to the montmorillonite: water interface. Colloid Surf. A: Physicochem. Eng. Asp.,2000, 166: 153-159.
    [8] Benguella B, Benaissa H. Cadium removal from aqueous solutions by chitin: kinetic and equilibrium studies. Water Research, 2002, 36(10): 2463-2474.
    [9] Bhattacharyya K G, Sharma A. Adsorption of Pb(Ⅱ) from aqueous solution by Azadirachta indica (Neem) leaf powder. J Hazard Mater, 2004, 113: 97-109.
    [10] Bulut Y, Yez Z. Removal of heavy metals from aqueous solution by sawdust adsorption. Journal of Environmental Sciences, 2007, 19: 160-166.
    [11] Cimino G, Passerini A, Toscano G. Removal of toxic cations and Cr(Ⅵ) from aqueous solution by hazelnut shell. Water Research. 2000, 34: 2955-2962.
    [12] Coleman B T, McClung A C, Moor D P. Formation constants for Cu(Ⅱ)-peat complexes.Science, 1956, 123:330-331.
    [13] Dakiky M., Khamis M., Manassra A., et al. Selective adsorption of chromium (Ⅵ) inindustrial wastewater using low-cost abundantly available adsorbents. Advances in Environmental Research, 2002, 6(4): 533-540.
    [14] Dali-youcef N, Ouddane B, Derriche Z. Adsorption of zinc on natural sediment of Tafna River (Algeria). J Hazard Mater, 2006, 137: 1263-1270.
    [15] Daneshvar N, Salari D, Aber S. Chromium adsorption and Cr(Ⅵ) reduction to trivalent chromium in aqueous solutions by soya cake - Journal of Hazardous Materials, 2002, 94(1): 49-61.
    [16] Echeverria J.C., Churio E., Carrido J.J. Retention mechanisms of Cd on illite. Clays and Clay Mineral, 2002, 50(5): 614-623.
    
    [17] Freundlich, H. M. F. Over the adsorption in solution. J. Phys. Chem., 1906, 57: 385-470. [18] G. Sposito. The Chemistry of Soils, Oxford University Press, 1989. [19] Gyliene O, Rekertas R, (S|ˇ)alkauskas M. Removal of free and complexed heavy-metal ions by sorbents produced from fly(Musca domestica)larva shells.Water Research,2002,36(16): 4128-4136.
    [20]Han,Y.,Du,P.,Cao,J.,et al.Multivariate analysis of heavy metal contamination in urban dusts of Xi'an,Central China.Science of the Total Environment,2006,355:176-186.
    [21]Hingston F J.A review of anion adsorption.In:Anderson,MA,Robin AJ.(eds).Adsorption of Inorganics at Solid-Liquid Interfaces.Ann Arbor Science Publishing Inc.Michigan,1981. 51-90.
    [22]Ho Y S,MaKay G.A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents.Trans.IChemE,1998,76(B):332-340.
    [23]Ho Y S,Mckay G.The sorption of lead(Ⅱ)ions on peat.Water Res,1999,33(2):578-584.
    [24]Ho Y S,Ng J C Y,McKay G.Removal of lead(Ⅱ)from effluents by sorption on peat using second-order kinetics.Sep Sci Technol,2001,36(2):241-261.
    [25]Ho Y S,Porter J F,Mckay G.Equilibrium isotherm studies for the sorption of divalent metal ions onto peat:copper,nickel and lead single component system.Water Air Soil Poll,2002, 141:1-33.
    [26]Ho Y.S.,Huang C.T.,Huang H.W.Equilibrium sorption isotherm for metal ions on tree fern. Process Biochemistry,2002,37:1421-1430.
    [27]Ho Y.S.,McKay G.Batch Lead(Ⅱ)Removal From Aqueous Solution by Peat:Equilibrium and Kinetics Trans.IChemE,1999,77:165-173.
    [28]Ho YS,McKay G.The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research,2000,34:735-742.
    [29]Jain C K,Singhal D C,Sharma M K.Adsorption of zinc on bed sediment of River Hindon: adsorption models and kinetics.J Hazard Mater,2004,114:231-239.
    [30]Kocher,B.,Wessolek,G.,Stoffregen,H.Water and heavy metal transport in roadside soils. Pedosphere,2005,15(6):746-753.
    [31]Lackovic K.,Angove M.J.,Wells J.D.,et al.Modeling the adsorption of Cd(Ⅱ)onto Muloorina illite and related clay minerals.J.Colloid Interf.Sci.,2003,257:31-40.
    [32]Lagergren S.About the theory of so-called adsorption of soluble substances.Kungliga Svenska Vetenskapsakademiens.Handlingar,1898,24(4):1-39.
    [33]Langmuir,I.The adsorption of gases on plane surface of glass,mica and platinum.J.Am. Chem.Soc.,1916,40:1361-1368.
    [34]Lee,CK,Low,KS,Kek,KL.Removal of chromium from aqueous solution.Bioresource technology,1995,54(2):183-189.
    [35]Li,F.R.,Kang,L.F.,Gao,X.Q.,et al.Traffic-related heavy metal accumulation in soils and plants in northwest China. Soil Sediment Contam., 2007, 16(5): 473-484.
    [36] Lin JG., Chen SY. The relationship between adsorption of heavy metal and organic matter in river sediments. Environment International, 1998, 24(3): 345-352.
    [37] Low K. S., Lee C. K., Tan K. K. Biosorption of basic dyes by water hyacinth roots.Bioresource Technology, 1995, 52: 79-83.
    
    [38] Mark G.,Cantwell, Robert M. Burgess. Variability of parameters measured during the resuspension of sediments with a particle entrainment simulator. Chemosphere, 2004, 56:51-58.
    [39] Miller JR, Hudson-Edwards KA, Lechler PJ, et al. Heavy metal contamination of water, soil and produce within riverine communities of the Rio Pilcomayo basin, Bolivia. Science of The Total Environment, 2004, 320(2-3): 189-209.
    [40] Nabulo, G., Oryem-Origa, H., Diamond, M. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda.Environ. Res., 2006, 101(1): 42-52.
    [41] Namasivayam C, Yamuna R T. Adsorption of direct red 12 B by biogas residual slurry: Equilibrium and rate processes. Environ Pollut, 1995, 89(1): 1-7.
    [42] Nayar S., Goh B. P. L., Chou L. M. Environmental impact of heavy metals from dredged and resuspended sediments on phytoplankton and bacteria assessed in in situ mesocosms. Ecotoxicology and Environmental Safety, 2004 (59): 349-369.
    [43] Nguyen C, Do DD. The Dubinin-Radushkevich equation and the underlying microscopic adsorption description. Carbon, 2001, 39: 1327-1336.
    
    [44] N(o|¨)rtemann, B. Biodegradation of EDTA. Appl. Microbiol. Biotechnol., 1999, 51: 751-759.
    [45] Nowack, B., Lutzenkirchen, J., Behra, P., et al. Modeling the adsorption of metal-EDTA complexes onto oxides. Environ. Sci. Technol., 1996, 30: 2397-2405.
    [46] Nowack, B., Sigg, L. Adsorption of EDTA and metal-EDTA complexes onto goethite. J.Colloid Interface Sci., 1996, 177: 106-121.
    [47] Obata H, Doi T, Hongo Y, et al. Manganese, cerium and iron in the Sulu, Celebes and Philippine Seas. Deep-Sea Research II, 2007 (54): 38-49.
    [48] Orhan, Y, Bueyuekguengoer, H. The removal of heavy metals by using agricultural wastes. Water Science & Technology, 1992, 28(2): 247-255.
    [49] Orumwense F F O. Removal of lead from water by adsorption on a kaolinitic clay. J Chem Technol Biotechnol, 1996, 65: 363-369.
    [50] Ouazzanin N, Bouhoum K, Mandi L, et al. Wasterwater treatment by stabilization pond:marrakesh experiment. Wat S Tech, 1995, 31(12): 75-80.
    [51] Periasamy K, Namasivayam C. Adsorption of Pb(Ⅱ) by peanut hull carbon from aqueous solution. Sep Sci Technol, 1995, 30(10): 2223-2237.
    [52] Pietsch, J., Schmidt, W., Sacher, F., et al. Pesticides and another organic micropollutants in the river Elbe. Fresenius J. Anal. Chem., 1995, 35: 75-82.
    [53] Price N.B., Karageorgis A.P., Kaberi H., et al. Temporal and spatial variations in the geochemistry of major and minor particulate and selected dissolved elements of Thermaikos Gulf, Northwestern Aegean Sea. Continental Shelf Research, 2005, (25):2428-2455.
    [54] Rasmussen, P.E., Subramanian, S.K., Jessiman, B.J. A multi-element profile of housedust in relation to exterior dust and soils in the city of Ottawa, Canada. Science of the Total Environment, 2001, 267: 125-140.
    
    [55] Redlich, O., Peterson, D. L. A useful adsorption isotherm. J. Phys. Chem., 1959, 63: 1024.
    [56] Salim R., Al-Subu M.M., Sahrhage E. Uptake of cadmium from water by Beech leaves. Journal of environmental science and health, Part A, 1992, 27(3): 603-627.
    [57] Sch(a|¨)fer J., Blanc G., Audry S., et al. Mercury in the Lot-Garonne River system (France): Sources, fluxes and anthropogenic component. Applied Geochemistry, 2006, 21 :515-527.
    [58] Schroth B.K., Sposito G. Effect of landfill leachate organic acids on trace metal adsorption by kaolinite. Environ. Sci. Technol., 1998, 32: 1404-1408.
    [59] Seki H, Suzuki A. Adsorption of lead ions on composite biopolymer adsorbent. Ind Eng Chem Res, 1996, 35(4): 1378-1382.
    [60] Sillanp(a|¨)(a|¨) M, R(a|¨)m(o|¨) J. Adsorption of metal-ethylenediaminetetraacetic acid chelates onto lake sediment. Chemosphere, 2001,45: 881-885.
    [61] Sillanp(a|¨)(a|¨), M. Environmental fate of EDTA and DTPA. Rev. Environ. Contam. Toxicol. 1997,152:85-111.
    [62] Sillanp(a|¨)(a|¨), M., Vickackaite, V., Niinisto, L., et al. Distribution and transportation of ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid in lake water and sediment. Chemosphere, 1997, 35: 2797-2805.
    [63] Singh B.K., K. Rawat N.S. Comparative sorption kinetic studies of phenolic compounds on fly ash and impregnated fly ash. J. Chem. Technol. Biotechnol., 1994, 61(1): 57-65.
    [64] Sutherland, R.A., Tolosa, C.A. Multi-element analysis of road-deposited sediment in an urban drainage basin, Honolulu, Hawaii. Environmental Pollution, 2000,110: 483-495.
    [65] Tamasi G., Cini, R. Heavy metals in drinking waters from Mount Amiata (Tuscany, Italy). Possible risks from arsenic for public health in the Province of Siena. Science of The Total Environment, 2004, 327(1-3): 41-51.
    [66] Tran H.H., Roddick F.A., O'Donnel J.A. Comparison of chromatography and desiccant silica gels for the adsorption of metal ions-I.Adsorption and kinetics.Water Research,1999,33(13): 2992-3000.
    [67]US EPA.National water quality inventory,report to congress executive summary. Washington DC:USEPA,1995.
    [68]Wafwoyo W,Seo CW,Marshall WE.Utilization of peanut shells as adsorbents for selected metals.Journal of Chemical Technology and Biotechnology,1999,74:1117-1121.
    [69]Wang Y J,Jia D A,Sun R J,et al.Adsorption and cosorption of tetracycline and copper(Ⅱ)on montmorillonite as affected by solution pH.Environ Sci Technol,2008,42(9):3254-3259.
    [70]Weiss Z.,Klika Z.,(?)apkova P.,et al.Sodium-cadmium and sodium-zinc exchangeability in montmorillonite.Phys.Chem.Miner.,1998,25:534-540.
    [71]Williams D.Storing up trouble.Chem.Brit,1998,34:48-50.
    [72]Xue,H.,Sigg,L.,Kari,F.G.Speciation of EDTA in natural waters:exchange kinetics of Fe-EDTA in river water.Environ.Sci.Technol.,1995,29:59-68.
    [73]Yavuz(?),Altunkaynak Y,G(?)zel F.Removal of copper,nickel,cobalt and manganese from aqueous solution by kaolinite.Water Res,2003,37:948-952.
    [74]Yu B,Zhang Y,Shukla A,et al.The removal of heavy metals from aqueous solutions by sawdust adsorption:Removal of lead and comparison of its adsorption with copper.Journal of Hazardous Materials,2001,84:83-94.
    [75]Zaggout FR.Removal of copper from water by decaying Tamrix gallica leaves.Asian Journal of Chemistry,2001,13:639-650.
    [76]Zhu J,Zhu X.Treatment and utilization of wastewater in the Beijing Zoo by an aquatic macrophyte system.Ecological Engineering,1998,11:101-110.
    [77]冯元章.东河(城县段)中重金属迁移转化规律的初步研究.环境化学,1989,8(2):17-25.
    [78]高继军,张力平,黄圣彪,等.北京市饮用水源水重金属污染物健康风险的初步评价.环境科学,2004,25(2):47-50.
    [79]黄岁梁,万兆惠,张朝阳,等.泥沙粒径对重金属污染物吸附影响的研究.水利学报,1994(10):53-60.
    [80]李琴,翟建平,张文艺,等.膨润土对Pb~(2+)、 Cu~(2+)、 Cr~(3+)的吸附动力学及等温线研究.环境污染治理技术与设备,2006,7(10):55-58.
    [81]刘伟,陈振楼,许世远,等.上海市小城镇河流沉积物重金属污染特征研究.环境科学,2006,27(3):538-543.
    [82]罗道成,易平贵,陈安国,等.腐殖酸树脂对电镀废水中重金属离子的吸附.材料保护,2002,35(4):54-56.
    [83]王国平,刘景双,张君枝,等.湿地表层沉积物对重金属的吸附研究.农业环境科学学 报,2003,22(3):325-328
    [84]王继纲,马启敏,刘茜,等.渤海湾北部海域沉积物重金属Cu、 Zn释放及动力学研究海洋湖沼通报,2007,1:69-73.
    [85]王兰,巴音.废水处理的新材料、新方法.北京:中国环境出版社,1991.31-33.
    [86]薛红喜,何江,樊庆云,等.黄河包头段不同粒径沉积物分形校正下重金属的吸附研究环境科学,2008,29(1):63-70.
    [87]赵振国.吸附作用应用原理.北京:化学工业出版社,2005,604 pp.
    [88]郑平.煤炭腐殖酸的生产和应用.北京:化学工业出版社,1991.45-48.
    [1] Bartan LL, Sabatini DA.Transport and Remediation of Subsurface Contaminants. Washington D.C. American Chemical Society, 1992: 99-107.
    
    [2] Cuningham S D. Phytore mediation of contaminated soils. Trend Biotechnol, 1995,13 (9):393-397.
    [3] Gadd GM, White C. Microbial Treatment of Metal Pollution a Working Biotechnology. Trends Biotechnol, 1993, 11(8):353-359.
    
    [4] Heaton ACP, Rugh CL, Wang N, et al. Phytoremediation of mercury and methyl mercury polluted soils using genetically engineered plants. Soil Contam, 1998,7 (4): 497-509.
    [5] Horn JM. Abstr Pap Am Chem Soc. 203 Meet Pt1. GEDC_(131), 1992.
    [6] Jeng H A C, Englande A J, Bakeer RM, et al. Impact of urban stormwater runoff on estuarine environmental quality. Estuarine, Coastal and Shelf Science. 2005,63: 513-526.
    [7] Kerry AT. Lead and petroleum hydrocarbon changes in an urban wetland receiving storm water runoff. Ecol.Eng., 1999,12: 387-399.
    [8] Kumar NPA, Dushenkov V, Motto H, et al. Phytoext traction: Theyse of plant store move heavy metals from soils. Environmental Science and Technology, 1995, 29: 1232-1238.
    [9] Lee J.H., Bang K.W. Characterization of urban stormwater runoff. Water Res, 2000, 34: 1773-1780.
    [10] Lee JH, Bang KW, Ketchum LH, et al. First flush analysis of urban storm runoff. The Science of the Total Environment, 2002, 293(1-3): 163-175.
    
    [11] Lerch K. Copper metallothionein, a copper-binding protein from Neurospora erassa. Nature (London), 1980, 284: 368-370.
    
    [12] Rattan R.K., Datta S.P., Chandra S., et al. Heavy metals and environmental quality: Indian scenario. Fertil. News, 2002,47 (11): 21-40.
    [13] Rattan RK, Datta SP, Chhonkar PK, et al. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater-a case study. Agriculture,Ecosystems and Environment, 2005, 109(3-4): 310-322.
    
    [14] Sarokin D. The toxics release inventory. Environ. Sci. Technol, 1988, 22: 616-618.
    [15] Scholes L, Shutes RBE, Revitt DM, et al. The treatment of metals in urban runoff by constructed wetlands. Sci. Total Environ., 1998, 214: 211-219.
    [16] Simth RAH, Bradshaw AD. The use of metal tolerant plant population for the reclamation of metalliferous wastes. Applied Ecology, 1979, 16: 595-612.
    [17] Sun LN, Zhang YH, Sun TH, et al. Temporal-spatial distribution and variability of cadmium contamination in soils in Shenyang Zhangshi irrigation area,China.Journal of Environmental Sciences,2006,18(6):1241-1246.
    [18]Walker W J.The potential contribution of urban runoff to surface sediment of the Passaic river:source and chemical characteristics.Chemosphere,1999,38(2):363-377.
    [19]Zheng J.,Tan M.,Shibata Y.,et al.Characteristics of lead isotope ratios and elemental concentrations in PM_(10)fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline.Atmospheric Environment,2004,38:1191-1200.
    [20]Zwillich D.A tentative comeback for bioremediation.Science,2000,289(29):2266-2267.
    [21]陈芳,董元华,安琼,等.长期肥料定位试验条件下土壤中重金属的含量变化.土壤, 2005,37(3):308-311.
    [22]陈勇生,孙启俊,陈钧,等.重金属的生物吸附技术研究.环境科学进展,1997,5(6): 34-43.
    [23]郭青海,马克明,赵景柱,等.城市非点源污染控制的景观生态学途径.应用生态学报, 2005,16(5):977-981.
    [24]贾广宁.重金属污染的危害与防治.有色冶金,2004,20(1):39-43.
    [25]蓝崇钰,束文圣.矿山废弃地植被恢复中的基质改良.生态学杂志,1996,15:55-59.
    [26]林治庆,黄会一.木本植物对土壤防治功能的研究.中国环境科学,1988,8(3):35-40.
    [27]秦淑琴.治理土壤重金属污染的方法概述.新疆环境保护,1998,20(1):19-23.
    [28]沈振国,刘友良.超积累重金属植物研究进展.植物生理学通讯,1998,34(2):133-139.
    [29]王慧忠,何翠屏.重金属离子胁迫对草坪草根系生长及其活力的影响.中国草地,2002,3:55-58,63.
    [30]肖鹏飞,李法云,付宝荣,等.土壤重金属污染及其植物修复研究.辽宁大学学报 自然科学版,2004,31(3):279-282.
    [31]许嘉琳,杨居荣.陆地生态系统中的重金属.北京:中国环境科学出版社,1995.449 pp.
    [32]姚春霞,陈振楼,许世远,等.上海市浦东新区蔬菜地土壤重金属含量与评价.土壤,2005,37(5):517-522.
    [33]张桂林,谈明光,李晓林,等.上海市大气气溶胶中铅污染的综合研究.环境科学,2006,27(5):831-836.
    [34]周乃元,王仁武.植物修复-治理十壤重金属污染的新途径.中国生物工程杂志,2002,22(5):53-57.
    [1]Singh OV,Labana S,Pandey G,et al.Phytoremediation:an overview of metallic ion decontamination from soil.Appl Microbiol Biotechnol,2003,61:405-412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700