用户名: 密码: 验证码:
攀枝花钒钛磁铁矿区重金属元素地球化学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于矿山环境问题及表现形式不同,硫化物型矿山一直是人们关注的重点,而氧化物型矿山由于不产生酸性矿业排水(AMD)等明显的环境问题,人们对氧化物型矿山环境问题重视程度不够,研究程度较浅,但氧化物型矿山产生的环境问题和潜在的环境问题不容小视。
     本论文在国家科技攻关项目(2005BA901A03)和国际合作项目(2005DFA20900)支持下,选择我国著名的氧化物型矿山——攀枝花钒钛磁铁矿作为研究对象,以矿区不同环境介质作为研究载体,采用ICP-MS、ICP-OES等分析方法,系统研究了矿业活动过程中水环境、土壤环境、大气环境、植物等矿山环境介质中重金属的地球化学特征。取得了以下成果:
     (1)对重金属在矿区水—悬浮物—水系沉积物系统中的地球化学特征进行了研究,发现水体重金属含量很低,悬浮物及沉积物中的重金属含量较高;Cu、Zn、Co、Ni、Fe、As在悬浮物中的含量高于沉积物,Pb、V、Ti、Cr在沉积物中的含量高于悬浮物;分配系数反映活动性最强的是Hg,其次为As和Ni,Ti最不活泼;从沉积物形态分析结果来看,攀枝花矿山水系沉积物中Ti最稳定,V、Cu、Cr较稳定,Zn、Mn、Co、Ni较活泼;潜在生态危害指数法评价发现水系沉积物中大多数重金属元素都发生了中度和重度污染,其中Cu、Co、V和Ti受到重度污染以上,从潜在生态指数来看,所有点均为轻微生态危险,总体上矿区水系沉积物中重金属的潜在生态危害程度不高,对环境的影响有限。
     (2)通过土壤与水之间钒的分配系数实验、渗透实验、土壤中钒的迁移实验以及土壤中钒的化学形态分析,研究了土壤中钒的地球化学活动性、迁移特征。通过实验分析了钒在土壤中的各种参数及特征。等温吸附曲线表明,壤土对钒的吸附能力最强,砂土对钒的吸附能力较差,特定的温度区间和K_d值呈正相关关系。pH值对分配系数在壤土和砂土两种类型土壤的变化趋势一致。不同类型土壤中渗透系数不同,砂土的吸附系数明显高于壤土。土壤中残渣态钒占总钒的绝大多数,表明钒在土壤中是不活泼的。
     (3)研究了矿区土壤中重金属的地球化学特征,评价了土壤中重金属的潜在生态风险。土壤中各重金属以采矿场和排土场为中心分布;元素在剖面上的变化总体上仍是表层高于下层;通过相关分析及聚类分析,土壤中重金属元素则被分为两类:Zn、Cd、Pb、Hg、As和V、Co、Ti、Cu、Ni、Cr、Mn,不同区域采集样品,重金属相互关系及聚类结果不同,其原因可能与采样点土壤类型及性质有关,也可能由不同区域人为污染程度不同引起;通过对土壤中重金属进行潜在生态危害评价,表明所测定的攀枝花矿区表层土壤中重金属元素大多数都发生了中度和重度污染,从潜在生态危害指数来看,仅有一个点为很强生态危害,总体上矿区土壤重金属生态危害程度不高。
     (4)研究了攀枝花矿区及矿业活动区两类大气尘重金属地球化学特征。研究结果表明,攀枝花矿业活动区大气降尘和近地表大气尘中重金属的含量很高,特别是V、Ti、Fe等与攀枝花矿业活动有关的重金属元素的含量特别高,是成都经济区其他城市的数倍到十余倍。近地表大气尘中重金属的形态分析研究表明,Cu、Pb、Zn、Co、Ni、Mn等6种元素的交换态和碳酸盐结合态的含量较高,对环境有重要影响;V、Cr对环境影响较小;Ti元素残渣态占了99%以上,对环境影响很小。近地表大气尘的粒度和矿物学研究表明,近地表大气尘的粒度很细,大都在80um以下,主要集中在20-50um,个别点在20um以下;矿物成分总体上以石英为主,其次为长石和石膏,再其次为碳酸盐矿物。
     (5)研究了不同区域树芯年轮样品中的重金属特征。结果发现树芯年轮在一定程度上可以反应矿区重金属的污染变化,不同区域树芯年轮重金属与该区域的矿业活动有一定的关系;通过对比,发现树芯年轮中重金属与根系土呈显著正相关。发现树芯中的元素不仅仅来自土壤,还有可能来自于大气沉降等途径。
     (6)分析了不同介质中重金属的相互关系及重金属的来源、存在形式和转化关系。矿区不同介质中的重金属有两方面的来源:一是来源于含重金属的基性超基性岩石的自然风化,二是由于人为对钒钛磁铁矿的开采、选矿和冶炼等矿业活动,其中矿业活动是重金属的最主要来源。矿区不同介质中重金属的存在形式不同,大部分重金属元素主要存在于矿物晶格中,以残渣态的形式存在,部分元素有机结合态和碳酸盐结合态所占比例也较高。矿区不同介质中重金属的活化及迁移过程以物理活化和物理迁移为主。在自然因素下重金属与其他所有元素一样有相同的转化关系,即通过风化作用与沉积作用在岩石—土壤—水体及植物之间转化与循环。在人为因素下,在矿业活动的不同阶段重金属通过废气(扬尘与废气)、废液(废水)、固体废弃物(废渣、废石、尾矿)在土壤、大气、水体、植物之间进行转化与循环。
     (7)对比了硫化物型矿山和氧化物型矿山重金属的地球化学特征,总结了氧化物型金属矿山的地球化学特征。发现氧化物型矿山与硫化物型矿山重金属环境地球化学特征有不同之处,也有相同之处。最大的不同是硫化物型矿山环境介质中亲铜元素含量远高于氧化物型矿山,氧化物型矿山最大的污染是大气尘重金属污染,硫化物型矿床最大的污染是酸性矿业废水污染。相同点是,无论氧化物型矿山还是硫化物型矿山,重金属的形态特征相似。
Sulphide mines have always been the concerns of people because of their various forms and the resultant environmental problems,whereas oxide mines are paid less attention and not studied much because they do not cause obvious environmental problems such as acid mining drainage (AMD).However,the potential environmental problems caused by oxide mines can not be ignored.
     Under the support of the two projects,The National Scientific and Technologic Project (2005BA901A03) and The International Cooperation Project(2005DFA20900),the author chooses Panzhihua V-Ti-Magnetite,a famous oxide mine in China,as the subject of research.In this thesis, the geochemical characteristics of heavy metals in various environmental media in the zone(such as water,soil,atmosphere and plants) during the process of mining are systematically studied by using those media as research carriers and employing the analyzing methods of ICP-MS and ICP-OES.The research results are shown below:
     (1)The research on the geochemical characteristics of heavy metals in the system of water-suspended solid-sediment in the mining zone show that:the contents of heavy metals in water are very low,while those in suspended solids and sediments are relatively higher;the contents of Cu,Zn,Co,Ni,Fe and As in suspended solids are higher than those in sediments;the contents of Pb,V,Ti and Cr in sediments are higher than those in suspended solids.The partition coefficients show that:Hg is most active,As and Ni are less active,and Ti is least active.The morphological analyzing results of sediments show that in the sediments in Panzhihua Mining Zone, Ti is most stable,V,Cu and Cr are relatively stable,and Zn,Mn,Co and Ni are more active.The index evaluation on potential ecological risk shows that most heavy metal elements in the sediments are contaminated,whether heavily or in a medium degree,in which Cu,Co,V and Ti are contaminated heavily or even more severely.The potential ecological risk index shows that all places are in light ecological risk and generally the potential ecological risk of heavy metals in the sediments are not high and they have limited influence on environment.
     (2)The geochemical activity and transferring features of Vanadium in soil are studied by doing the partition coefficient and penetrating tests of Vanadium between soil and water and the transferring test of vanadium in soil as well as analyzing the chemical forms of Vanadium in soil.In the tests,various parameters and features of vanadium are analyzed.The adsorption isothermal curves show that loam soil is most absorptive to V,sandy soil is less absorptive,and V is positively correlative to K_d in certain temperature ranges.The changes of pH to the partition coefficient in both loam soil and sandy soil are identical.The penetrating coefficients in different soils are different and the absorbing coefficient of sandy soil is obviously higher than that in loam soil.In soil,most vanadium takes the form of residua,which shows that vanadium is not active in soil.
     (3)The geochemical characteristics of heavy metals in the soils in the mining zone is studied and the potential ecological risks of those heavy metals are evaluated.The heavy metals are distributed around the stope and dump and the change of the elements on the surface of the profile is generally greater than that on the underlayer.Through the correlation analysis and the clustering analysis,the heavy metals in the soil are classified into two classes:Zn,Cd,Pb,Hg and As belong to one class while V,Co,Ti,Cu,Ni,Cr and Mn belong to the other.For samples from different areas,the correlations and clustering results of those heavy metals are different.That may be caused by the type and feature of soil in the sampling places or the degree of man-made pollution in the area.The evaluation on the potential ecological risk of heavy metals shows that the contamination of most heavy metal elements in the surface soils in Panzhihua mining zone are medium or heavy.Judged by the potential ecological risk index,only one place are in strongly high ecological risk.Generally,the ecological risk of heavy metals in the zone is not high.
     (4)The geochemical characteristics of two kinds of atmospheric particle in Panzhihua mining zone and mining activity area.The results show that contents of heavy metals in atmospheric dust and near-earth-surface atmospheric particle in Panzhihua mining activity area are very high and the contents of the elements,such as V,Ti and Fe,related with mining activity are especially high and can be up to several or even more than ten times of those in other cities in Chengdu Economic Zone. The morphological analysis of heavy metals in near-earth-surface atmospheric particle shows that the contents of ion-exchange and carbonate-bound of Cu,Pb,Zn,Co,Ni and Mn are higher and have significant effect on environment,V and Cr have less effect on environment,Ti residua accounts for more than 99%and has very little effect on environment.The study on the granularity of near-earth-surface atmospheric particle and the mineralogical research show that the granularity of the near-earth-surface atmospheric particle is very thin,most are thinner than 80um and mainly fall in the range of 20-50um,and only some are thinner than 20um;the mineral are mainly composed by quartz,then by feldspar and gesso,and then by carbonate minerals.
     (5)The characteristics of heavy metals in the tree ring samples in different areas are studied. The results show that,in a certain extent,the tree ring can reflect the contamination degree of heavy metals in the mining zone and the heavy metals in the tree ring in different areas are related with the mining activity in the area.Through contrast,it is found that the heavy metals in the tree ring are obviously positively correlated with the root soil and the elements in the tree ring are not only from soil but probably from atmospheric deposition.
     (6)The correlation heavy metals in different media as well as the source,the existing form and the transform of heavy metals are studied.There are two sources for the heavy metals in different media in the mining zone:one is the natural weathering of basic and ultra-basic rocks that contain heavy metals and the other is the mining activity,and the latter is the main reason.Most heavy metal elements exist in mineral crystal lattice in the form of residua.For some elements,the proportion of their organic bound and carbonate-bound is also higher.The heavy metals in different media in the mining zone mainly activated and transferred physically.Under natural conditions,the heavy metals have the same transforming relation with all other elements,that is,transform and cycle between rock,soil and water under the action of weathering and sedimentation.Whereas, under the human conditions,heavy metals in different stages of mining activity transform and cycle between soil,atmosphere,water and plant by exhaust gas(raised dust and exhaust gas),liquid waste(waste water),solid waste(waste residue,mullock,gangue).
     (7)The geochemical characteristics of heavy metals in sulphide mines and oxide mines are contrasted and the geochemical characteristics of heavy metals are summarized.It is found that the geochemical characteristics of heavy metals in the two mines have not only similarity but also difference.And the biggest difference is that the content of chalcophile elements in environmental media of sulphide mines is far higher that in oxide mines and the biggest pollution for oxide mines is that caused by atmosphere dust and heavy metals,while the biggest pollution of sulphide mines is that caused by acid mining waste water.The similarity between the two mines is that their morphological features are same.
引文
蔡文贵,林钦,贾晓平等.考洲洋重金属污染水平与潜在生态危害综合评价[J].生态学杂志,2005,24(3):343-347.
    陈翠华,倪师军,何彬彬等.江西德兴矿区土壤重金属污染的富集因子分析[J].金属矿山,2005,354(12):57-60.
    陈怀满主编.环境土壤学[M].北京:科学出版社,2005.
    陈静生,王飞越,陈江麟.论小于63μm粒级作为水体颗粒物重金属研究介质的合理性及有关粒级转换模型研究[J].环境科学学报,1994,14(4):419-425.
    陈静生,王飞越,程成旗.中国东部主要河流颗粒物的元素组成[J].北京大学学报(自然科学版):1996,32(2)206-214.
    陈静生,王飞越,宋吉杰.中国东部河流沉积物中重金属含量与沉积物主要性质的关系[J].环境化学,1996,15(1):8-14.
    陈静生,王忠,刘玉机.水体金属污染潜在危害:应用沉积学方法评价[J].环境科技,1989,9(1):16-25.
    陈静生,周家义.中国水环境重金属研究[M].北京:中国环境科学出版社,1992.
    陈静生等.铜在沉积物各相中分配的实验模拟与数值模拟研究——以鄱阳湖为例[J].环境科学学报,1987,7(2):140-149.
    陈静生主编.水环境化学[M].北京:高等教育出版社,1987.
    陈瑞生等编.河流重金属污染研究[M].北京:中国环境科学出版社,1987.
    陈天虎,冯军会,徐晓春.尾矿中硫化物氧化模拟实验研究[[J].岩石矿物学杂志,2002.21(3):298-302.
    初娜,赵元艺,张光弟,等.江西省德兴铜矿矿区重金属元素的环境效应[J].地质学报,2008,82(4):562-576.
    崔毅,辛福言,马绍赛等.乳山湾沉积物重金属污染及其生态危害评价[J].中国水产科学,2005,12(1):83-90.
    党志、刘从强等,矿区土壤中重金属活动性评估方法的研究进展[[J],地球科学进展,2002.
    范成新,朱育新等.太湖宜溧河水系沉积物的重金属污染特征[J].湖泊科学,2002,14(3):235-241.
    冯素萍,梁亮,朱英等.河流底泥沉积物的形态分析(Ⅱ)——Tessier形态分类法[J].山东大学学报(理学版),2004,39(6):101-107.
    何江,王新伟,李朝生等.黄河包头段水-沉积物系统中重金属的污染特征[J].环境科学学报,2003,23(1):53-57.
    《环境忠重金属研究文集》编辑组.环境忠重金属研究文集[C].北京:科学出版社,1988.
    黄铭洪等著.环境污染与生态修复[M].北京:科学出版社,2004.
    霍文毅,黄风茹,陈静生,贾振邦.河流颗粒物重金属评价方法比较研究[J].地理科学,1997,17(1):81-86.贾振邦,邓宝山,王清平,等.应用沉积学原理评价太子河支流主要重金属污染及潜在生态危害[J].环境科学,1991,12(3):79-84.
    贾振邦,霍文毅等.应用次生相富集系数评价柴河沉积物重金属污染[J].北京大学学报(自然科学版).2000,36(6):808-812.
    贾振邦,梁涛,林健枝,等.香港河流重金属污染及潜在生态危害评价研究[J].北京大学学报(自然科学版),1997,33(4):485-492.
    贾振邦,吴平.用脸谱图对太子河本溪市区段河流沉积物中重金属污染进行评价[J].背景大学学报:自然科学版,1993,29(6):736 744.
    贾振邦,于彭涛.应用回归过量分析法评价太子河沉积物中重金属污染的研究[J].北京大学学报(自然科学版),1995,31(4):451-459.
    贾振邦,赵智杰,杨小毛,等.洋涌河、茅洲河和东宝河沉积物中重金属的污染及评价[J].环境化学,2001,20(3):212-219.
    贾振邦,周华,张宝权,等.应用污染负荷指数法评价太子河(本溪市区段)沉积物中重金属污染[J].环境科技,1992,12(6):55-61.
    金相灿.黄河中游悬浮物对铜、铅、锌的吸附与释放研究[J].中国环境科学,1984,4:54-60.
    金相灿.黄河中游悬浮物对铜、铅、锌的吸附[J].中国环境科学,1983,4:10-17.
    金相灿主编.沉积物污染化学[M].北京:中国环境科学出版社,1992.
    柯海玲.陕西潼关金矿区土壤重金属地球化学特征及污染评价[D].长安大学硕士学位论文,2005.
    蓝先洪.中国主要河口沉积物的重金属地球化学研究[J].海洋地质动态,2004,20(12):1-4.
    雷丽.GIS在攀枝花矿区土壤环境调查与评价中的应用[D].成都理工学院硕士学位论文,2001.
    黎彤等.地球和地壳的化学元素丰度[M].北京:地质出版社,1990.
    李宏禄.攀枝花地区环境地质问题及治理建议[J].中国地质,1999,2:29-30.
    李庆宇,陈玲,仇雁翎等.上海化学工业区土壤重金属元素形态分析[J].生态环境,2004,43(2):154-155.
    李社红.北疆资源开发环境污染问题研究[D].北京:中国科学院研究生院,2002.
    李铁,叶常明,雷志芳.沉积物与水间相互作用的研究进展[J].环境科学进展,1998,6(5):29-39.
    李小虎.大型金属矿山环境污染及防治研究——以甘肃金川和白银为例[D].兰州大学博士学位论文,2007.
    李学垣主编.土壤化学[M].北京:高等教育出版社,2001.
    李玉昌.攀枝花城市环境地球化学研究[D].成都理工大学,硕士论文,2004.
    廖国礼,吴超,冯巨恩.矿坑废水污灌区河流重金属离子污染综合评价实践[J].矿冶,2004,13(1):86-90.
    廖国礼,吴超.尾矿区重金属污染浓度预测模型及其应用[J].中南大学学报,2004,35(6):1009-1013.
    廖国礼.典型有色金属矿山重金属迁移规律与污染评价研究[D].中南大学,博士学位论文,2005.
    刘英俊,曹励明.元素地球化学导论.北京,地质出版社,1993.
    马玉孝等.攀枝花地质[M].成都:成都科技大学出版社,2001.
    马玉孝等.中华人民共和国区域地质调查报告(1:50000)同德幅、猛粮坝幅、攀枝花市幅、金江幅联测报告[C].1999.12.
    倪师军,滕彦国,张成江.浅议矿业开发中的环境管理体系[J].地质科技管理,1999,5:35-41.
    攀枝花市环境检测站.攀枝花市环境监测报告[C],2006.
    施泽明,倪师军,张成江等.不同粒径近地表大气尘元素分配规律研究——以成都经济区为例.生态环境2007,16(6):1590-1596
    汤中立,李小虎,闫海卿等.矿山地质环境问题及防治对策[J].地球科学与环境学报,2005,27(2):1-4.
    陶俊,陈刚才,赵琦,康清容,徐渝,陈克军.重庆市大气TSP中重金属分布特征[J].重庆环境科学,2003,(12).
    周斌斌,徐家骝,胡广宇.上海市大气颗粒物中金属元素特征[J].上海环境科学,1994,(09).
    滕彦国,倪师军,张成江.攀枝花矿业基地矿区环境现状与环境恢复的途径[J].矿业安全与环保,2001,28(3)28-30.
    滕彦国,倪师军,张成江等.攀枝花钢铁基地环境恢复与生态重建的对策[J].四川环境,2001,20(1):31-34.
    滕彦国,倪师军,张成江等.攀枝花钢铁基地矿业开发过程中减轻环境影响的对策[J].中国矿业,2000,9(4):95-98.
    滕彦国,庹先国,倪师军,张成江.应用地质累积指数评价攀枝花地区土壤重金属污染[J].重庆环境科学,2002,24(4):25-27.
    滕彦国,庹先国.应用地质累积指数评价沉积物中重金属污染:选择地球化学背景的影响[J].环境科学与技术.2002,25(2):7-9.
    滕彦国,刘 晶,崔艳芳等.德兴矿区土壤中铜的地球化学形态及影响因素[J].矿物岩石,2007,27(6):5963.
    庹先国,滕彦国,徐争启等.矿山环境监测与预警技术开发与示范研究报告[C].2006.
    庹先国,滕彦国,徐争启等.城市地球化学灾害研究研究报告[C].2007.
    王凡路,吴瑞琴,杨兵等.凡口铅锌矿湿地系统沉积物中重金属的分布[J].生态环境,2003,12(3):292-295.
    王立军,张朝生.珠江广州段水体沉积物和悬浮物中27种元素的含量与形态分布特征[J].应用基础与工程科学学报,1997,7(1):12-20.
    王平利,戴春雷,张成江.城市大气中颗粒物的研究现状及健康效应[J].中国环境监测,2005,(01).
    王晓蓉,田笠卿.金沙江水系稀土元素环境背景值和地球化学特征[J].环境科学学报,1994,14(2):168-176.
    王晓蓉,田笠卿.金沙江水系鱼体中稀土元素环境背景值研究[J].南京大学学报:自然科学版,1993,29(3):414-421.
    王晓蓉,章慧珠,周爱和等.金沙江重金属在颗粒物中的分布及其基本特征[J].环境化学,1982,1(2):140-146.
    王新伟.黄河包头段水体重金属污染的环境地球化学研究[D].内蒙古大学,硕士学位论文,2002.
    魏世强.环境系统中重金属镉迁移研究[D].重庆:西南农业大学资源环境学院,2001
    文湘华等.水体沉积物重金属质量基准研究[J].环境化学,1993,12(5):334-341.
    吴攀,刘丛强,杨元根.矿山环境中(重)金属的释放迁移地球化学及其环境效应[J].矿物学报,2001 21(2):213-219.
    徐争启,倪师军,张成江等.应用污染负荷指数法评价攀枝花地区金沙江水系沉积物中的重金属[J].四川环境,2004,23(3):67-67.
    徐争启,倪师军,张成江等.金沙江攀枝花段水系沉积物中重金属德分布特征及污染评价[J].物探化探计算技术,2004,26(3):252-255.
    徐争启,倪师军,张成江等.潜在生态危害指数法中几个重金属毒性系数的计算.环境科学与技术,2007,31(3):112-115.
    徐争启,倪师军,张成江等.金沙江(攀枝花段)水系沉积物中重金属的形态特征.物探化探计算技术,2006,28(4):363-366.
    徐争启,倪师军,庹先国,张成江.火焰原子吸收光谱法分析沉积物中重金属元素的形态.分析试验室,2006,25(4):1-4.
    徐争启,滕彦国,庹先国,张成江,倪师军.攀枝花市水系沉积物与土壤中重金属的地球化学特征比较.生态环境,2007,16(3):739-743.
    徐争启,庹先国,滕彦国.攀枝花钒钛磁铁矿矿区土壤重金属潜在生态危害评价.矿物岩石地球化学通报,2007,26(Suppl.):475-477.
    徐争启,庹先国,倪师军,张成江.攀枝花矿区水系沉积物的组成及其环境效应.金属矿山,2007,6:75-79.
    徐争启,张成江,倪师军,王德伟.宜宾市近地表大气尘的组成及地球化学特征.矿物岩石地球化学通报,2007,26(Suppl.):433-434.
    许乃政,陶于祥,高南华.金属矿山环境污染及整治对策[J].火山地质与矿产,2001,22(1):63-70.
    殷晋铎,么俊东.大沽排污河沉积物污染及生态风险性[J].中国环保产业,2002,12:30-32.
    于燕,张振军,李义平.西安市大气颗粒物污染现状及其金属特征研究[J].环境与健康杂志,2003,(06).
    袁旭音,王爱华,许乃政.太湖沉积物中重金属的地球化学形态及特征分析[J].地球化学,2004,33(6):611-617.
    张朝生,王立军,章申.长江下游河流沉积物和悬浮物中金属元素的形态[J].中国环境,1995,15(5):342-347.
    张成江,徐争启.攀枝花市环境地质调查研究报告[C],2006.
    张辉,马东升.长江(南京段)现代沉积物中重金属的分布特征及其形态研究[J].环境化学,1997,16(5):429-434.
    张立成编著.长江河源区水环境地球化学研究[M].北京:环境科学出版社,1988.
    张鑫,周涛发,袁峰等.铜陵矿区水系沉积物中重金属污染及潜在生态危害评价[J].环境化学,2005,24(1):106-107.
    周斌斌,徐家骝,胡广宇.上海市大气颗粒物中金属元素特征[J].上海环境科学,1994,(09).
    周琳.成都经济区近地表大气尘中铅、镉的环境化学行为研究[D].成都理工大学硕士学位论文,2005.
    周启星,宋玉芳等著.污染土壤修复原理与方法[M].北京:科学出版社,2004
    朱广伟,陈英旭,周根娣,等.运河(杭州段)沉积物中重金属分布特征及变化[J].中国环境科学,2001,21(1):65-69 Amato, 1988 I. Amato, Tapping tree rings for the environmental tales they tell [J], Anal Chem 60 (1988), pp. 1103A-1107A.
    Anderson,J. A study of the digestion of sediment by the HNO_3-H_2SO_4, and the HNO_3-HC1 procedures[J]. At. Absorpt. Newsl. 1974,13: 31.
    Baes and McLaughlin, 1984 C.F. Baes and S.B. McLaughlin, Trace elements in tree rings: evidence of recent and historical airpollution[J]. Science, 224 (1984), pp. 494-497.
    Bellis et al., 2001 D.J. Bellis, C.W. McLeod and K. Satake, The potential of elemental and isotopic analysis of tree bark for discriminating sources of airborne lead contamination in the UK[J]. J Environ Monit 3 (2001), pp.194-197.
    Bussiere M, Benzaazoua M, Aubertin M.A laboratory study of covers made of low-sulphide tailings to prevent acid mine drainage[J]. Environmental Geology, 2004, 45: 609-622.
    C.Sawides, A.Papadopoulos, K.J.Haralambous and M.Loizidou. Sea sediments contaminated with heavy metals : metal speciation and removal[J]. Wat. Sci. Tech. 1995,32(9-10):65-73.
    Castrol-Larrgoitia J, Kramar U, Pucheh H. 200 years of mining activities at La Paz/San Luis Potosi/Moxico -consequences for environment and geochemical exploration[J]. J.Geochem. Expor, 1997, 58(5): 81-91.
    (?)eburnis and Steinnes, 2000 D. (?)eburnis and E. Steinnes, Conifer needles as biomonitors of atmospheric heavy metal deposition: comparison with mosses and precipitation, role of the canopy[J]. Atmos Environ 34 (2000), pp.4265-4271.
    Clemente R,Walker D J, Roig A, Bernal M P .Heavy metal availability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcollar (Spain)[J]. Biodegeadation, 2003,14:199-205.
    Clotilde Bertin and Alain CM. Bourg. Trends in the heavy metal content (Cd,Pb,Zn) of river sediments in the drainage basin of smelting activities [J]. Wat. Res. 1995,29(7):1729-1736.
    Cutter and Guyette, 1993 B.E. Cutter and R.P. Guyette, Anatomical, chemical, and ecological factors affecting tree species choice in dendrochemistry studies[J]. J Environ Qual 22 (1993), pp. 611-619.
    Dauvalter Vladimir, Rognerud Sigurd.Heavy metal pollution in sediments of the Pasvik[J] River drainage. Chemosphere, 2001,42(l):9-18.
    David J. Bellis, Kenichi Satake, Cameron W. McLeod. A comparison of lead isotope ratios in the bark pockets and annual rings of two beech trees collected in Derbyshire and South Yorkshire, UK[J]. Science of the Total Environment 321(2004); 105-113.
    Eklund, 1995 M. Eklund, Cadmium and lead deposition around a Swedish battery plant as recorded in oak tree rings[J] J Environ Qual 24 (1995), pp. 126-131.
    Figueira et al., 2002 R. Figueira, C. Sergio and A.J. Sousa, Distribution of trace metals in moss biomonitors and assessment of contamination sources in Portugal[J]. Environ Pollut 118 (2002), pp. 153-163.
    Forstner,U., Patchineelam,S.R. Bingung und mobilization von Schwermetallen in fluviatilen sedimenten[J].. Chem.Z., 1976,100: 49-57.
    Fridland, Andren JAY.Trace metal accumulation distribution fluxes in forests of the northeastern United States[D]. Doctoral Dissertation, 1990.
    Fritts, H.C.(ed)(1976).Tree Ring and Climate[M]. Academic Press, London UK.
    Garrett R G and Geddes A J S. 1991. Studies of regional drainage chemistry in Jamaica[J]. Transaction of the Institution of Mining and Metallurgy, 100, B88-B97.
    Gavin J. Patrick, John G. Farmer. A stable lead isotopic investigation of the use of sycamore tree rings as a historical biomonitor of environmental lead contamination[J]. The Science of the Total Environment; 362(2006); 278-291.
    Germund Tyler, Tommy Olsson.The importance of atmospheric deposition, charge and atomic mass to the dynamics of minor and rare elements in developing, ageing, and wilted leaves of beech (Fagus sylvatica L.)[J]. Chemosphere 65(2006);250-260.
    Gibbs R J.1997.Transport phases of transition metals in the Amazon and Yukon rivers[J].Geol Soc Am Bu11,88:829-943.
    Gibbs,R.J.Mechanisms of trace metal transport in river[J].Science,1973,180:71-73.
    H.M.V.M Soares,R.A.R.Boaventura,A.A.S.C.Machado,et al.Sediments as monitors of heavy metal contamination in the Ave river basin(Portugal):multivariate analysis of data[J].Environmental Pollution,1999,105:311-323.
    Hagemeyer and Sch(a|¨)fer,1995 J.Hagemeyer and H.Sch(a|¨)fer,Seasonal variations in concentrations and radial distribution patterns ofCd,Pb and Zn in stem wood of beech trees(Fagus sylvatica L.)[J].Sci Total Environ 166(1995),pp.77 87.
    Heikkinen P M,Korkka-Niemi K,Lahti M V P.Salonen.Groundwater and surface water contamination in the area of the Hitura nickel mine,Western Finland[J].Environmental Geology,2002,42:313-329.
    Hochella M F,White A F.Mineral-water interface geochemistry:An overview[J].Review in Mineralogy,1990,23(3):1-16.
    Holtzmann,1970 R.B.Holtzmann,Isotopic composition as a natural tracer of lead in the environment[J].Environ Sci Technol 4(1970),pp.314 317.
    Horowitz A J,A Primer on Sediment-Trace element chemistry.2~(nd)ed[M].MI:Lewis Publishers,1991.
    Huang Kouming,Lin Saulwood.Consequences and implication of heavy metal spatial variations in sediments of the Keelung River drainage basin,Taiwan[J].Chemosphere,2003:53(9):1113-1121.
    Jain C.K.,Sharma M.K..Distribution of trace metals in the Hindon River system[J].India.Journal of Hydrology,2001,253(1-4):81-90.
    Jambor J L.Mineralogy of sulfide-rich tailings and their oxidation products[J].Environmental Geochemistry of Sulfide Mine-Wastes.MAC shortcourse,1994,59-102.
    Jonsson et al.,1997 A.Jonsson,M.Eklund and K.H(?)kansson,Heavy metals of the 20th century recorded in oak tree rings[J].J Environ Qua126(1997),pp.1638 1643.
    Kardell and Larsson,1978 L.Kardell and J.Larsson,Lead and cadmium in oak tree rings(Quercus robur L.)[J].Ambio 7(1978),pp.117 121.
    Katagiri,1977 Katagiri,S.,1977.Studies on mineral cycling in a deciduous broad-leaved forest at Sanbe Forest of Shimane University,Japan.Concentration of nutrient elements of trees.Bull[J].Faculty of Agriculture,Shimane University 11,pp.60 72.
    Katherine F M,Christine M D.Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper,iron,lead,manganese and zinc in soils and sediments[J].Analytica Chimica Acta,2003,478:111-118.
    Keiko Suzuki.Characterisation of airborne particulates and associated trace metals deposited on tree bark by ICP-OES,ICP-MS,SEM-EDX and laser ablation ICP-MS[J].Atmospheric Environment 40(2006);2626-2634.
    Kerstin M.Witte,Richard B.Wanty,W.Ian Ridley.Engelmann Spruce(Picea engelmannii)as a biological monitor of changes in soil metal loading related to past mining activity[J].Applied Geochemistry;19(2004);1367-1376.
    Kharkar D et al.Geochemica et Cosmochimica Acta,1968,33:285.
    Knight C,Kaiser J,Lalor G C,et al.1997.Heavy metals in surface water and stream sediments in Jamaica[J].Environmental Geochemistry and Health,19,63-66.
    Krumagalz B Set al.Sci Total Environ,1991,116:15.
    Lea et al.,1979 R.Lea,W.C.Tierson,D.H.Bickelhaupt and A.L.Leaf,Stand treatment and sampling time of hardwood foliage Microelement analysis[J].Plant Soil 51(1979),pp.535 550.
    Liang Y.,Wong M.H..Spatial and temporal organic and heavy metal pollution at Mai Po Marshes Nature Reserve, Hong Kong[J].Chenmosphere,52(9):1647-1658.
    Lim T T,Chui P C,Goh K H.Process evaluation for optimization of EDTA use and recovery for heavy metal removal from a contaminated soil[J].Chemosphere,2005,58,1031-1040.
    Lin Saulwood,Hsieh I-Jy,Huang Kuoming.Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments[J].Chemical Geology,2002,182(2-4):377-394.
    Loizidous,M.,Haralambous K.J.and Sakellarides,P.O.(1991).Chemical Treatment of Sediments Contaminated with Heavy Metals,8~(th) Inter.Conf.of Heavy Metals in the Environ.Edinburgh.
    Loring D H,Rantala R T T.1992.Manual for the geochemical analyses of marine sediments and suspended particulate matter[J].Earth-Science Reviews,32:235-283.
    Lottermoser B G,Ashley P M,Lawie D C.Environmental geochemistry of the Gulf Creek copper mine area,north-eastern New South Wales,Australia[J].Environ Geol.1999,39:61-74.
    Luigi Antonello Di Lella,Stefano Loppi,Giuseppe Protano,Francesco Riccobono.Toxic trace elements and organic compounds in the ambient air of Kabul,Asghanistan[J].Atmospheric Environment 40(2006);225-237.
    M.G.L.Baillie.(1982).Tree-Ring Dating and Archaeology.Croom Helm stuies in archaeology,London,UK[J].McAnally,W.H.,Mehta,A.J..Significance of Aggregation of Fine Sediment Particles in Their Deposition.Estuaring [J].Coastal and Shelf Science,2002,54(4):643-653.
    Merington G.The transfer and fate of Cd,Cu,Pb and Zn from two historic metallifercus mine in the U.K[J].Applied Geochemistry,1994,9(4):677-687.
    Moore q brook E J,Johns C.Grain size partitioning of metal in contaminated,Coarse-grained river floodplain sediment:Clark Fork River,Montana,SUA[J].Environ,Geol.Water Sci.,1989,14:107-115.
    Natarajan K A,Subramanian S,Jean-Jacques B.Environmental impact of metal mining biotechnological aspects of water pollution and remediation-an Indian experience[J].Journal of Geochemical Exploration,2006,88:45-48.
    NystrAAm Gunvor M.,Ottosen Lisbeth M.,Villumsen Arne.Test of experimental set-ups for electrodialytic removal of Cu,Zn,Pb and Cd from different contaminated harbour sediments[J].Engneering Geology,2005,77(3-4):349-357.
    Pagnanelli F.,Moscardini E.,Giuliano V.Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area:pollution detection and affmity series[J].Environmental Pollution,2004,132(2):189-201.
    Paniter S.勘查地球化学及其在环境问题中的应用[J].石宏仁摘编.地质科技动态,1995(6):11-12.
    Piczak et al.,2003 K.Piczak,A.Lesniewicz and W.Zyrnicki,Metal concentrations in deciduous tree leaves from urban areas in Poland[J].Environ.Monit.Assess.86(2003),pp.273-287.
    R.Swennen,J.Vander Sluys,R.Hindel,A.Brusselmans[J].Journal of Geochemical Exploration,1998,Volume 62Issue:1-3.
    Rea et al.,2001 A.W.Rea,S.E.Lindberg and G.J.Keeler,Dry deposition and foliar leaching of mercury and selected trace elements in deciduous forest throughfall[J].Atmos.Environ.35(2001),pp.3453-3462.
    Richard Binler,Ingemar Renberg,Jonatan Klaminder,Ove Emteryb.Tree rings as Pb pollution archives? A comparison of 206 Pb/207Pb isotope ratios in pine and other environmental media[J].The Science of Total Environment;319(2004);173-183.
    Rosner U.Effects of historical mining activities on surface water and groundwater-an example from northwest Arizona[J].Environ Geol.1998,33:224-230
    Ryder,K.,Temara,A.,Holdway,D.A..Avoidance of crude-oil contaminated sediment by the Australian seastar,Patiriella exigua(Echinodermata:Asteroidea)[J].Marine Pollution Bulletin.2004,49(11-12):900-909.
    Salomons W,Forstner U.1984.Metals in hydrocycle[J].Springer-Verlag,New-York Berlin Heidelberg,349.
    Sheoran A S,Sheoran V.Heavy metal removal mechanism of acid mine drainage in wetlands:A critical review[J]. Minerals Engineering,2006,19:105-116
    Sheppard and Funk,1975 J.C.Sheppard and W.H.Funk,Trees as environmental sensors monitoring long-term metal contamination of Spokane River[J].Idaho,Environ Sci Technol 9(1975),pp.638-642.
    Shi Changxing,Zhang David Dian,You Lianyuan.Sediment budget of the Yellow River delta,China:the importance of dry bulk density and implications to understanding of sediment dispersal[J].Marine Geology,2003,199(1-2):13-25.
    Singh A K,Hasnain SI,Banerjee D K.1999.Grain size and geochemical partitioning of heavy metals in sediments of the Damodar Tiver-a tributary of the lower Ganga,India[J].Environmental Geology,39(1):90-98.
    Stephane Audry,Gerard Blanc,Jorg Schafer.The impact of sulphide oxidation on dissolved metal(Cd,Zn,Cu,Cr,Co,Ni,U)inputs into the Lot-Garonne fluvial system(France)[J].Applied Geochemistry,2005,20:919-931
    Symeonides,1979 C.Symeonides,Tree-ring analysis for tracing the history of pollution:application to a study in northern Sweden[J].J Environ Qual 8(1979),pp.482-486.
    Tessier,A.,W.G.Campbell and M.Baisson.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844-850.
    U.Forstner,G.T.W Wittmann.Metals pollution in the aquatic environment[M].北京:海洋出版社,1987.
    U.Forstuer,G.T.WWittmann.水环境的重金属污染[M].王忠玉,姚重华主译.北京:海洋出版社,1987.
    Uta K,Jens W.Long-term effects of the Aznalcbllar mine spill-heavy metal content and mobility in soils and sediments of the Guadiamar river valley(SW Spain)[J].Sci Total Environ,2006,367(2-3):855-877
    Viscosi-Shirley,C.,Pisias,N.,Mammone,K..Sediment source strength,transport pathways and accumulation patterns on the Siberian-Arctic's Chukchi and Laptev shelves[J].Continental Shelf Research,2003,23(11-13):1201-1225.
    Walling,D.E.,Fang,D..Recent trends in the suspended sediment loads of the world's rivers[J].Global and Planetary Change,2003,39(1-2):111-126.
    Ward et al.,1974 N.I.Ward,R.R.Brooks and R.D.Reeves,Effects of lead from motor-vehicle exhausts of trees along a major thoroughfare in Palmerston North,New Zealand[J].Environ Pollut 6(1974),pp.149 158.
    Watmough and Hutchinson,1996 S.A.Watmough and T.C.Hutchinson,Analysis of tree rings using inductively coupled plasma mass spectrometry to record fluctuations in a metal pollution episode[J].Environ Pollut 93(1996),pp.93-102.
    Watmough and Hutchinson,1999 S.A.Watmough and T.C.Hutchinson,Change in the dendrochemistry of sacred fir close to Mexico City over the past 100 year[J].Environ Pollut 104(1999),pp.79-88.
    Watmough and Hutchinson,2000 S.A.Watmough and T.C.Hutchinson,Reconstructing trace metal deposition by dendrochemical analysis;a comparison among tree species.In:J.Nriagu,Editor,11th International Conference on Heavy Metals in the Environment,University of Michigan,Ann Arbor,MI,USA(2000)Contribution #1405(CD-ROM).
    Watmough,1999 S.A.Watmough,Monitoring historical changes in soil and atmospheric trace metal levels by dendrochemical analyses[J].Environ Pollut 106(1999),pp.391-403.
    Whitney P R..Relationship of manganese-iron oxides and associated heavy metals to grain size in stream sediments[J].Journal of Geochemical Exploration,1975,4:251-263.
    Williams T M,Smith B.Hydrochemical characterization of acute acid mine drainage at Iron Duke mine,Mazowe,Zimbabwe[J].Environ Geol.,2000,39:272-278
    Zhang et al.,2002 Z.H.Zhang,Z.F.Chai,X.Y.Mao and J.B.Chen,Biomonitoring trace element atmospheric deposition using lichens in China[J].Environ Pollut 120(2002),pp.157 161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700