用户名: 密码: 验证码:
大气中挥发性有机化合物与氮氧化物的反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气环境污染尤其是气溶胶污染,因污染物组成成分复杂、影响因素繁多、涉及范围广泛以及研究治理难度大等特点,是一个突出的环境问题,也是环境科学研究的热点问题。气溶胶中的二次有机气溶胶SOA多数属于PM2_5,除了能引起大气光化学烟雾和酸沉降,影响大气的能见度和区域气候以外,还含有多种毒性很强的有机物,会对生态系统和人类健康造成严重威胁。SOA是全球大气中气溶胶的主要贡献者,而其主要来源于可挥发性有机化合物VOCs(主要包括生物源排放的挥发性有机化合物BVOCs和人为源排放的挥发性有机化合物AVOCs)发生氧化或光氧化反应形成。
     VOCs性质活泼,能参与大气中的多种化学和光化学反应,从而影响大气成分、污染物的转化、区域大气质量、区域气候变化等。大气BVOCs的最主要组成是异戊二烯,而环氧化合物是异戊二烯形成SOA过程中的重要中间体。因此,环氧化合物的大气化学反应研究成为了当前大气环境领域的一个前沿问题。
     本文通过大量细致的实验,深入研究了大气中VOCs形成SOA的反应机制;探讨了某些SOA的前体物与大气中氮氧化物的化学反应。主要研究结果如下:
     (1)采用两种方法合成了9种有代表性的BVOCs衍生的环氧化合物,分别研究了这些环氧化合物与NO2在水相、气相和有机相中的反应,并进行了相关的动力学和反应机理研究,证实了一条由环氧化物进一步形成SOA的可能的新途径。实验结果表明,这些环氧化合物与N02在水相、气相和有机相中反应均形成了相应的有机硝酸酯类物质,后者被证明是SOA的组分;环氧化物除了可与无机硝酸盐和硝酸反应形成SOA组分,还可以直接与N02反应形成。动力学研究结果表明,在N02浓度相对较高的情况下,环氧化物与N02的反应可看作一级反应,线性拟合符合一级动力学曲线。反应机理研究结果表明,NO2与环氧化合物的反应生成有机硝酸酯,很有可能是一种自由基历程。
     (2)研究了城市大气SOA的重要AVOCs前体物芳香族化合物与NO2的化学及光化学反应。首先制备了8种具有代表性的芳烃化合物,将其分别在无光照和光照射下与N02进行气相反应。反应产物均通过色谱分析进行了鉴定,研究了反应机理。结果表明,芳烃化合物在无光照和光照射条件下,均能与NO2进行气相反应生成硝基苯类化合物。这一系列实验证实了,环境中的硝基苯类化合物不仅可以通过工业生产排放产生,还可通过大气中挥发性有机芳烃化合物与NO2直接发生自由基反应产生。
     (3)合成了7种具有代表性的芳烃化合物,将其分别在无光照和光照射条件下与NO进行气相反应,反应产物通过多种测试仪器进行了分析鉴定,进行了机理研究。结果表明,芳烃化合物在无光照和光照射条件下,与NO气体反应,均生成相应的硝基苯类化合物。结果证实了大气环境中的硝基苯类化合物的一条新的产生途径,即可通过大气中挥发性有机芳烃化合物与大气NO直接发生自由基反应或者单电子转移反应产生。
The atmospheric environmental pollution, especially the aerosol pollution has long been an elusive topic for scientists. It is very difficult to be resolved due to its features such as complexity of pollutant, variety of the influence factors, wide range, and difficulty of control etc. Among the aerosol, the secondary organic aerosol (SOA) is very important and most of them are PM2.5, which can pose grave threat to ecosystem and mankind because the SOA can not only cause atmospheric photochemical smog and acid deposition affecting visibility and regional climate, but also contain various highly toxic organic compounds. The SOA is the main contribution of the aerosol in global atmosphere. It can be formed by oxidation or photooxidation of biogenic and anthropogenic volatile organic compounds (BVOCs,AVOCs) in the atmospheric environment.
     In the first part of this thesis, some concepts, research background, the concerned developments as well as the research significance and novelty of this work have been described here. The aerosol, SOA and its generation mechanism as well as the VOCs including its category, origin, and harms are also depicted in details. Although VOCs are only trace gas in the atmosphere, the studies on the VOCs play a great role in the field of atmospheric chemistry. Most of the VOCs are so active enough to be involved in a variety of chemical and photochemical reactions. As a result, the derivatives and products from VOCs thus affect many aspects such as the component of air, transformation of pollutant, regional atmospheric quality and change of regional climate. Therefore, the investigation on the atmospheric chemistry and photochemistry of VOCs has long been the research focus of scientists. It is well known that the isoprene is the most important BVOCs in air. Recent studies show that the epoxide is the key intermediate in the process of SOA formation from isoprene. It is believed that the formation of epoxide is very important to investigate the mechanism for the SOA formation via isoprene. Hence, the research on the atmospheric chemistry and photochemistry of epoxide has become a new hotspot in the current field of atmospheric chemistry.
     In the secondary, the third and the fourth part of this thesis, the main experimental studies have been demonstrated in details. The mechanism for SOA formation via VOCs in air has been investigated extensively through a series of carefully designed experiments. Additionally, the chemical reactions of some precursors of SOA with nitric oxides in atmosphere have also been studied. The details for the corresponding experimental methods, procedures and the conclusions have been described as following.
     (1) Nine epoxides represented the typical derivatives of BVOCs have been prepared by using two different methods. The reactions of epoxides with nitrogen dioxide (NO2) in water, gas phase and organic phase have been carried out respectively. In addition, the reaction kinetics and mechanism have also been investigated extensively. The results indicate that the corresponding organic nitrates have been obtained by the reactions of epoxides with NO2in water, gas phase and organic medium, and the organic nitrates have been proved to be component of SOA. As a result, these experiments find a novel possible process of SOA formation from epoxide. The results also suggest that organic nitrates in atmosphere can be formed directly by reactions of epoxides with NO2apart from reaction of epoxide with inorganic nitrate and nitric acid, which is well known before. In addition, the kinetics studies indicate that the reaction of epoxide with NO2can be considered as first order reaction under the conditions of high NO2concentration, and the linear fitting results also fit the first order kinetics curve well. Finally, the mechanistic studies suggest that the reaction of NO2with epoxide most likely proceeds via a free radical process.
     (2) The chemical and photochemical reactions of NO2with a large class of important AVOCs arenes derived from city atmospheric SOA have been carried out in this part. Eight representative arenes have been synthesized and the gas phase reactions of these compounds with NO2with and/or without light irradiation have also been investigated. All of the products have been determined by chromatography and the possible mechanism has also been studied. The results indicate that a series of nitrobenzenes have been formed by gas phase reactions of arenes with NO2under or not light irradiation. Therefore, a conclusion can be drawn out that the nitrobenzenes in air and environment are produced not only by anthropogenic emissions from chemical industry, but also by direct radical reaction of NO2with these volatile organic arenes.
     (3) In the fourth part, seven representative arenes have been prepared. Additionally, with or without light irradiation, the reactions of nitric oxide (NO) with these compounds in gas phase have been carried out. Furthermore, careful analysis of the results as well as the mechanism has also been done. Similarly, the results show that various nitrobenzenes have also been obtained by the gas phase reactions of NO with arenes under light irradiation or not, which confirm a new process of nitrobenzene formation in atmosphere and environment. This means that these hazardous nitrobenzene derivatives not only come from chemical industry emissions, but also can be generated by direct radical or single electron transfer reactions of NO with atmospheric volatile organic aromatic compounds.
     Finally, the author summarizes all of the experiments, methods, results and conclusions. In addition, the continuous work plan and blueprint in the future have also been drawn out at the end of this thesis.
引文
[1]唐孝炎,张远航,邵敏.大气环境化学[M].北京:高等教育出版社,2006.
    [2]Seinfeld, J. H., Pandis, S. N. Atmospheric Chemistry and Physics:From air Pollution to climate change. New York:John Wiley,1998.
    [3]Seinfeld, J. H., Pandis, S. N. Atmospheric Chemistry and Physics, John Wiley&Sons, Inc.: Hoboken, NJ, USA.2006.
    [4]Poschl, U. Atmospheric aerosols; composition, transformation, climate and health effects. Angew. Chem. Int. Ed,2005,44,7520-7540.
    [5]Seinfeld, J. H., Pankow, J. F. Annu. Rev. Phys. Chem.2003,54,121-140.
    [6]杨圣杰,陈莎,袁波祥.北京市2.5μm小颗粒大气气溶胶特征及来源.北方交通大学学报,2001,(06):50-53.
    [7]秦瑜,赵春生.大气化学基础[M].北京:气象出版社,2003.
    [8]任丽新,游荣高,吕位秀,张文,王秀玲.城市大气气溶胶的物理化学特性及其对人体健康的影响[J].气候与环境研究,1999(01):67-73.
    [9]Carlton, A. G; Wiedinmyer, C.; Kroll, J. H. A review of secondary organic aerosol (SOA) formation from isoprene. Atmos. Chem. Phys.2009,9,4987-5005.
    [10]Hallquist, M., Wenger, J. C., Baltensperger, U., et al. The formation, properties and impact of secondary organic aerosol:Current and emerging issues. Atmos. Chem, Phys.2009,9, 5155-5236.
    [11]Jimenez, J. L., Canagaratna, M, R., Donahue, N. M., Prevot, A. S. H., Zhang, Q. et al. Evolution of organic aerosols in the atmosphere. Science,2009,326,1525-1529.
    [12]张宇峰,邵春燕,张雪英等.挥发性有机物的污染控制技术.2003,25(3),89-92.
    [13]李宁,刘杰民,温美娟等.吹扫捕集/气相色谱联用技术在挥发性有机化合物测定中的应用.色谱,2001,21(4),343-346.
    [14]高莲,谢永恒.控制挥发性有机化合物污染的技术.化工环保,1998,18(6),243-243.
    [15]Andreas, M. O., Crutzen, P. J. Atmospheric aerosols:Biogeo chemical sources and role in atmospheric chemistry. Science,1997,276,1052-1058.
    [16]Di Carlo, P., Brune, W. H., Martinez, M. et al. Missing OH reactivity in a forest:Evidence for unknown reactive biogenic VOCs. Science,2004,304,722-725.
    [17]Karl, T., Guenther, A., Yokelson, R. J., Greenberg, J. et al. The tropical forest and fire emissions experiment:Emission, chemistry and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. J. Geophys. Res.2007,112, doi: 10.1029/2007JD008539.
    [18]Williams, J., Yassaa, N., Bartenbach, S., Lelieveld, J. Mirror image hydrocarbons from tropical and boreal forests. Atmos. Chem, Phys.2007,7,973-980.
    [19]Kuhn, U., Andreae, M. O., Ammann, C. et al. Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the carbon budget. Atmos, Chem. Phys,2007, 7,2855-2879.
    [20]Fehsenfeld. E., Calvert. J., Fall, R. et al. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochem. Cycles,1992, 6,389-430.
    [21]Atkinson, R., Aiey, J. Gas-Phase tropospheric chemistry of biogenic volatile organic compounds:A review. Atmospheric Environment,2003,31,197-210.
    [22]Carter, W. P. L.1997. Summary of status of VOC reaetivity estimates.
    [23]王志辉,张树宇,陆思华等,北京地区植物VOCs排放速率的测定[J],环境科学,2003,24(2):7-12.
    [24]Guenther, A., Hewitt, C. N., Erickson, D. et al. A global model of natural volatile organic compound emissions. Journal of Geophysical Research,1995,100(D5),8873-8892.
    [25]Laothawornkitkul, J., Taylor, J. E., Paul, N. D., Hewitt, C. N. Biogenic volatile organic compounds in the Earth system. New Phytol.2009,183,27-51.
    [26]Lamb, B., Guenther, A., Gay, D., Westberg, H. A national inventory of biogenic hydrocarbon emissions. Atmos. Eviron.1987,27,1695-1705.
    [27]Lamb, B., Gay, D., Westberg, H., Pierce, T. A biogenic hydrocarbon emission inventory for the U.S.A. using a simple forest canopy model. Atmos. Eviron.1993,27A,1673-1690.
    [28]Reimann, S., Lewis, A. C. Anthropogenic vocs, in:Volatile organic compounds in the atmosphere,1st ed., edited by:Koppman, R., Blackwell Publishing Ltd., Oxford, UK,2007.
    [29]Guenther, A., Hewitt, C. N., Erickson, D. et al. A global-model of natural volatile organic-compound emissions. J. Geophys. Res.1995,100,8873-8892.
    [30]Guenther, A., Karl, T., Harley, P. et al. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006,6,3181-3210.
    [31]von Kuhhlmann, R., Lawrence, M. G, Poschl, U., Crutzen, P. J. Sensitivities in global scale modelling of isoprene. Atmos. Chem. Phys.2004,4,1-17.
    [32]Carlton, A. G, Wiedinmyer, C. S., Kroll, J. H. A review of secondary organic aerosol (SOA) formation from isoprene. Atmos. Chem. Phys.2009,9,4987-5005.
    [33]Claeys, M., Graham, B., Vas, G., Wang, W. et al. Formation of secondary organic aerosols through photooxidation of isoprene. Science 2004,303,1173-1176.
    [34]Henze, D. K., Seinfeld, J. H. Global secondary organic aerosol from isoprene oxidation. Geophys, Res, Lett.2006,33, L09812, DOI:10.01029/02006GL025976.
    [35]Seinfeld, J. H., Pandis, S. N. Atmospheric Chemistry and Physics, John Wiley&Sons, Inc.: Hoboken, NJ, USA.2006.
    [36]王跃思,孙扬,徐新等.大气中痕量挥发性有机物分析方法研究.环境科学,2005; 26(4):、8-23.
    [37]Jun, S., Hiroyuki, O., Hiroshi, Y., et al. Evaluation of human health risks from exposures to four air pollutants in the indoor and the outdoor environments in Tokushima and communication of the outcomes to the local people. J. Risk Research,2007,10,841-851.
    [38]Huss, M. J., Eberlein, K. B., Darsow, U. et al. Short term exposure to volatile organic compounds enhances atopy patch test reaction. J. Allergy and Clinical Immunology,2004, 113,56-57.
    [39]Bowman, F. M., Plinis, C., Seinfeld, J. H. Ozone and aerosol productivity of reactive organic. Atmospheric Environment,1995,29,579-589.
    [40]Lin, C. Y. C., Jacob, D. J., Fiore, A. M. Trends in exceedances of ozone air quality standard in the continental United States,1980-1998. Atmospheric Environment,2001,35,3217-3228.
    [41]Geng, F., Tie, X. X., Xu, J. M., et al. Characterizations of ozone, NOx and VOCs measured in Shanghai, China. Atmospheric Environment,2008,42,6873-6883.
    [42]Zhang, Y. H., Su, H., Zhong, L. J., et al. Regional ozone pollution and observation-based approach for analyzing ozone-precursor relationship during the PRIDE-PRD2004 campaign Atmospheric Environment,2008,42,6203-6218.
    [43]Wipawee, D., Alexandra, E., Yosuke, K., et al. Secondary organic aerasol formation from aromatic precursors. Enrionmental Science and Technology,2003,37,3662-3670.
    [44]Gauss, M., Myhre, G., Isaksen, I. S. A, et al. Radiative forcing since preindustrial times due to ozone changes in troposphere and the lower stratosphere. Atmospheric Chemistry and Physics,2006,6,575-599.
    [45]IPCC,2001, Climate change 2001:the scientific basis. Cambridge:Cambridge University.
    [46]WMO.2002. Scientific Assessment of Ozone Depletion. Geneva:World Meteorological Organization.
    [47]Zeng, G., Pyle, J. A. Changes in tropospheric ozone between 2000 and 2100 modeled in a chemistry-climate model. Geophysical Research Letters,2003,30,1392-1395.
    [48]Kesselmeier, J., Staudt, M. Biologic Volatile Organic Compounds (VOC):An Overview on Emission, Physiology and Ecology. J. Atmos. Chem.,1999,33,28-88.
    [49]闫雁,王志辉,白郁华等.中国植被VOC排放清单的建立[J].中国环境科学,2005,25(1):110-114.
    [50]Went, F. W. Blue Hazes in the Atmosphere. Nature,1960,187,641-643.
    [51]Griffin, R. J., Cocker, D. R., Flagan, R. C., et al. Organic Aerosol Formation from the Oxidation of Biogenic Hydrocarbons. J. Geophys. Res.,1999,104,3555-3567.
    [52](a)Andersson-Skold, Y, Simpson, D. Secondary Organic Aerosol Formation in Northern Europe:A Model Study. J. Geophys. Res.,2001,106,7357-7374; (b)赵晶.学位论文《a-蒎烯氧化生成二次有机气溶胶的实验研究》.
    [53]Odum, J. R., Jungkamp, P. W., Griffin, R. J., et al. Aromatics, Reformulated Gasoline, and Atmospheric Organic Aerosol Formation. Environ. Sci. Technol.,1997,31,1890-1897.
    [54]Goldan, P. D., Kuster, W. C., Fehsenfeld, F. C., et al. Hydrocarbon Measurements in the Southeast United States:The Rural Oxidants in the Southern Environment Program 1990. J. Geophys. Res.,1995,100,259454-259463.
    [55](a)汪午,王省良,李黎等.天然源二次有机气溶胶的研究进展[J].地球化学.2008,37(l):77-86;(b)朱恩云,马墩.中国大气气溶胶研究现状[J].环境科学与管理.2008,33(12):57-59.
    [56]Bonn, B., Lawrenee, M. G. Influence of biogenie secondary organie aerosol formation Approaches on atmospheric chemistry. Journal of Atmospheric Chemistry,2005,51(3), 235-270.
    [57]Pandis, S. N., Paulson, S. E., Seinfeld, J. H., Flagan, R. C. Aerosol formation in the photo oxidation of isoprene and p-pinene., Atmos. Environ.,1991,25,997-1008.
    [58]Claeys, M., Graham, B., Vas, G., Wang, W. et al. Formation of secondary organic aerosols through photo oxidation of isoprene, Science,2004,303,1173-1176.
    [59]Edney, E. O., Kleindienst, T. E., Jaoui, M. et al. Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOx/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States, Atmos. Environ.,2005,39,5281-5289.
    [60]Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., Jaoui, M., Edney, E. O. Ozone-isoprene reaction:Re-examination of the formation of secondary organic aerosol, Geophys. Res. Lett.,2007, 34, L01805.
    [61]Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., Seinfeld, J. H. Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions, Geophys. Res. Letts.,2005,32, Art. No. L18808.
    [62]Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., Seinfeld, J. H. Secondary organic aerosol formation from isoprene photooxidation, Env. Sci.& Technol,2006.40,1869-1877.
    [63]Kleindienst, T. E., Edney, E. O., Lewandowski, M. et al. Secondary organic carbon and aerosol yields from the irradiations of isoprene and alpha-pinene in the presence of NOx and SO2, Environ. Sci. Technol.,2006,40,3807-3812.
    [64]Ng, N. L., Kwan, A. J., Surratt, J. D., et al. Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO3), Atmos. Chem. Phys.,2008,8,4117-4140,
    [65](a) Jaeobson, M. C., Hansson, H. C., Noone, K. J., Charlson, R. J. Organic atmospheric aerosols:Review and state of the seience. Reviews of Geophysics,2000,38:267-294;(b)王哲.学位论文.《中国典型地区碳质气溶胶及二次有机气溶胶特征研究》
    [66]Rajakumar, B., Flad, J. E., Gierczak, T., Ravishankara, A. R., Burkholder, J. B. The visible absorption spectrum of the CH3CO radical. J. Phys. Chem. A,2007,111,8950-8958.
    [67]Jang, M., Kamens, R. M. Newly characterized products and composition of secondary aerosols from the reaction of a pinene with ozone. Atmos. Environ.,1999,33,459-473.
    [68]Jang, M., Czoschke, N. M., Lee, S., Kamens, R. M. Heterogeneous atmospheric aerosol production by acid-catalyzed particle phase reactions. Science,2002,298,814-817.
    [69]Hoffmann, T., Odum, J. R., Bowman, F. et al. Formation of Organic Aerosols from the Oxidation of Biogenic Hydrocarbons. J. Atmos. Chem.,1997,26,189-222.
    [70]Went, P.W., Blue haze in the atmosphere. Nature,1960.187,641-643.
    [71]Hatakeyama, S., Izumi, K., Fukuyama, T., Akimoto, H., Reactions of ozone with apinene and β-pinene in air:Yields of gaseous and particulate products. Journal of Geophysical Research, 1989,94,13013-13024.
    [72]Grosjean, D., In Situ Organic Aerosol Formation During a Smog Episode Estimated Production and Chemical Functionality. Atmospheric Environment,1992,26A,953-963.
    [73]Kavouras, I. G., Mihalopoulos, N., Stephanou, E. G, Formation of atmospheric particles from organic acids produced by forests. Nature,1998,395,683-686.
    [74]Leaitch, W. R., Bottenheim, I. W., Biesenthal, T. A. et al. A case study of gas-to-particle conversion in an eastern Canadian forest. Journal of Geophysical Research,1999,104, 8095-8111.
    [75]Makela, J. M., Aalto, P., Jokinen, V. et al. Observations of ultrafme aerosol particle formation and growth in boreal forest. Geophysical Research Letter,1997,24,1219-1222.
    [76]Koch, S., Winterhalter, R., Uherek, E. et al. Formation of new particles in the gas-phase ozonolysis of monoterpenes. Atmospheric Environment,2000,34,4031-4042.
    [77]Johnson, D., Marston, G. Chem. Soc. Rev.,2008,37,699-716.
    [78]王振亚,郝立庆,张为俊.二次有机气溶胶形成的化学过程.化学进展,2005,?(04):732-739.
    [79]李黎.天然源二次气溶胶组成、分布以及来源研究[D].上海大学,2009.
    [80]Blando, J. D., Turpin, B. J. Secondary organic aerosol formation incloud and fog droplets:a Literature evaluation of plausibility. Atmospheric Environment,2000,34,1623-1632.
    [81]Hallquist, M., Wenger, J. C., Baltensperger, U. et al. The formation, Properties and impact of secondary organic aerosol:current and emerging issues. Atmospheric Chemistry and physics, 2009,9,5155-5236.
    [82]Chen, J., Griffin, R. J., Grini, A., Tulet, P. Modeling secondary organic aerosol formation Through cloud Proeessing of organic compounds. Atmospheric Chemistry and Physics,2007, 7,5343-5355.
    [83]Wang, S., Wang, T., Guo, J. et al. Formation of secondary organic carbon and cloud impact on carbonaceous aerosols at Mount Tai, North China. Atmospheric Environment,2011, doi:10.1016.
    [84]Yu, L. E., Shulman, M. L., Kopperud, R., Hildemann, L. M. Characterization of organic compounds colleeted during Southeastern Aerosol and Visibility Study. Water-soluble organic species. Environmental Seienee & Teehnology,2005,39,707-715.
    [85]Sorooshian, A., Ng, N. L., Chan, A. W. H., Feingold, G., Flagan, R. C., Seinfeld, J. H. Partieulate organic acids and overall water-soluble aerosol composition measurements from the 2006 Gulf of Mexieo Atmospheric Composition and Climate Study (GoMACCS). Journal of Geophysical Research-Atmospheres,2007,112(D13201), doi: 10.1029/2007JD008537.
    [86]Legrand, M., Puxbaum, H. Summary of the CARBOSOL project:Present and retrospective state of organic versus in organic aerosol over Europe. Journal of Geophysical Research-Atmospheres,2007,112(D23). doi:10.1029/2006JD008271.
    [87]Arakaki T., Kuroki Y., Okada K. et al. Chemieal composition and Photo chemical formation of hydroxyl radicals in aqueous extracts of aerosol particles eollected in Okinawa, Japan. Atmospheric Environment,2006,40, 4764-4774.
    [88](a) Czoschke, N. M., Jang, M. Markers of heterogeneous reaction products in alpha-pinene ozone secondary organic aerosol. Atmospheric Environment,2006,40,5629-5639; (b) Czoschke, N. M. Doctoral dissertation. Acid catalyzed heterogeneous reactions and the formation of α-pinene ozone secondary organic aerosol.
    [89]Jang, M, Czoschke, N. M., Northcross, A. L., et al. SOA formation from partitioning and heterogeneous reactions:Model study in the presence of inorganic species. Environmental Science & Technology,2006,40,3013-3022.
    [90]Jang, M., Lee, S., Kamens, R. M. Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor. Atmospheric Environment,2003,37,2125-2138.
    [91]Jang, M. S, Carroll, B., Chandramouli, B., et al. Particle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols. Environmental Science & Technology,2003,37,3828-3837.
    [92]Jang, M. S., Czoschke, N. M., Lee, S., et al. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science,2002,298,814-817.
    [93]Northcross, A. L., Jang, M. Heterogeneous SOA yield from ozonolysis of monoterpenes in the presence of inorganic acid. Atmospheric Environment,2007,41,1483-1493.
    [94]van Aardenne, J. A., Dentener, F. J., Olivier, J. G. J. et al., A 1°×1° resolution data et of historical anthropogenic trace gas emissions for the period 1890-1990, Global Biogeochemical Cycles,2001,15,909-928.
    [95]Levy II, H., Moxim, W. J. Simulated tropospheric NOx:Its evaluation, global distribution and individual source contributions, Journal of Geophysical Research-Atmospheres,1999,104, 26279-26306.
    [96]Galloway, J. N., Aber, J. D., Erisman, J. W. et al., The nitrogen cascade, Bioscience,2003,53, 341-356.
    [97]Kamens, R. M. G., Jeffries, H. E., Jackson, M., Cole, E. I. Ozoneisoprene reactions:product formation and aerosol potential, Int. J. Chem. Kinet.,1982,14,955-975.
    [98]Pandis, S. N., Paulson, S. E., Seinfeld, J. H., and Flagan, R.C. Aerosol formation in the photooxidation of isoprene and β-pinene., Atmos. Environ.,1991,25,997-1008.
    [99]Limbeck, A.; Kulmala, M.; Puxbaum, H. Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles. Geophys. Res. Lett.2003,30,1996-1999.
    [100]Czoschke, N. M., Jang, M., Kamens, R. M. Effect of acidic seed on biogenic secondary organic aerosol growth. Atmos. Environ.2003,37,4287-4299.
    [101]Matsunaga, S., Mochida, M., Kawamura, K. Growth of organic aerosols by biogenic semi-volatile carbonyls in the forestall atmosphere. Atmos. Environ.2003,37,2045-2050.
    [102]Matsunaga, S., Mochida, M., Kawamura, K. Variation on the atmospheric concentrations of biogenic compounds and their removal processes in the northern forest at Moshiri, Hokkaido Island in Japan. J. Geophys. Res.2004,109, D04302, doi:10.1029/2003JD004100.
    [103]Claeys, M., Graham, B., Vas, G, Wang, W. et al. Formation of secondary organic aerosols thorugh photooxidation of isoprene. Science.2004,303,1173-1176.
    [104]Ng, N. L., Kroll, J. H., Keywood, M. D. et al. Contribution of first-versus second-generation prducts to secondary organic aerosols formed in the oxidation of biogenic hydrocarbons. Environ. Sci. Technol.2006,40,2283-2297.
    [105]Ng, N. L., Chhabral, P. S., Chan, A. W. H. et al. Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmos. Chem. Phys.,2007,7, 5159-5174.
    [106]Surratt, J. D., Kroll, J. H., Kleindienst, T. E. et al. Evidence for organosulfates in secondary organic aerosol, Environ. Sci. Technol.,2007,41,517-527.
    [107]Robinson, A. L., Donahue, N. M., Shrivastava, M. K. et al. Rethinking organic aerosols: semivolatile emissions and photochemical aging, Science,2007,315,1259-1262.
    [108]Volkamer, R., Martini, F. S., Molina, L. T. et al. A missingsink for gas-phase glyoxal in Mexico City:formation of secondary organic aerosol, Geophys.Res. Lett.,2007,34, L17811, doi:10.1029/2007GL030752.
    [109]Volkamer, R., Ziemann, P. J., and Molina, M. J.:Secondary Organic Aerosol Formation fromAcetylene (C2H2):seed effect on SOA yields due to organic photochemistry in the aerosol 20 aqueous phase, Atmos. Chem. Phys.,2009,9,1907-1928.
    [110]Goldstein, A. H., Koven, C. D., Heald, C. L., and Fung, I. Y.:Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States, P. Natl. Acad. Sci. USA,2009,106,8835-8840.
    [111]Hallquist, M.; Wenger, J. C.; Baltensperger, U. et al. The formation, properties and impact of secondary organic aerosol:current and emerging issues. Atmos. Chem. Phys.2009,9, 5155-5236.
    [112]Hoyle, C. R., Boy, M., Donahue, N. M. et al. A review of the anthropogenic influence on biogenic secondary organicaerosol. Atmos. Chem. Phys.2011,11,321-343.
    [113]Kesselmeier, J., Staudt, M. Biogenic volatile organic compounds (VOC):An overview on emission, physiology and ecology. Journal of Atmospheric Chemistry,1999,33,23-88.
    [114]蔡志全,秦秀英.植物释放挥发性有机物(VOCS)的研究进展[J].生态科学,2002,21(1):86-90.
    [115]Noureddine, Y., Jonathan, W. Enantiomeric monoterpene emissions from natural and damaged Scots pine in a boreal coniferous forest measured using solid-phase microextraction and gas chromatography/mass spectrometry. Journal of Chromatography A,2007,1141, 138-144.
    [116]Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.:Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys.,2006,6,3181-3210.
    [117]Paulot, F., Crounse, J. D., Kjaergaard, H. G. et al. Unexpected Epoxide Formation in the Gas-Phase Photo oxidation of Isoprene. Science.2009,325,730-733.
    [118]Dockery, D. W., Pope, C. A., Xu, X. et al. An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med.1993,329,1753-1759.
    [119]Climate Change 2001:The Scientific Basis; Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Xiaosu, D., Eds.; Cambridge University Press:Cambridge, U.K., 2001.
    [120]Guenther, A., Karl, T., Harley, P. et al. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys.2006,6,3181-3210.
    [121]Carlton, A. G., Wiedinmyer, C., Kroll, J. H. A review of secondary organic aerosol (SOA) formation from isoprene. Atmos. Chem. Phys.2009,9,4987-5005.
    [122]Cole-Filipiak, N. C., O'Connor, A. E., Elrod, M. J. Kinetics of the hydrolysis of atmospherically relevant isoprene-derived hydroxyl epoxides. Environ. Sci. Technol.2010, 44,6718-6723.
    [123]Adam, I. Darer, Neil, C. Cole-Filipiak, Alison, E. O'Connor, Matthew, J. Elrod, Formation and Stability of Atmospherically Relevant Isoprene-Derived Organosulfates and Organonitrates. Environ. Sci. Technol.2011,45,1895-1902.
    [124]WHO. Environmental Health Criteria 230,2003.
    [125]Dorigan, J., Hushon, J. Air Pollution Assessment of Nitrobenzene. McLean, Virginia:The Mitre Corporation,1976.
    [126]韩眷华,王起恩,吴萍,等.硝基苯对肝癌细胞系的细胞毒性机制[J].中华预防医学杂志,2001,35(1):48-50.
    [127]王敏,马波.硝基苯污染井水调查[J].中国公共卫生,2005,21(1):51.
    [128]解关兴.硝基苯中毒6例[J].临床急诊杂志,2002,3(1):49.
    [129]Bosch, E., Kochi, J. K. Thermal and photochemical nitration of aromatic hydrocarbons with nitrogen dioxide J. Org. Chem.1994,59,3314-3325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700