用户名: 密码: 验证码:
边界层夹卷参数化及光学湍流特性的室内模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用室内水槽模拟均匀下垫面大气对流边界层。利用模拟的结果,通过分析夹卷层的结构特征,结合实测数据,研究了均匀下垫面对流边界层的夹卷参数化和光学湍流特性。
     夹卷过程是夹卷层最为重要的物理过程,其对边界层的发展及边界层中的各种大气现象等都存在着非常重要的影响,是对流层与自由大气之间物质和能量交换的重要机制。对于夹卷过程,通常使用夹卷参数化进行描述,包括夹卷通量参数化,夹卷率参数化和夹卷层厚度参数化。但是现有的夹卷率和夹卷层厚度参数化方案存在很多不足,不能很好的解释模拟和实测数据。本文利用水槽模拟和野外观测数据,对夹卷参数化进行了研究,得到了新的物理意义完善的理查森数方案,基于该理查森数方案的夹卷率和夹卷层厚度参数化,可以很好的解释现有数据。本文得到的主要结果如下:
     (1)利用水槽模拟数据,对夹卷通量参数比进行了统计研究;对水槽模拟边界层的发生发展进行了分析,结果表明与实际大气的情况较为接近;对比研究了水槽模拟和数值模拟的边界层发展,两者的一致性很好,验证了水槽模拟的可靠性;
     (2)通过分析夹卷层的结构,引入了简化的夹卷层模型和新的夹卷层温度跃迁特征量,并得到了新的理查森数方案和夹卷率参数化方案。新的理查森数方案包含了逆温层梯度和自由大气稳定度的影响,物理意义更完善。新的夹卷率参数化方案避免了已有方案的缺点,与水槽模拟结果的一致性很好;
     (3)分析了现有夹卷层厚度参数化方案的不足,利用简化的夹卷层模型和新的理查森数方案,提出了新的夹卷层厚度参数化方案。该方案与水槽模拟和实测数据的一致性很好。对比研究现有参数化方案的参数化结果表明,在实际大气的复杂情况下,本文提出的新方案适用性最好。
     现有的边界层温度结构研究中,由于观测不易,对边界层中高层尤其是夹卷层了解较少,已有结果也缺乏翔实有效的实验验证。本文使用水槽成功的对光学湍流进行了模拟,利用实验得到的光斑图样对光学湍流特性进行了研究,对已有研究结果进行了验证,并通过分析大尺度结构的影响,对夹卷层温度结构特征进行了研究。类似研究尚未见报道,得到结果如下:
     (1)利用光斑数据对边界层各向同性湍流特征进行了研究,加深了对边界层尤其是夹卷层的湍流特征的了解。研究表明,混合层在水平方向较为接近各向同性,而在垂直方向较为偏离;夹卷层偏离于各向同性湍流,湍流特性与对流状况密切相关;
     (2)使用光斑数据,对现有的温度结构常数行为的研究结果进行了验证。结果表明,混合层标度律方案具有可靠性,而夹卷层方案并不能很好的解释夹卷层温度结构常数的行为。本文提出了一种新的夹卷层温度结构常数相似律公式,得到了模拟和实测数据的支持;
     (3)在前述研究的基础上,进一步分析了夹卷层结构和大尺度结构的活动。使用小波变换方法对对数光强进行了多尺度分解,研究了不同水平尺度结构的活动特征,从而对光斑进行了大尺度结构分解。利用光斑大尺度结构分解,通过将温度结构常数分解为大尺度结构贡献部分和各向同性小尺度结构贡献部分,并对这两者的贡献分别进行相似律归一化,成功的解释了夹卷层温度结构常数的行为,同时提出了一种可以解释夹卷层温度结构常数廓线行为的相似律方案。
     (4)根据温度结构常数的混合层标度律,提出了一种适合于室内水槽模拟的光闪烁测量方法,该方法相比常用的热通量方法,具有实时性和可靠性。
In this paper, flat-underlying-surface convective boundary layer is simulated in laboratory simulation tank. Using the simulation result and field measurement data, by analyzing the structure characteristics of the entrainment layer, the parameterizations of entrainment process and the characteristics of optical turbulence are studied.
     The entrainment process plays a key role in the structure of atmospheric boundary layer, and is the main mechanism of transmission of mass and energy between the mixed-layer and the free atmosphere aloft. However, this process can not be solved explicitly in general circulation or mesoscale models, thus parameterizations are needed, including the parameterization of entrainment flux,entrainment rate and entrainment layer depth. However, the existing parameterization schemes for entrainment rate and entrainment layer depth are faulty, thus the simulation and field measurement data can't be consummately explained. In this paper, by using data from tank simulation and field measurement, the entrainment paramterizations are studied. A new Richardson number scheme is obtained and based on which, new paramerization schemes for entrainment rate and entrainment layer depth are achived. The existing data can be well explained by new parameterization schemes. The main results are summarized as follow.
     (1) Using tank simulation data, paramterization ratios of entrainment flux are stastically studied; the analysis of the simaltated boundary layer shows the simulation is close to the real atmosphere; the further comparison study between tank simulation and numerical simulation show good agreement with each others, which validates the reliability of tank simulation.
     (2) By analysis the structure of entrainment layer, a simplified model of the entrainment layer and a new temperature jump scale of entrainment layer are introduced, subsequently a new Richardson number scheme and a new paramterization of entrainment rate. The new Richardson number, embodying the influences of the strength of inverse layer and the free atmosphere stratification, has consummate physical meaning; the new paraterization scheme has a good agreement with tank simulation results.
     (3) The insufficiencies of the existing paramterization schemes for entraiment layer depth are analyzed. And then, by using the simplified model of entrainment layer, a new parameterzation scheme is introduced. The new scheme has a good agreement with tank and field data. The comparison between the existing schems shows, the new scheme is more applicable under complex conditions in real atmosphere.
     Because of the paucity of reliable measurements in the interfacial layer, the temperature structure of the mid-and upper- region of atmospheric boundary is not well understood. In this paper, the details of temperature structure in the CBL are investigated visual observations of penetrating the tank using the collimated laser beam. By using the collected beam patterns, the optical turbulence characteristics and the influence of large scale structure on temperature structure parameter are studied. The main results are summarized as follow.
     (1) The inhomogeneity of Atmospheric boundary layer is studied using beam patterns, which gives a further review on the charateristics of atmospheric boundary layer, especially the entrainment layer. Studies show, the mixed layer is quite homogeneous in horizontal direction, and a little inhomogeneous in vertical direction; the inhomogeneity of entrainment layer relies on the convective conditions.
     (2) Using beam patterns, the behavior of temperature structure in convective boundary layer is studied. Results show, Wyngaard's mixed-layer scaling law has a good validity in tank data; however, the entrainment layer scaling expression is not reliable under unstable condition. Based on the results of simulation and filed measurement, a new dimensionless expression is introduced.
     (3) Based on the aforementioned studies, the entrainment layer structure of entrainment layer and the characteristics of large scale structure are discussed. By mutli-scale decomposition of log-intensity using wavelet transform method, the charateristics of structures at different scales are analyzed, which introduces a large scale decompostition method for log-intensity. Thus, the temperature structure paremter can be decomposed into the contribution of large scale structures and small scale structures. By normalising each part, the behavior of the temperature structure parameter in the entrainment layer is well explained. And a new scaling scheme is introduced, which can explain the behavior of the temperature structure parameter profile in the entrainment layer.
     (4) Based on the mixed-layer scaling law of the temperature structure parameter, a new optical method to estimate turbulent variables in tank simulation is introduced, which is more real-time and reliable than commonly-used heat-flux-profile method.
引文
Andrews L C, Phillips R L, et al. 1999. Theory of Optical Scintillation. J. Opt. Soc. Am. A. 16:1417-1429.
    Angevine W M, Grimsdell A W, and McKeen S A. 1998. Entrainment Results from the Flatland Boundary Layer Experiments. J Geophys Res. 103:13689-13701.
    Antonia, R A, Chambers A J, Friehe C A, et al. 1979. Temperature Ramps in the Atmospheric Surface Layer. J Atmos Sci. 36:99-108.
    
    Antonia, R A, Chambers A J, and Bradley E F. 1982. Relationships between Structure Functions and Temperature Ramps in the Atmospheric Surface Layer. Bound Layer Meteor. 23:395-403
    Antonia, R A and Zhu Y. 1994. Inertial Range Behavior of the Longitudinal Heat Flux Cospectrum.Bound Layer Meteor.70:429-434.
    Ball F K. 1960. Control of Iversion Height by Surface Heating. Quart J Roy Meteor Soc.86:483-494.
    Beyrich F. 1996. Mixed Height Estimation from Sodar Data—A Critical Discussion. Atmospheric Environment. 31(23): 3941-3953.
    Beyrich F and Gryning S E. 1998. Estimation of the Entrainment Zone Depth in a Shallow Convective Boundary Layer from Sodar Data. J Appl Meteorol. 37:255-268.
    Beyrich F, De Bruin H A R, Meijninger W M L, and Schipper F. 2002. Experiences from One-Year Continuous Operation of a Large Aperture Scintillometer over a Heterogeneous Land Surface. Boundary-Layer Meteorol. 105: 85-97.
    Belenkii M S, and Gimmestad G G. 1994. in Atmospheric Propagation and Remote Sensing III.Eds Flood W A and Miller W B, Proc. SPIE, 2222,621.
    Betts A K. 1973. Non-precipitating Cumulus Convection and its Parameterization. Quart J Roy Meteor Soc. 99:178-196.
    
    Boers R A, Eloranta E W. 1986. Lidar Measurements of the Atmospheric Entrainment Zone and the Potential Temperature Jump across the Top of the Mixed Layer. Bound Layer Meteor. 34:357-375.
    Boers R. 1989. A Parameterization of the Depth of the Entrainment Zone. Journal of Applied Meterology. 28: 107-111.
    Burk S D. 1981. Comparison of Structure Parameter Scaling Expressions with Turbulence Closure Model Predictions. Journal of the Atmospheric Sciences. 38: 751-760.
    Britter R E, Hanna S R. 2003. Flow and Dispersion in Urban Areas. Annu Rev Fluid Mech. 35: 469-496.
    Bruin D W. H a R K and M. V D H B J J. 1993. A Verification of Some Methods to Determine the Fluxes of Momentum, Sensible Heat and Water Vapour Using Standard Deviation and Structure Parameter of Scalar Meteorological Quantities. Boundary-Layer Meteorology. 63:231-257.
    Bruin D, M. V D H B J J and Kohsiek W. 1995. The Scintillation Method Tested over a Dry Vineyard Area Boundary-Layer Meteorology. 76:25-40.
    Bruin D, Meijninger W M L, Smedman a-S, et al. 2002. Displaced-Beam Small Aperture Scintillometer Test. Part I: The Wintex Data-Set Boundary-Layer Meteorology. 105:129-148.
    Carson D J.1973. The Development of a Dry Inversion-capped Convectively Unstable Boundary Layer. Quart J Roy Meteor Soc. 99:450-467.
    Camussi R, Guj G. 1997. Orthonormal Wavelet Decomposition of Turbulent Flows: Intermittency and Coherent Structures. J Fluid Mech. 348:177-199.
    Caughey S J and Palmer S G. 1979. Some Aspects of Turbulence Structure through the Depth of the Convective Layer. Quart J Roy Meteor Soc. 105:811-827.
    Champagne F H, Friehe C A, LaRue J C, and Wyngaard J C. 1977. Flux Measurements, Flux Estimation Techniques, and Fine-Scale Turbulent Measurements in the Unstable Surface Layer over Land. J Atmos Sci. 34: 515-530.
    Chehbouni A, Kerr Y H, Watts C, Hartogensis, et al. 1999. Estimation of Area-Average Sensible Heat Flux Using a Large-Aperture Scintillometer during the Semi-Arid Land-Surface-Atmosphere (SALSA) Experiment. Water Resour Res. 35: 2505-2511.
    Conzemius R, Fedorovich E. 2002. Dynamics of Convective Entrainment in a Heterogeneously Stratified Atmosphere with Wind Shear. Proc. 15th AMS Symp. On Boundary Layers and Turbulence. 15-19 July 2002. Wageningen, The Netherlands. Pp 31-34.
    Conzemius R, Fedorovich E. 2003. Evolution of Mean Wind and Turbulence Fields in a Quasi-Baroclinic Convective Boundary Layer with String Wind Shears. Proc. 11th Int Conf on Wind Eng. 2-5 June 2003. Lubbock, Texas, USA, pp 2055-2062.
    Clifford S F. 1978: The Classical Theory of Wave Propagation in a Turbulent Medium. Laser Beam Propagation In The Atmosphere, Vol 25, Topics in Applied Physics, J W Strohbehn,ED, Springer-Veriag, Chap. 1.
    
    Daubechies I.1992. Ten Lectures on Wavelets. CBMS. SIAM.
    Deardorff J M. 1970a. Preliminary Results from Numerical Integrations of the Unstable Planetary Boundary Layer. J Atmos Sci. 27:1209-1211.
    Deardorff J M. 1970b. Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer and for Raileigh Convection. J Atmos Sci. 27:1211-1213.
    Deardorff J W. Willis G E and Stockton B H. 1980. Laboratory Studies of the Entrainment Zone of a Convectively Mixed Layer. J Fluid Mech. 100(1):41-64.
    Deardorff J W. 1983. A Multilimit Mixed Layer Entrainment Formulation. J Phys Oceanogr. 13:988-1002.
    Dayton D, Pierson B and Spielbusch B .1992. Atmospheric Structure Function Measurements with a Shack-Hartman wave front-sensor, Optics Letters. 17(24): 1737-1739.
    Dubosclard, G, 1982: A Sodar Study of the Temperature Structure Parameter in the Convective Boundary Layer. Boundary-Layer Meterol. 22:325-334.
    Fairal C W. 1987. A Top-Down and Bottom-up Diffusion Model of Ct2 and Cq2 in the Entraining Convective Boundary Layer. Journal of the Atmospheric Sciences. 44:1009-1017.
    Fedorovich E, Conzemius R, Mironov D. 2004. Convective Entrainment into a Shear-free,Linearly Stratified Atmosphere: Bulk Models Reevaluated through Large Eddy Simulations. J Atmos Sci. 61(3): 281-295.
    Fitzjarrald D E. 1978. Horizontal Scales of Motion in Atmospheric Free Convective Observed during the GATE Experiment. J Appl Meteorol. 17:213-221.
    
    Flamant C, Pelon J, Flamant P P, et al. 1997. Lidar Determination of the Entrainment Zone Thickness at the Top of the Unstable Marine Atmospheric Boundary Layer. Bound-Layer Meteor. 83:247-284.
    
    Frenzen P and Vogel C A. 1992. The Turbulent Kinetic Energy Budget in the Atmospheric Surface Layer: A Review and an Experimental Reexamination in the Field. Boundary-Layer Meteorology. 60:49-76.
    
    Frenzen P and Vogel C A. 2001. Further Studies of Atmospheric Turbulence in Layers near the Surface: Scaling the TKE Budget above the Roughness Sublayer. Boundary-Layer Meteorol. 99: 173-206.
    Frisch U and Orszag S A. 1990. Turbulence: Challenges for Theory and Experiment. Physics today. 1:24-32.
    
    Fuchs A, Tallon M, Vernin J. 1998. PASP, 110:86
    Gao W, Shaw R H, Paw U K T. 1989. Observation of Organized Structure in Turbulent Flow within and above a Forest Canopy. Boundary-Layer Meteorol. 47:349-377.
    Gong Z B, Wang Y J, Wu Y. 1998. Finite Temporal Measurements of the Statistical Characteristics of the Atmospheric Coherence Length. Applied Optics. 37(21): 4541-4543.
    Green A E, McAneney K J, and Lagouarde J-P. 1997. Sensible Heat and Momentum Flux Measurements with an Optical Inner Scale Meter. Agric For Meteorol. 85:259-267.
    Green A E and Hayashi Y. 1998. Using the Scintillometer over a Rice Paddy. Jpn J Agric Meteorol.54:225-231.
    Gryning S E, Batchavarova E. 1994. Parameterization of the Depth of the Entrainment Zone above the Daytime Mixed Layer. Quart J Roy Meteor Soc. 120:47-58.
    Hoedijes J C B, Zuurbier R M, et al. 2002. Large Aperture Scintillometer Used over a Homogeneous Irrigated Area, Partly Affected by Regional Advection. Boundary-Layer Meteorology. 105:99-117.
    Hageli P, Steyn D G, Strawbridge K B. 2000. Spatial and Temporal Variability of Mixed-layer Depth and Entrainment Zone Thickness. Bound-Layer Meteor. 97: 47-71.
    Han Van Dop, Alec Van Herwijnen D V A, Hibberd Mark F and Harm Jonker. 2005. Length Scales of Scalar Diffusion in the Convective Boundary Layer: Laboratory Observations. Boundary-Layer Meteorology. 116:1-35.
    Hartogensis O K, Bruin D and Van De Wiel B J H. 2002. Displaced-Beam Small Aperture Scintillometer Test. Part Ii: Cases-99 Stable Boundary-Layer Experiment. Boundary-Layer Meteorology. 105: 149-176.
    Hartogensis O K and Bruin H A R D. 2005. Monin-Obukhov Similarity Functions of the Structure Parameter of Temperature and Turbulent. Boundary-Layer Meteorology. 116:253-276.
    Hibberd, M F and .Sawford, B L, 1994a: Design Criteria for Water Tank Models of Dispersion in the Planetary Convective Boundary Layer. Boundary-Layer Meteorology. 67: 97-118.
    Hibberd M F and Sawford B L. 1994b. A Saline Laboratory Model of the Planetary Convective Boundary Layer. Boundary-Layer Meteorology. 67:229-250.
    Hill J. 1989. Implications of Monin-Obukhov Similarity Theory for Scale Quantities. J Atmos Sci.46(14): 2236-2244.
    Hill R J and Clifford S F. 1992. Modified Spectrum of the Atmospheric Temperature Fluctuations and its Application to Optical Propagation. J Opt Soc Amer: 68: 892-899.
    Hill R J, Ochs G R, and Wilson J J. 1992. Measuring Surface-Layer Fluxes of Heat and Momentum Using Optical Scintillation. Boundary-Layer Meteorol. 58:391-408.
    Hill R J. 1997. Algorithms for Obtaining Atmospheric Surface-Layer Fluxes from Scintillation Measurements. Journal of Atmospheric and Oceanic Technology. 14(3): 456-467.
    Hinze J O.1975. Turbulence.(2nd). McGraw-Hill Book Company. P571-576.
    Jensen N Otto and Lenshow DH. 1978. An Observation Investigation of Penetrative Convection. J Atmos Sci.35: 1924-1933.
    Jie Qiu, Kyaw Tha Paw U, and Roger H Shaw. 1995. Pseudo-Wavelet Analysis of Turbulence Patterns in Three Vegetation Layers. Boundary-Layer Meteorology. 72:177-204.
    Jonker H J J, Heus T, and Hagen E. 2004. Laboratory Experiment of Entrainment in Dry Convective Boundary Laer. The 16th Symposium on Boundary Layers and Turbulence,Portland, Maine, USA, August 9-13,2004, Session 4, No 25.
    Http://ams.confex.com/ams/BLTAIRSE/techprogram/paper-78455.htm
    Kaimal J C,Wyngaard J C, Izumi Y, and Cote 0 R. 1972. Spectral Characteristics of Surface Layer Turbulence, Quart J Roy Meteor Soc. 98:563-589.
    Kaimal J C, Wyngaard J C, Haugen D A, Izumi Y, and Cote OR.1976. Turbulence Structure in the Convective Boundary Layer. J Atmos Sci. 33:2125-2169.
    Kaimal J C. 1978. Horizontal velocity spectra in an unstable surface layer. J Atmos Sci. 35:18-24.
    Kaimal J C and Wyngaard J C. 1990. The Kansas and Minnesota Experiments. Boundary-Layer Metero. 50:31-47.
    Kaimal J C, and Finnigan J J. 1994. Atmospheric Boundary Layer Flows. Their Structure and Measurement. Oxford University Press. pp289.
    
    Kanda M, Moriwaki R, et al. 2002. Area-Averaged Sensible Heat Flux and a New Method to Determine Zero-Plane Displacement Length over an Urban Surface Using Scintillometry.Boundary-Layer Meteorol. 105:177-193.
    Khalsa S J S and Greenhut G K. 1987. Convective Elements in the Marine Atmospheric Boundary Layer. Part II: Entrainment in the Capping Inversion. J Climate Appl Meteor. 26: 824-836.
    Kohsiek W. 1988. Observation of the Structure Parameters Ct2, Ctq, and Cq2 in the Mixed Layer over Land. Applied Optics. 27:2236-2240.
    Kraus E B and J S Turner. 1967. A One-Dimensional Model of the Seasonal Thermo cline II. The General Theory and its Consequences. Tellus. 19:98-105.
    
    Kulkarni J R, Sadani L K and Murthy B S. 1999. Wavelet Analysis of Intermittent Turbulent Transport in the Atmospheric Surface Layer over a Monsoon Trough Region.Boundary-Layer Meteorology. 90:217-239.
    
    Lagouarde J-P, Bonnefond J-M, Kerr Y H, et al. 2002. Integrated Sensible Heat Flux Measurements of a Two-Surface Composite Landscape Using Scintillometry.Boundary-Layer Meteorology. 105: 5-35.
    Lenschow D H, Wyngarrd J C and Pennell W T. 1980. Mean-field and Second-moment Budgets in a Baroclinic Convective Boundary Layer. J Atmos Sci. 37(1): 1313-1326.
    Levine B M, Elizabeth A Martinsen, Alian Wirth, Andrew Jankevics, Manuel Toledo- Quinones, Frank Landers, and Theresa L Bruno. 1998. Horizontal Line-of-sight Turbulence over Near-ground Paths and Implications for Adaptive Optics Corrections in Laser
    Nisia Krusche, Amauri P De Oliveira. 2004. Characterization of Coherent Structures in the Atmospheric Surface Layer. Boundary-Layer Meteorology. 110:191-211.
    Nieveen J P, Green a E, et al. 1998. Using a Large-Aperture Scintillometer to Measure Absorption and Refractive Index Fluctuations. Boundary-Layer Meteorology. 87:101-116.
    GR.Ochs, Wang T-I, et al. 1976. Refractive-Turbulence Profiles Measured by One-Dimensional Spatial Filtering of Scintillations Applied Optics. 15(10): 2504-2510.
    Panofsky H A. 1973. The Boundary layer above 30m. Boundary-Layer Meteor. 4:251-264.
    Panofsky H A, Larko D, Lipschutz R, and Stone G. 1982. Spectra of Velocity Components over Complex Terrain. Quart J R Met Soc. 108:215-230.
    Park O H, Seo S J and Lee S H. 2001. Laboratory Simulation of Vertical Plume Dispersion within a Convective Boundary Layer. Boundary-Layer Meteorol. 99:159-169.
    Paw U K T, Brunet Y, Collineau S, Shaw R H, Maitani T, Qiu J, and Hipps L. 1992. On Turbulent Coherent Structures in and above Agricultural Plant Canopies. Agric For Meteorol. 61:55-68.
    Peltier L J and Wyngaard J C. 1995. Structure-function Parameters in the Convective Boundary Layer from Large-eddy Simulation. J Atmos Sci. 52(21): 3641-3660.
    Petenko I V, Bezverkhnii V A. 1999. Temporal Scales of Convective Coherent Structures Derived from Sodar Data. Meteor Atmos Phys. 71:105-116.
    Petenko I V. 2001. Advanced Combination of Spectral and Wavelet Analysis ('spavelet' analysis). Bound-Layer Meteor. 100:287-299.
    Phong-Anant D, Antonia R A, Chambers A J, and Rajahopalan S. 1980. Features of the Organized Motion in the Atmospheric Surface Layer. J Geophys Res. 85(C1): 424-432.
    Pino D, Vil_a-Guerau de Arellano J, Duynkerke P. 2003. The Contribution of Shear to the Evolution of a Convective Boundary Layer. J Atmos Sci. 60:1913-1926.
    Piper M, Wyngaard J C, Snyder W H, et al. 1995. Top-Down, Botto-up Diffusion Experiments in a Water Convection Tank. Journal of the Atmospheric Sciences. 52(20): 3607-3619.
    Poggi D and Katul G. 2007. The Ejection-Sweep Cycle over Bare and Forested Gentle Hills: A Laboratory Experiment. Boundary-Layer Meteorol. 122:493-515.
    
    Raupach M R, Finnigan J J, Burnet Y. 1989. Coherent Eddies in Vegetation Canopies. In Proceedings Fluid Australasian Conference on Heat and Mass Transfer. 9-12 May,Christchurch, New Zealand. 75-90.
    Rocca A, Roddier F, Vernin J. 1974. J Opt Soc Am A. 64:1000.
    
    Roth M and Oke T R. 1993. Turbulent Transfer Relationships over an Urban Surface. I: Spectral Characteristics. Q J R Meteorol Soc. 119:1071 -1104.
    Serge Collineau,Yves Brunet.1993a.Detection of Turbulent Coherent Motions in a Forest Canopy Part Ⅰ:Wavelet Analysis.Boundary-Layer Meteorology.65:357-379.
    Serge Collineau,Yves Brunet.1993b.Detection of Turbulent Coherent Motions in a Forest Canopy Part Ⅱ:Time-Scales and Conditional Averages.Boundary-Layer Meteorology.66:49-73.
    Singal S P.1974.J Sci Ind Res.33:162
    Sorbjan Z.1986.On Similarity in the Atmospheric Boundary Layer.Boundary-Layer Meteorology.34:377-397.
    Staszewski W J,Worden K.1998.Analysis of Wind Fluctuations Using the Orghogonal Wavelet Transform.Applied Scientific Research.59:205-218.
    Stull R B.1988.An Introduction to Boundary Layer Meteorology.(边界层气象学导论,杨长新译.气象出版社,北京.1991)
    Sullivan O P,Meong C H,Stevens B Lenschaw D H,and Mayor S D.1998.Structure of the Entrainment Zone Capping the Convective Atmospheric Boundary Layer.J Atmos Sci.55(19):3042-3064.
    Sun J N,2007:
    Tatarskii V I.1961.Wave Propagation in a Turbulent Medium.McGraw-Hill Book Company Inc.New York,285 pp.
    Tatarskii V I.1978.湍流大气中波的传播理论(中译本).温景嵩,宋正方,曾宗泳,顾慰渝译.科学出版社,北京.
    Tatarskii V I.1987.Some New Aspects in the Problem of Waves and Turbulence.Radio Sci.22:859- 865.
    Tennekes H.1973.A Model for the Dynamics of the Inversion above a Convective Layer.J Atmos Sci.30:558-567.
    Thiermann V and Grassl H.1992.The Measurement of Turbulent Surface-layer fluxes by Use of Bi-chromatic Scintillation.Boundary-Layer Meteorol.58:367-389.
    Thiermann V.1990.Optische Messung turbulenter Flusse und Vorhersage der optischen Turbulenz aus einfachen Grenzschichtparametern.
    Turner J S.1968.The Influence of Molecular Diffusivity on Turbulent Entrainment Parameterization across a Density Interface.J Fluid Mech.33:639-656.
    Turner J S.1973.Buoyancy Effects in Fluids.Cambridge University Press.367 pp.
    VanZanten M C,Duynkerke,and Cuijpers J W M.1999.Entrainment Parameterization in Convective Boundary Layer.J Atmos Sci.56(6):813-828.
    Wang T I,Ochs G R,and Clifford S F.1978.A Saturation-Resistant Optical Scintillometer to Measure Cn2.J Opt Soc Amer.69:334-338.
    Weil J C,Snyder W H,Robert E Lawson J,et al.2002.Experiments on Buoyant Plume Dispersion in a Laboratory Convection Tank.Boundary-Layer Meteorology.102:367-414.
    Wesely M L.1976.The Combined Effect of Temperature and Humidity on the Refractive Index.J Appl Meteorol.15:43-49.
    Wilczak J M.1984.Large-scale Eddies in the Unstably Stratified Atmospheric Surface Layer,Part Ⅰ:Velocity and Temperature Structure.J Atmos Sci.41(24):3537-3550.
    Wilde N P,Stull R B and Eloranta E W.1985.The LCL Zone and Cumulus Onset.J Clim Appl Meteor.24:640-657.
    Williams R M and Paulson C A.1977.Microscale Temperature End Velocity Spectra in the Atmospheric Boundary Layer.J Fluid Mech.83:547-567.
    Williams A G and Hacker J M.1992.The Composite Shape and Structure of Coherent Eddies in the Convective Boundary Layer.Boundary-Layer Meteorology.61(3):213-245.
    Willis G E and Deardorff J W.1974.A Laboratory Model of the Unstable Planetary Boundary Layer.J Atmos Sci.31:1297-1307.
    Willis G E and Deardorff J W.1976.On the Use of Taylor's Translation Hypothesis for Diffusion in the Mixed Layer.Quart J R Met Soc.102:817-822.
    Willis G E and Deardorff J W.1979.Laboratory Observations of Turbulent Penetrative-convection Platforms.J Geophysical Research.84(C1):295-302.
    Willis and Deardorff.1983.On Plume Rise within a Convective Boundary Layer.Atmos Environ.17:2435-2447.
    Willis and Deardorff.1987.Buoyant Plume Dispersion and Inversion Entrapment in and above a Laboratory Mixed Layer.Atmos Envir.21:1725-1735.
    Wyngaard J C and Cote O R.1971a.The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer.J Atmos Sci.28:109-201.
    Wyngaard J C,et al.1971b.Behavior of the Refractive-index-parameter near the Ground.J Opt Soc Am.61:1646-1650.
    Wyngaard J C.1973.论近地面层湍流.豪根 D A 主编.<<微气象学>>中译本,1984.科学出版社.
    Wyngaard J C and Clifford S F.1977.Taylor's Hypothesis and High-frequency Turbulence Spectra.J Atmos Sci.34:922-929.
    Wyngaard J C and Lemone M A.1980.Behavior of the Refractive Index Structure Parameter in the Entraining Convective Boundary Layer.J Atmos Sci.37:1753-1585.
    Wyngaard J C and Richard A Brost.1984.Top-Down and Bottom-Up Diffusion of a Scalar in the Convective Boundary Layer.J Atmos Sci.41(1):102-112.
    Xu Min,Jiang Weimei,Hu Fei,et al.2002.The Characteristics of Turbulent Moisture on Huaihe River Basin in China.Meteor Atmos Phys.81:53-65.
    Yamada T and Mellor G.1975.A Simulation of the Wangara Atmospheric Boundary Layer Data.J Atmos Sci.32:2309-2329.
    Yong G S.1987.J Atmos Sci.44:1251-?.
    Yuan R M.
    Yuji Ohya and Takanori Uchida.Ocean-Atmosphere Dynamics Division,R I F A M.2004.Laboratory and Numerical Studies of the Convective Boundary Layer Capped by a Strong Inversion.Boundary-Layer Meteorology.112:223-240.
    Zeng Z Y,and Ma C S.1985.Observations of Temperature Microstructure in the Atmosphere,Advances in Atm Sci.2(2):234-242.
    Zilitinkevich S S.1991.Turbulent Penetrative Convection.Avebury Technical.179pp.
    陈子赟,孙鉴泞,袁仁民等.2004.对流槽湍流涡旋结构特征的小波分析.地球物理学报.47(6):964-970.
    傅德胜,寿益禾.2002.图形图像处理学.东南大学出版社.
    胡昌华等.1999.基于MATLAB的系统分析与设计--小波分析.西安电子科技大学出版社.
    胡隐樵,左洪超.2004.边界层湍流输送的若干问题和大气线性热力学.高原气象.22(4):346-353.
    胡非.1998.大气边界层湍流涡旋结构的小波分解.气候与环境研究.3(2):97-105.
    蒋维楣,吴小鸣,周朝辅编著.1991.大气环境物理模拟.南京大学出版社.南京.P12-16.
    苗世光,蒋维楣,李昕,刘衡.2001.对流边界层大涡模式的改进及对夹卷速度的研究.大气科学.25(1):25-37.
    全利红,胡非,程雪玲.2007.用小波系数谱方法分析湍流湿度脉动的相干结构.大气科学.31:57-63.
    饶瑞中,王世鹏,刘晓春等.1998.激光在湍流大气中的光强起伏与光斑统计特征.量子电子学报.15(2):155-163.
    饶瑞中.1999.激光在湍流大气中传播的统计特征初步分析.安徽光机所博士学位论文.
    饶瑞中,王世鹏,刘晓春等.1999.实际大气中激光闪烁的频谱特征.中国激光.26(5):411-414.
    苏红兵,洪钟祥.1994.北京城郊近地面层湍流实验观测.大气科学.18(6):739-750.
    孙鉴泞,蒋维楣,et al.2000.对流槽模拟对流边界层实验研究.南京大学学报(自然科学).36(6):786-790.
    王成刚,孙鉴泞,胡非,蒋维楣.2007.城市水泥下垫面能量平衡特征的观测与分析.南京大学学报(自然科学).43:270-279.
    汪建生,张金钟,舒纬.1995.提取壁湍流相干结构的数字滤波法.力学学报.27(4):398-404.
    汪健生,尚晓东,舒玮.1997.湍流信号的三项分解.力学学报.29(5):520-524.
    袁仁民,曾宗泳,马成胜.2001b.利用气象要素估算近地面光学湍流.量子电子学报.18(1):87-91。
    袁仁民.2005.白天混合层顶部夹卷层厚度的特征研究.地球物理学报.48:19-24.
    袁仁民,罗涛,孙鉴泞.2006.对流边界层顶部光学湍流的室内模拟研究.光学学报.29:1287-1292.
    曾宗泳,马成胜.1983.大气温度微结构观测.大气科学.7(3):277-284.
    曾宗泳,袁仁民,谭锟,马成胜,肖黎明,翁宁泉,刘小勤,吴晓庆.1998.复杂地形近地面温度谱.量子电子学学报.15(2):133-139.
    曾宗泳,刘小勤,马成胜,肖黎明,袁仁民,翁宁泉,谭锟.1999a.复杂地形近地面光学湍流.强激光与粒子束.11(6).
    曾宗泳等.1999b.对流湍流池光学湍流的空间和时间结构分析.光学学报.19(12):1630-1633.
    张伯寅,刘可器,呼和敖德等.1987.过山气流对烟气干扰的水槽模拟实验研究.气象学报.2.
    周明煜,陈陟,李诗明等.1999.云覆盖对流边界层顶部湍流结构参数的研究.地球物理学报.42(4):444-451.
    周秀骥,陶善昌,姚克亚.1991.高等大气物理学.北京:气象出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700