用户名: 密码: 验证码:
800MPa高强钢GMAW接头组织性能及精细结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低合金高强钢因其高强度、高韧性等优点而被广泛应用于工程机械、能源、桥梁建筑和车辆船舶等重要行业。但高强钢的焊接情况复杂多变,裂纹及强韧性不匹配、熔合区及热影响区性能恶化等问题突出,成为限制高强钢在焊接结构中扩大应用和提高生产效率的关键。本文针对煤矿机械液压支架用低合金高强钢Q550和Q690展开研究,在不预热条件下,采用熔化极气体保护焊(GMAW)方法对Q550和Q690钢进行焊接,并对焊接接头的微观组织、精细结构、裂纹形态以及接头力学性能进行研究,建立焊接参数、焊接材料、接头组织结构、接头区裂纹扩展及接头力学性能之间的关系。
     采用高强钢对接接头裂纹试验研究不同强度匹配的焊丝和焊接热输入对Q550、Q550+Q690以及Q690钢接头裂纹敏感性的影响,随着焊丝强度级别的升高,接头断面裂纹率增加;随着焊接热输入的增加,接头的断面裂纹率也逐渐升高。对Q550和Q550+Q690钢接头力学性能进行测定,采用ER50-6焊丝时,拉伸试样从焊缝中断裂;采用ER60-G焊丝,断裂发生在熔合区或热影响区,接头抗拉强度与母材抗拉强度相当。冲击试验结果表明,Q550和Q690钢焊接接头热影响区的冲击吸收功最好;采用ER60-G焊丝的接头焊缝和熔合区的韧性均优于ER50-6焊丝焊缝和熔合区。
     采用金相显微镜、扫描电镜、透射电镜及能谱分析仪等研究了Q550和Q690钢焊缝区的显微组织、精细结构及夹杂物的成分等,分析了焊接热输入、合金元素及焊缝中夹杂物对焊缝组织的影响。随着焊丝中合金成分的增加,焊缝组织中的先共析铁素体含量逐渐减少;针状铁素体的含量先升高,然后逐渐降低。对于ER50-6焊丝焊缝,因奥氏体晶界被先共析铁素体完全覆盖,热输入对针状铁素体的含量的影响相对不敏感;而对ER60-G焊丝焊缝,热输入较小(14kJ/cm)时会产生以贝氏体为主的组织,降低焊缝韧性。焊缝中夹杂物组成的不均匀性及夹杂物的尺寸是影响夹杂物形核的重要因素。当夹杂物含有多种相组成,并且夹杂物尺寸为0.5~0.8μm时,有利于针状铁素体的多维形核。透射电镜分析显示针状铁素体板条内部有高密度的位错;焊缝中铁素体基体上分布有条状残余奥氏体,衍射结果表明焊缝组织中α与γ相存在K-S位相关系。
     研究了焊接热输入对Q690钢热影响区的组织和冲击韧性的影响,当焊接热输入从14kJ/cm提高的20kJ/cm时,热影响区冲击吸收功先升高再降低;控制焊接热输入在约16kJ/cm可获得较高的热影响区冲击韧性。提高焊接热输入虽使奥氏体晶粒尺寸增大,但下贝氏体的先期形成有效的细化了马氏体板条,形成的大角度晶界对提高热影响区韧性起到了重要作用。中等热输入时产生下贝氏体时,碳化物分布在贝氏体铁素体内并与铁素体主轴方向呈一定角度;较大热输入条件下在上贝氏体铁素体板条侧产生的Fe3C条对接头韧性有不利的影响。
     在组织结构分析的基础上,采用扫描电镜对Q550+Q690接头区裂纹及冲击试样断口形貌进行了研究。接头断面裂纹起源于Q690钢侧根部熔合区,沿熔合区穿晶扩展;部分裂纹在奥氏体晶界处沿先共析铁素体或贝氏体板条边界转向焊缝扩展;焊缝中裂纹扩展模式为微裂纹形核→尖端钝化→发生撕裂→重新形核;当裂纹遇到夹杂物时会导致萌发空洞,形成更多的不同方向的裂纹。
     焊缝金属断口纤维区为穿晶断裂,断口韧窝产生的机理是微孔聚集型,针状铁素体区对应的韧窝较大,晶界铁素体对应的韧窝较小。采用ER50-6焊丝,焊缝断口放射区呈河流花样,断口平滑;采用ER60-G焊丝,焊缝断口放射区为准解理断口,解理面层次不平。马氏体+下贝氏体组织的Q690钢热影响区纤维区具有韧窝特征,塑韧性好;放射区有较大的撕裂台阶。大热输入条件下的热影响区断口中,纤维区断裂具有塑性变形的滑移特征,上贝氏体中粗化的碳化物阻止了韧窝形成;放射区中碳化物作为裂纹源形成小的撕裂刻面。
     本文系统研究了不预热条件下液压支架用高强钢Q550和Q690焊接接头的显微组织、精细结构以及接头力学性能,并研究了接头区裂纹扩展形态及断裂机制,为高强钢的不预热焊接提供了试验依据和理论基础,有利于提高高强钢焊接效率和促进高强钢应用范围的扩大。
High strength low alloy (HSLA) steels have been widely used in engineering machinery, energy, bridges, vehicles and vessels industries etc., due to their excellent strength and toughness, reasonable economy and high allowable design stresses. But the welding of high strength steel is complicated. Major problems may be encountered in joint during welding, including cold cracking, mismatching of toughness and strength, poor performances of fusion zone and heat affected zone (HAZ), and so on, which become limitations in extending the application of HSLA steel and improving production efficiency. In this paper, HSLA steels Q550 and Q690 used in hydraulic support of coal mine were welded by gas metal arc welding (GMAW) processes without pre-heating. The microstructure, fine structure, cracks and mechanical properties of welded joints were investigated to reveal the relation of welding parameters, alloying elements, microstructure and fine structure of joints, propagation of cracks and performance of joints.
     Oblique y-groove and straight Y-groove cracking tests of butt joints were conducted to research the influences of welding wire and welding heat input on the cracking ratio of Q550, Q550+Q690 and Q690 joints. Results indicated that with the increase of strength of welding wires and welding heat input, the cracking sensitivities of joints increased. The mechanical properties of Q550 and Q550+Q690 welded joints were studied via tensile test and Charpy V-notch (CVN) impact test. Tensile samples ruptured at the weld metal in the joints fabricated using ER50-6 welding wire, stating that weld metal was the weakest zone in the joints. The tensile strength of joints produced with ER60-G welding wire was close to that of base metal with the failure location at the fusion zone or HAZ. CVN impact test results showed the toughness was the best in the HAZ for Q550 and Q690 steel joints. Weld metal and fusion zone in joints produced with ER60-G welding wire exhibited better toughness than that fabricated using ER50-6 welding wire.
     The microstructure, fine structure and composition of inclusions in weld metal were investigated by means of optical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS). The effects of welding heat input, alloying elements and inclusions on the microstructure of weld metal were analyzed. With the increase of concentration of alloying elements in welding wires, the content of proeutectoid ferrite (PF) decreased, and that of acicular ferrite (AF) increase firstly, then decreased gradually. When the content of alloying elements became higher, the formation of bainite was promoted. For the weld metal with small alloying elements (ER50-6 welding wire), the content of AF in weld metal was not sensitive to welding heat input since the prior austenite grain boundaries were almost fully covered by PF. With the increase of alloying elements in welding wire (ER60-G), welding heat input had important influences on the microstructure of weld metal. Small heat input (14kJ/cm) generated bainite dominated microstructure in weld metal, resulting in poor impact toughness.
     Both the composition and size of inclusions are the deciding factors for the nucleation of AF. Relatively large inclusions with the diameter of about 0.5-0.8μm were much more effective in promoting the nucleation of AF and refining microstructure within austenite grain than other small inclusions. Compared with single phase inclusions, those comprised of several different phases were easy to stimulate several AF plates with different directions leading to higher nucleation frequency of AF. The result of TEM analysis revealed high density dislocations inside of AF laths. The lath like bainitic ferrite and retained austenite had been observed by TEM. The crystallographic orientation between a and y conformed to K-S relationship.
     We also investigated the influence of welding heat input on microstructure and impact toughness of the heat affected zone (HAZ) in Q690 steel joints. With the increase of welding heat input from 14kJ/cm to 20kJ/cm, the impact toughness in the HAZ had the tendency to increase at first and then decrease. The optimum impact properties of HAZ were obtained with about 16kJ/cm heat input. When the welding heat input was raised to a suitable value, the formation of lower bainite ahead of the transformation from austenite to martensite could refine microstructure within austenite, providing more high angle lath boundaries, which played a very important role in enhancing impact toughness in HAZ of Q690 steel joints. Lower bainite was obtained with carbides adopting a single crystallographic variant in lower bainitic ferrite at about 16kJ/cm heat input. When higher heat input was employed, carbide particles paralleled to the habit planes of the bainitic ferrite were formed, which were detrimental to impact toughness of Q690 steel joints.
     Based on the investigation of microstructure and fine structure in Q550+Q690 steel joints, the propagation of cracks and fracture surface of Charpy impact specimens were studied via SEM. Cracks initiated from the root fusion zone of Q690 steel side and propagated along the fusion zone. Some cracks would turn from fusion zone to weld metal along the laths of PF or bainite. The mode of crack propagation was:nucleation of micro-crack→crack tip blunting→crack tearing→nucleation of new micro-crack. When the tip of crack encountered inclusion, more crack paths would be initiated from the interface between inclusion and acicular ferrite plates.
     The fibrous zone in fracture surface of weld metal fabricated with ER50-6 and ER60-G welding wires performed dimpled transgranular type of failures with the mechanism of micro-void coalescence. The analysis had proved that acicular ferrite structure region corresponded to relatively large dimples while grain boundary ferrite structure corresponded to small dimples. Radical region in the fractured surface of weld metal from ER50-6 joint was flat with river patterns, while that of weld metal produced using ER60-G welding wire exhibited tortuous crack propagation path and rough cleavage planes. The propagation of cracks in fusion zone and weld metal exhibited excellent cracking resistance of AF. Fibrous zone in fractured surfaces of impact specimens in Q690 steel HAZ with mixed microstructure of lath martensite and lower bainite was characterized by dominant elongated dimples. Complex river patterns and cleavage steps were observed within cleavage facets in the radical zone. But slip bands were shown in the fibrous zone in the HAZ fabricated at higher heat input. Coarsen carbides in upper bainite held back the formation of dimples. The radical zone was composed of small cleavage facets due to more crack initiation sites provided by carbides.
     This paper systematically researches the microstructure characteristics and mechanical properties of welded joints without preheating of HSLA steels Q550 and Q690 used in hydraulic support for coal mine. The propagation of cracks and fracture mechanisms in Q550+Q690 steel joints were also studied. The relations of welding parameters, alloying elements, microstructure and mechanical properties including tensile strength and impact toughness were established. The results provides experimental and theoretical basis for improving the application of high strength low alloy steel and promoting the efficiency of welding.
引文
1.翁宇庆,董瀚,王毛球.新一代钢铁材料的基础研究进展[C].2009年全国高品质热轧板带材控轧控冷与在线、离线热处理生产技术交流研讨会.北京,2009.
    2. Keshav Prasad, D. K. Dwivedi. Some investigations on microstructure and mechanical properties of submerged arc welded HSLA steel joints[J]. The International Journal of Advanced Manufacturing Technology,2008,36: 475-483.
    3.王祖滨,付俊岩HSLA钢工艺技术的新进展[C].中国特殊钢年会,北京,2005:18-22.
    4.李世俊.中国需要低合金高强度钢和超细晶粒钢[C].第五届国际低合金高强度钢会议.海南三亚,2005.
    5.王祖滨,贾书君.大力发展低合金高强度钢促进钢铁工业增长方式的转变[J].中国冶金,2006,16(4):1-8.
    6.常跃峰,王祖滨,赵文忠.低合金高强度宽厚钢板的发展趋势[J].钢铁,2007,42(8):1-6.
    7.邹增大,李亚江,尹士科.低合金高强钢焊接及工程应用[M].北京:化学工业出版社,2001.
    8.董瀚,王毛球,翁宇庆.高性能钢的M3组织调控理论与技术[J].钢铁,2010,45(7):1-7.
    9.冯勇,刘凤兰.高强度结构钢板在国民经济建设中的地位和作用[C].2009高品质特殊钢技术与市场论坛.大连,2009.
    10.杨道和.液压支架Q550D低合金结构钢的焊接[J].煤炭技术,2007,26(10):8-10.
    11.樊运策.我国高产高效矿井建设的重要技术途径[J].煤炭学报,2001,26(S):1-5.
    12.姚连登,崔强,王国法,徐亚军.高强钢在液压支架中的应用现状和发展前景[J].宽厚板,2003,19(1):16-22.
    13.高有进.6.2米液压支架关键技术研究与优化设计[D].武汉:华中科技大学, 2008.
    14.戴绍成,李世文,李芬,曾国元,白经,闫光贤.高产高效综合机械化采煤技术与装备(上册)[M].北京:煤炭工业出版社,1998.
    15.高有进.6.3m大采高液压支架关键技术研究与应用[J].中州煤炭,2007,(3):6-7.
    16.徐宗林,邵春生,程志红,付金良,刘付营.液压支架箱形结构件焊后热处理工艺的研究及应用[J].中国煤炭,2008,(4):41-43.
    17.高有进.6.2m高可靠性大采高液压支架的选型与设计[J].中国煤炭,2007,33(2):34-37.
    18.潘际銮.展望21世纪焊接科研[J].中国机械工程,2000,11(1-2):21-25.
    19.邹增大,李亚江.HQ130钢熔合区微裂纹扩展形态及断口特征[J].机械工程学报,1999,35(6):70-73.
    20.李亚江,沈孝芹,孙宾.HQ130钢焊接区扩散氢分布的数值分析[J].焊接学报,2001,22(3):39-43.
    21.李亚江,沈孝芹,孟繁军,任江伟.高强度钢焊接区拘束应力的有限元分析[J].焊接学报,2002,23(5):57-60.
    22. Li Yajiang, Wang Juan, Feng Jicai, Shen Xiaoqin. Finite element modeling of hydrogen diffusion in fusion zone of HQ130 high strength steel[J]. Journal of Materials Processing Technology,2005,161:423-429.
    23. Li Yajiang, Wang Juan, Shen Xiaoqin. FEM calculation and effect of diffusion hydrogen distribution in the fusion zone of super-high strength steel[J]. Computational Materials Science,2004,31:57-66.
    24.史耀武,史轩.HG80钢及其焊接接头的疲劳裂纹扩展[J].机械工程材料,2003,27(8):5-7.
    25. M. Stadtaus, V. Michailov, H. Wohlfahrt. Numerical calculation of the main factors on cold cracking[J]. Materialwissenschaft und Werkstofftechnik,2003, 34(1):145-151.
    26.赵智力,杨建国,刘雪松,方洪渊.强度失配对接接头残余应力分布的有限元预测[J].焊接学报,2009,30(8):97-100.
    27. N. Bailey. Weldability of high strength steels[J]. Welding and Metal Fabrication, 1933, (8):389-393.
    28.曹雷,孙谦,宗培,范名琦.等强匹配焊接接头的特征及界定方法[J].焊接学报,2006,27(7):81-84.
    29. S. Ravi, V. Balasubramanian, S. Nemat Nasser. Effect of mis-match ratio (MMR) on fatigue crack growth behaviour of HSLA steel welds[J]. Engineering Failure Analysis,2004,11(3):413-428.
    30. Y. J. Kim. Strength mis-match effect on local stresses and its implication to structural assessments [J]. IIW Doc.Sc.X-F-081-98,1998.
    31. I. Rak, A. Treibar. Weld joint fracture behaviour of HSLA steels dissimilar in strength[J]. IIW Doc X-F-062-97,1997.
    32.李少华,尹士科,刘奇凡.焊接接头强度匹配和焊缝韧性指标综述[J].焊接,2008,(1):24-27.
    33.严鸢飞,杨毅,印建正,陈伯蠡,王振家.钢焊接接头的强韧性设计原则的研究[J].机械工程学报,1996,32(2):101-105.
    34.邹增大,李亚江.HQ130钢焊接熔合区的裂纹形态[J].钢铁研究学报,1999,11(6):43-47.
    35. S. Ravi, V. Balasubramanian, S. Babu, S. Nasser Nemat. Influences of MMR, PWHT and notch location on fatigue life of HSLA steel welds[J]. Engineering Failure Analysis,2004,11(4):619-634.
    36.王振家,陈伯蠡,弋成东.为较高强度的结构钢选择焊接材料须考虑的两个因素[J].热加工工艺,2004,(8):47-48.
    37.赵智力,杨建国,方洪渊,伍芳斌.基于等承载能力原则的低匹配对接接头设计[J].焊接学报,2008,29(10):93-96.
    38.赵智力,方洪渊,杨建国,胡继超.低匹配对接接头的“等承载”设计及拉伸疲劳行为[J].机械工程学报,2010,46(10):75-80.
    39. J. Tuma Vojvodic, A. Sedmak. Analysis of the unstable fracture behaviour of a high strength low alloy steel weldment[J]. Engineering Fracture Mechanics, 2004,71(9-10):1435-1451.
    40.赵智力.基于等承载能力原则的高强钢低匹配焊接接头设计[D].:哈尔滨工业大学,2009.
    41. W. W. Bose-Filho, A. L. M. Carvalho, M. Strangwood. Effects of alloying elements on the microstructure and inclusion formation in HSLA multipass welds[J]. Materials Characterization.2007,58:29-39.
    42. B. Beidokhti, A. H. Koukabi, A. Dolati. Effect of titanium addition on the microstructure and inclusion formation in submerged arc welded HSLA pipeline steel[J]. Journal of Materials Processing Technology,2009,209:4027-4035.
    43. D. J. Abson, R. J. Pargeter. Factors influencing as-deposited strength, microstructure, and toughness of manual metal arc welds suitable for C-Mn steel fabrications [J]. International Metals Reviews,1986,31:141-194.
    44. R. A. Farrar, P. L. Harrison. Acicular ferrite in carbon-manganese weld metals: an overview[J]. Journal of Materials Science,1987,22:3812-3820.
    45. R. E. Dolby. Advances in welding metallurgy of steel [J]. Metals Technology, 1983,10:349-362.
    46. J. H. Tweed, J. F. Knott. Effect of reheating on microstructure and toughness of C-Mn weld metal[J]. Metal Science,1983,17(2):45-54.
    47. B. T. Alexandrov, J. C. Lippold. In-situ weld metal continuous cooling transformation diagrams[J]. Welding in the World,2006,50(9-10):65-74.
    48. Z. B. Yang, F. M. Wang, S. Wang, B. Song. Intragranular ferrite formation mechanism and mechanical properties of non-quenched-and-tempered medium carbon steels[J]. Steel Research International,2008,79(5):390-395.
    49. D. S. Sarma, A. V. Karasev, P. G. Jonsson. Review on the role of non-metallic inclusions in the nucleation of acicular ferrite in steels[J]. ISIJ International, 2009,49(7):1063-1074.
    50.齐彦昌,彭云,魏金山,田志凌.碳对C-1.5Mn-2.5N i-0.5Cr-0.5Mo高强钢焊缝金属组织和性能的影响[J].焊接学报,2010,31(11):41-44.
    51.熊玲琪,李红卫.高强度低合金钢焊缝金属的组织及其影响因素[J].钢铁研究学报,2010,22(6):53-59.
    52. Z. Zhang, R. A. Farrar. Influence of Mn and Ni on the microstructure and toughness of C-Mn-Ni weld metals[J]. Welding Journal,1997,76(5): 183s-196s.
    53.杨军,吴鲁海,茅及放.低合金高强钢焊缝熔敷金属强韧化机理[J].焊接学报,2006,27(3):86-90.
    54. J. C. F. Jorge, L. F. G. Souza, J. M. A. Rebello. The effect of chromium on the microstructure toughness relationship of C-Mn weld metal deposits[J]. Materials Characterization,2001,47:195-205.
    55. S. S. Babu. The mechanism of acicular ferrite in weld deposits[J]. Current Opinion in Solid State and Materials Science,2004,8:267-278.
    56.云绍辉,张德勤,田志凌,杜则裕.微合金钢焊缝金属中针状铁素体相变动力学分析[J].焊接学报,2005,26(8):35-38.
    57. Tian Zhiling, Zhang Deqin, Du Zeyu. Kinetics of Acicular Ferrite Transformation in Weld Metal [J]. Journal of Iron and Steel Research(International),2001,8(1):34-36.
    58.刘艳,吴毅雄,雷毅,金鑫.微合金钢焊缝针状铁素体相变热力学研究[J].热加工工艺,2010,39(3):5-9.
    59. Tae-Kyu Lee, H. J. Kim, B. Y. Kang, S. K. Hwang. Effect of inclusion size on the nucleation of acicular ferrite in welds[J]. ISIJ International,2000,40(12): 1260-1268.
    60. I. Madariaga, I. Gutierrez. Role of the particle-matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel [J]. Acta Materialia,1999,47(3):951-960.
    61. I. Madariaga, J. L. Romero, I. Gutierrez. Upper acicular ferrite formation in a medium-carbon microalloyed steel by isothermal transformation:Nucleation enhancement by CuS [J]. Metallurgical and Materials Transactions A,1998, 29(13):1003-1015.
    62. J. M. Gregg, H. K. D. H. Bhadeshia. Bainite nucleation from mineral surfaces[J]. Acta Metallurgica et Materialia,1994,42:3321-3330.
    63.魏然,吴开明.低合金高强度钢焊缝金属中针状铁素体的微观组织[J].焊接学报,2010,31(7):47-50.
    64.余圣甫,李志远,石仲堃,张国栋.低合金高强度钢药芯焊丝焊缝中夹杂物诱导针状铁素体形核的作用[J].机械工程学报,2001,37(7):65-70.
    65.国旭明,钱百年,王玉.夹杂物对微合金钢熔敷金属针状铁素体形核的影响[J].焊接学报,2007,28(12):5-12.
    66. F. J. Barbaro, P. Krauklis, K. E. Easterling. Formation of acicular ferrite at oxide particles in steels[J]. Materials Science and Technology,1989,5(11): 1057-1068.
    67. J. L. Lee. Evaluation of the nucleation potential of intragranular acicular ferrite in steel weldments[J]. Acta Metallurgica et Materialia,1994,42(10): 3291-3298.
    68.马成勇.新一代800MPa级超低碳微合金钢焊材及接头组织性能研究[D].:天津大学,2002.
    69.马成勇,田志凌,杜则裕,彭云,张志勇.热输入对800 MPa级钢接头组织及性能的影响[J].焊接学报,2004,25(2):23-27.
    70.(?). Grong, L. Kolbeinsen, C. Van Der Eijk, G. Tranell. Microstructure control of steels through dispersoid metallurgy using novel grain refining alloys[J]. ISIJ International,2006,46(6):824-831.
    71.柴锋,杨才福,张永权,苏航,徐洲.焊接热循环对含铜时效钢HAZ组织与力学性能的影响[J].焊接学报,2006,27(10):109-112.
    72. Sanjay Kumar Dhua, Debasis Mukerjee, Darbha Subrahmanya Sarma. Weldability and microstructural aspects of shielded metal arc welded HSLA-100 steel plates[J]. ISIJ International,2002,42(3):290-298.
    73. G. Magudeeswaran, V. Balasubramanian, G. Madhusudhan Reddy. Effect of welding processes and consumables on high cycle fatigue life of high strength, quenched and tempered steel joints[J]. Materials and Design,2008,29: 1821-1827.
    74. G. Magudeeswaran, V. Balasubramanian, G. Madhusudhan. Hydrogen induced cold cracking studies on armour grade high strength, quenched and tempered steel weldments[J]. International Journal of Hydrogenenergy,2008,33(7): 1897-1908.
    75.上田修三.结构钢的焊接-低合金钢的性能及冶金学[M].荆洪阳译.北京:冶金工业出版社,2004.
    76. J. Neves, A. Loureiro. Fracture toughness of welds-Effect of brittle zones and strength mismatch[J]. Journal of Materials Processing Technology,2004, 153-154(1-3):537-543.
    77.朱亮,陈剑虹.力学性能不均匀焊接接头的强度预测[J].焊接学报,2005,26(5):13-17.
    78. Altino J. R. Loureiro. Effect of heat input on plastic deformation of undermatched welds[J]. Journal of Materials Processing Technology,2002, 128(1-3):240-249.
    79.魏金山.船用高强钢不预热焊接技术研究进展[J].材料开发与应用,2002,17(1):37-41.
    80. S. Morito, H. Saito, T. Ogawa, T. Furuhara, T. Maki. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels[J]. ISIJ International,2005,45(1):91-94.
    81. Sangho Uhm, Joonoh Moon, Changhee Lee, Jihyun Yoon, Bongsang Lee. Prediction Model for the Austenite Grain Size in the Coarse Grained Heat Affected Zone of Fe-C-Mn Steels:Considering the Effect of Initial Grain Size on Isothermal Growth Behavior[J]. ISIJ International,2004,44: 1230-1237.
    82. M. Shome. Effect of heat-input on austenite grain size in the heat-affected zone of HSLA-100 steel[J]. Materials Science and Engineering A,2007,445-446: 454-460.
    83.张莉芹.碱土金属微合金化大线能量焊接低合金高强钢的研究[D].武汉:武汉科技大学,2009.
    84.王娟,李亚江.HQ130钢焊接粗晶热影响区的显微图像分析[J].钢铁研究学报,2001,13(1):64-67.
    85.李亚江,邹增大,陈祝年,江全昌.HQ130+QJ63高强钢焊接接头的组织与性能[J].钢铁研究学报,1997,9(4):46-51.
    86. C. Liu, Z. B. Zhao, D. O. Northwood. Mechanical properties of heat affected zone in bainitic high strength low alloy steel [J]. Materials Science and Technology,2002,18:1325-1328.
    87.赵琳,张旭东,陈武柱.800MPa级低合金钢焊接热影响区韧性的研究[J].金属学报,2005,41(4):392-396.
    88. Yaowu Shi, Zhunxiang Han. Effect of weld thermal cycle on microstructure and fracture toughness of simulated heat-affected zone for a 800MPa grade high strength low alloy steel[J]. Journal of Materials Processing Technology,2008, (207):30-39.
    89.高有进,王乘,徐宗林.屈服强度900 MPa级高强钢焊接工艺[J].焊接学报,2007,28(9):103-107.
    90.李亚江.焊接冶金学——材料焊接性[M].北京:机械工业出版社.2006.
    91. R. T. DeHoff, F. N. Rhines. Quantitative microscopy[M]. New York: McGraw-Hill Book Company,1968.
    92.中国机械工程学会焊接学会.焊接手册(第三版)[M].北京:机械工业出版社,2008.
    93. M. Stadtaus, V. Michailov, H. Wohlfahrt. Numerical calculation of the main factors on cold cracking[J]. Materialwissenschaft und Werkstofftechnik,2003, 34(1):145-151.
    94. Kong Junhua, Zhen Lin, Guo Bin, Li Pinghe, Wang Aihua, Xie Changsheng. Influence of Mo content on microstructure and mechanical properties of high strength pipeline steel[J]. Materials & Design,2004,25(8):723-728.
    95. A. Contreras, A. Albiter, M. Salazar, R. Perez. Slow strain rate corrosion and fracture characteristics of X-52 and X-70 pipeline steels [J]. Materials Science and Engineering A,2005,407:45-52.
    96. S. Suzuki, M. Tanino, Y. Waseda. Phosphorus and boron segregation at prior austenite grain boundaries in low-alloyed steel [J]. ISIJ International,2002, 42(6):676-678.
    97. J. C. LaSalvia, D. K. Kim, M. A. Meyers. Effect of Mo on microstructure and mechanical properties of TiC-Ni-based cermets produced by combustion synthesis-impact forging technique[J]. Materials Science and Engineering A, 1996,206(1):71-80.
    98. Ming-Chun Zhao, Ke Yang, Fu-Ren Xiao, Yi-Yin Shan. Continuous cooling transformation of undeformed and deformed low carbon pipeline steels[J]. Materials Science and Engineering A,2003,355:126-136.
    99. I. A. Yakubtsov, J. D. Boyd. Effect of alloying on microstructure and mechanical properties of bainitic high strength plate steels[J]. Materials Science and Technology,2008,24(2):221-227.
    100. B. Beidokhti, A. H. Koukabi, A. Dolati. Influences of titanium and manganese on high strength low alloy SAW weld metal properties [J]. Materials Characterization,2009,60:225-233.
    101. S. D. Bhole, J. B. Nemade, L. Collins, Cheng Liu. Effect of nickel and molybdenum additions on weld metal toughness in a submerged arc welded HSLA line-pipe steel [J]. Journal of Materials Processing Technology,2006, 173(1):92-100.
    102. C. Capdevila, F. G. Caballero, C. Garcia de Andres. Modeling of kinetics of austenite-to-allotriomorphic ferrite transformation in 0.37C-1.45Mn-0.11V microalloyed steel[J]. Metallurgical and Materials Transactions A,2001,42(6): 661-669.
    103. Y. J. Oh, S. Y. Lee, Byun J. S, Shim J. H, Cho Y. W. Non-metallic inclusions and acicular ferrite in low carbon steel[J]. Materials Transactions,2000,41(12): 1663-1669.
    104. T. H. North, H. B. Bell, A. Koukabi, I. Craig. Notch toughness of low oxygen content submerged arc deposits[J]. Welding Journal,1979,58:343s-354s.
    105. B. L. Bramfitt. Planar lattice disregistry theory and its application on heterogistry nuclei of metal[J]. Metallurgical Transactions,1970,1(7): 1987-1995.
    106. A. R. Mills, G. Thewlis, J. A. Whiteman. Nature of inclusions in steel weld metals and their influence on formation of acicular ferrite[J]. Materials Science and Technology,1987,3(12):1051-1061.
    107. Carlos Capdevila, Francisca G. Caballero, Carlos Garci A-Mateo, Carlos Garci A. de Andre S. The role of inclusions and austenite grain size on intragranular nucleation of ferrite in medium carbon microalloyed steels[J]. Materials Transactions,2004,45(8):2678-2685.
    108.刘宗昌,任慧平.贝氏体与贝氏体相变[M].北京:冶金工业出版社,2009.
    109.刘刚,曲占元.针状铁素体钢的力学性能与显微结构[J].材料开发与应用,2010,25(1):6-8.
    110. S. Kou. Welding Metallurgy (2nd edition)[M]. New York:John Wiley and Sons, 2003.
    111. Chunfang Wang, Maoqiu Wang, Jie Shi, Weijun Hui, Han Dong. Effect of microstructural refinement on the toughness of low carbon martensitic steel [J]. Scripta Materialia,2008,58(6):492-495.
    112. Chunfang Wang, Maoqiu Wang, Jie Shi, Weijun Hui, Han Dong. Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel[J]. Journal of Materials Science and Technology,2007,23(5): 659-664.
    113.徐祖耀.条状马氏体形态对钢力学性质的影响[J].热处理,2009,24(3):1-6.
    114.钟平,凌斌.低合金高强度钢的微观组织和疲劳裂纹扩展行为[J].材料科学与工艺,1996,4(1):20-23.
    115.方鸿生,冯春,郑燕康,郑秀华,张弛.下贝氏体中碳化物的析出[J].金属学报,2007,43(6):583-588.
    116.钟群鹏,赵子华.断口学[M].北京:高等教育出版社,2006.
    117.居殿春,竺培显,颜慧成,刘家琪.残余奥氏体对TRIP钢机械性能的影响[J].冶金丛刊,2008,(2).
    118. S. Mukhopadhyay, T. K. Pal. Effect of shielding gas mixture on gas metal arc welding of HSLA steel using solid and flux-cored wires[J],2006,29:262-268.
    119.李亚江.HQ130钢熔合区及热影响区组织性能研究[D].济南:山东工业大学,1998.
    120.张静武.金属塑性变形与断裂的TEM/SEM原位研究[博士].秦皇岛:燕山大学,2002.
    121.钱才富.位错和位错偶沿单一滑移系从裂纹尖端的发射[J].金属学报,1999,35(5):550.
    122.郭振,温永红,胡水平,武会宾,潘洪波.针状铁素体钢的组织类型及对性能的影响[J].材料开发与应用,2007,22(6):5.
    123. D. V. Edmonds, R. C. Cochrane. Structure-property relationships in bainitic steels [J]. Metallurgical and Materials Transactions A,1991,21A(6): 1527-1540.
    124.杨军,吴鲁海,茅及放.低合金高强钢焊缝熔敷金属强韧化机理[J].焊接学报,2006,27(3):86-90.
    125.张爱梅.非金属夹杂物对钢性能的影响[J].物理测试,2006,24(4):42-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700