用户名: 密码: 验证码:
野生大豆(Glycine soja)和栽培大豆(Glycine max)光合机构对NaCl处理的不同响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐胁迫是影响植物生长的重要因素之一,因此阐明植物的抗盐机制对于选育抗盐品种和改良作物品质具有重要意义。本实验以抗盐性较强的东营野生大豆(Glycine soja Sieb. et Zucc. ZYD 03262)和广泛栽培的山东栽培大豆(Glycine max (L.) Merr.山宁11号)为实验材料,研究了两种大豆对不同浓度NaCl(0,100,200mM)处理的响应,从光合作用、光能利用效率、抗氧化酶活性、离子分布等角度,探讨了东营野生大豆的耐盐机理,为利用野生大豆资源提高栽培大豆抗盐能力提供理论依据。
     结果表明:经过不同浓度NaCl处理15天后,两种大豆植株生长均受到抑制,叶片的叶绿素含量(Chl a~+b),相对含水量(RWC),光合速率(Pn),实际光化学效率(ΦPSII)都明显降低,然而NaCl处理对栽培大豆的抑制作用显著大于野生大豆;野生大豆叶片中的Na~+含量、Na~+/K~+值都显著低于栽培大豆,但野生大豆根中的Na~+含量却明显高于栽培大豆。虽然野生大豆在NaCl处理下能够维持较高的光合能力,但是野生大豆所具有的这种抗盐能力是由于叶片光合机构本身具有较强的抗盐性,还是由于植株的根、茎部具有较强的离子选择性有关。因此为了排除根和茎中相关机制的影响,我们用不同浓度的NaCl溶液直接处理两种大豆离体叶片。结果表明当用100和200mM NaCl溶液处理两种大豆的离体叶片时,野生大豆的PSII最大光化学效率(Fv/Fm)、ΦPSII、单位面积有活性反应中心的数目(RC/CSo)和光化学性能指数(PI)下降幅度却显著大于栽培大豆;同时,野生大豆叶片中的Na~+含量也显著高于栽培大豆。通过分析NaCl处理后野生大豆和栽培大豆叶片的光合能力(Pn、Fv/Fm、ΦPSII)与叶片中Na~+含量的关系,我们可以看出无论是植株还是离体叶片,叶片中Na~+的含量对野生大豆伤害要显著大于对栽培大豆的伤害。非损伤微测技术(NMT)的测定结果表明,经过NaCl处理后,栽培大豆根部具有比野生大豆更明显的Na~+外排现象,但是野生大豆叶片中Na~+的外排更为显著。另外,抗氧化酶活性的分析表明,野生大豆叶片中的超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)和过氧化氢酶(CAT)活性在经过不同浓度NaCl处理后显著增加,而栽培大豆在经过NaCl处理后叶片中SOD的活性增加,APX、CAT活性下降。
     与栽培大豆相比,野生大豆在根部积累了更多的Na~+,同时能够选择性地吸收更多K~+,有利于维持细胞的渗透势,保持植株对水分的吸收,有效缓解了渗透胁迫对植株生长的影响。另外,野生大豆可以通过提高抗氧化酶活性有效地消除过量的活性氧,避免了活性氧对光系统和光合碳同化过程中多种酶的伤害,为保护光合机构,维持较高的光合能力提供了条件。野生大豆叶片光合机构并不比栽培大豆更抗盐,但是由于野生大豆利用相关的选择和转运机制有效地降低了叶片中Na~+含量,保护叶片的光合机构免受Na~+的伤害,维持较高的光合能力,保证其在盐渍条件下的正常生长,这是野生大豆抗盐的一种主要机制。
Salt stress is one of the major stress factors limiting growth of plant, so understanding the salt resistance mechanism of plant is very important to develop cultivars with increased salt tolerance. In this study, a wild soybean (Glycine soja Sieb. et Zucc. ZYD 03262) and a cultivated soybean (Glycine max (L.) Merr. Shanning 11) plants and their detached leaves were used as materials to study responses of their photosynthetic appratus to treatments with different NaCl concentrations (0, 100, 200mM). By comparing analyzsis of photosynthesis, photochemical efficiency, ion concentration and distribution, antioxidant enzymes activities between the two soybena plants, we explored the salt resistance mechanism of the wild soybean.
     The results showed that NaCl stress inhibited growth, photosynthesis (Pn), and decreased actual photochemical efficiency of PSII (ΦPSII), chlorophyll content (Chl a~+b) and relative water content (RWC) in the leaves of the two soybean plants, but the inhibition was more severe in cultivated soybean. The Na~+ concentrations and the ratio of Na~+/K~+ in leaves of the wild soybean were significantly lower than that of the cultivated soybean, while the Na~+ concentrations in roots of the wild soybean were higher than that of the cultivated soybean. However, according to the above results, it is impossible to clarify whether the photosynthetic apparatus in the wild soybean is more salt tolerant than that in the cultivated soybean because the selective absorption of Na~+ and K~+ through the roots and the translocation of Na~+ and K~+ through the stems can effectively decrease the Na~+ concentrations in the leaves, avoiding the Na~+-induced damage to the photosynthetic apparatus. To elucidate whether the photosynthetic apparatus of the wild soybean is more tolerant to salt stress, detached fully expanded leaves were directly subjected to NaCl treatments, which eliminated the effects of the roots and stems on the photosynthetic apparatuses in the leaves. When the detached leaves of the both soybeans were treated with 100 and 200mM NaCl, the maximal photochemical efficiency of PSII (Fv/Fm),ΦPSII, active PSII reaction centers per excited cross section (RC/CSo) and photosynthetic performance index (PI) decreased more significantly in the wild soybean than that in the cultivated soybean. Meanwhile the Na~+ concentrations in the detached leaves of the wild soybean were higher than that of the cultivated soybean when treated with 100 and 200mM NaCl. The correlations between the Na~+ concentrations and photosynthetic activities demonstrated that increasing Na~+ concentrations in leaves, regardless of whether attached or detached leaves, causes a more pronounced decrease in photosynthetic activities in wild soybean compared to cultivated soybean, that’s mean the Na~+ concentrations in leaves are mainly responsible for determining salt resistance in the two soybean species. According to the Non-invasive Micro-test Technique (NMT) data, the Na~+ effluxes in leaves of the wild soybean were significantly greater than those in leaves of the cultivated soybean; however, the Na~+ effluxes were more remarkably higher in roots of the cultivated soybean than in the wild soybean. The activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) in leaves of the wild soybean were increased, while the activities of APX and CAT were decreased and the activity of SOD increased in leaves of the cultivated soybean after treated with NaCl.
     In conclusion, the wild soybean is able to maintain normal water absorption via osmo-adjustments by accumulating higher levels of Na~+ and by absorbing more K~+ in its roots to avoid the osmotic stress caused by NaCl stress. The enhanced of activity of antioxidant enzymes can effectively eliminate the reactive oxygen species (ROS) to alleviate damage to photosystems and enzymes involved in CO2 assimilation, protecting photosynthetic apparatus against salt stress. Our results suggest that the photosynthetic apparatus in the wild soybean doesn’t have higher salt resistance than that in the cultivated soybean. However, the wild soybean prevents the accumulation of higher concentrations of Na~+ in leaves by certain mechanism, which protects its photosynthetic apparatus from salt damage, helping it to survive in saline soil.
引文
李福山。中国野生大豆资源的地理分布及生态分化研究。中国农业科学,1993,26(2):47-55
    李鹏民,高辉远,Strasser R. J.。快速叶绿素荧光诱导动力学分析在光合作用研究中的应用。植物生理与分子生物学学报,2005,31(6):559-566
    廖岩,彭友贵,陈桂珠。植物耐盐性机理研究进展。生态学报,2007,27(5):2077-2089
    全国野生大豆考察组:中国野生大豆资源考察报告。中国农业科学,1983,6:69-75
    任丽丽。短期NaCl胁迫和低温弱光胁迫对两种野生大豆光系统功能的影响[硕士论文]。2007,山东泰安:山东农业大学
    任丽丽,任春明,张伟伟,马波,高辉远。短期NaCl胁迫对野生大豆和栽培大豆叶片光合作用的影响。大豆科学,2009,28(2):239-242
    任丽丽,李海雷,赵自国。NaCl胁迫对野生大豆和栽培大豆生理生化的影响研究。湖南农业科学,2010,(7):59-61,66
    史宏,刘学义。野生大豆抗旱性鉴定及研究。大豆科学,2003,22(4):264-268
    孙永吉,刘玉芝,胡吉成,徐豹。野生大豆抗花叶病毒研究。大豆科学,1991,10(3):212-216
    徐豹,张明,路琴华,庄炳昌,常碧影。野生大豆的高含硫氨基酸种质。大豆科学,1993,12(3):256-266
    许大全。光合作用效率。上海:上海科学技术出版社,2002
    於丙军,罗庆云,刘友良。盐胁迫对盐生野大豆生长和离子分别的影响。作物学报,2001,27(6):776-780
    岳德荣,郭守桂,单玉莲。野生大豆(Glycine soja)抗蚜鉴定技术方法研究初报。吉林农业科学,1988,(3):1-3
    张宏飞,王锁民。高等植物Na~+吸收、转运及细胞内Na~+稳态平衡研究进展.植物学通报,2007,24(5):561-371
    赵世杰,史国安,董新纯。植物生理学实验指导。北京,中国农业科技出版社:142-143
    庄炳昌主编。中国野生大豆生物学研究。北京:科学出版社。1999:1-10
    Abdelkader A. F., Aronsson H. and Sundqvist C.. High salt stress in wheat leaves causes retardation of chlorophyll accumulation due to a limited rate of protochlorophyllide formation. Physiologia Plantarum, 2007, 130(1): 157-166
    Aebi H.. Catalase in vitro. Methods in Enzymology, 1984, 105: 121-126
    Allakhverdiev S. I. and Murata N.. Salt stress inhibits photosystems II and I in cyanobacteria. Photosynthesis Research, 2008, 98(1-3): 529-539
    Appenroth K. J., St(?)ckel J., Srivastava A. and Strasser R. J.. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environmental Pollution, 2001, 115(1): 49-64
    Apse M. P., Aharon G. S., Snedden W. A. and Blumwald E.. Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiport in Arabidopsis. Science, 1999, 285(5431): 1256-1258
    An P., Inanaga S., Cohen Y., Kafkafi U. and Sugimoto Y.. Salt tolerance in two soybean cultivars. Journal of Plant Nutrition, 2002, 25(3): 407-423
    Arnon D. I.. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 1949, 24(1): 1-15
    Azooz M. M., Ismail A. M. and Elhamd M. F. A.. Growth, lipid peroxidation and antioxidant enzyme activities as a selection criterion for the salt tolerance of maize cultivars grown under salinity stress. International Journal of Agriculture and Biology, 2009, 11(1): 21-26
    Baker N. R. and Rosenqvist E.. Applications of chlorophyll (?)uorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany, 2004, 55(403): 1607-1621
    Baker N. R.. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 2008, 59: 89-113
    Bates L. S., Waldren R. P. and Teare I. D.. Rapid determination of free proline for water-stress studies. Plant and Soil, 1973, 39(1): 205-207
    Berthomieu P., Conejero G., Nublat A., Brackenbury W. J., Lambert C., Savio C., Uozumi N., Oiki S., Yamada K., Cellier F. (?)., Gosti F. (?)., Simonneau T., Essah P. A., Tester M., Very Anne-Alienor, Sentenac H. and Casse F.. Functional analysis of AtHKT1 in Arabidopsis shows that Na~+ recirculation by the phloem is crucial for salt tolerance. The EMBO Journal, 2003, 22(9): 2004-2014
    Chaves M. M., Flexas J. and Pinheiro C.. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 2009, 103(4): 551-560
    Daneshmand F., Arvin M. J. and Kalantari K. M.. Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiologiae Plantarum, 2010(1), 32: 91-101
    Demetriou G., Neonaki C., Navakoudis E. and Kotzabasis K.. Salt stress impact on the molecular structure and function of the photosynthetic apparatus—The protective role of polyamines. Biochimica et Biophysica Acta-Biogenergetics, 2007, 1767(4): 272-280
    Demiral T. and Türkan I.. Exogenous glycinebetaine affects growth and proline accumation and retards senescence in two rice cultivars under NaCl stress. Environmental and Experimental Botany, 2006, 56(1): 72-79
    Desingh R. and Kanagaraj G.. Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. General and Applied Plant Physiology, 2007, 33(3-4): 221-234
    Durand M. and Lacan D.. Sodium partitioning within the shoot of soybean. Physiologia Plantarum, 1994, 91(1): 65-71
    Farquhar G. D. and Sharkey T. D.. Stomatal conductance and photosynthetic. Annual Review of Plant Physiology, 1982, 33: 317-345
    Flowers T. J. and Yeo A. R.. Breeding for salinity resistance in crop plants: where next? Australian Journal of Plant Physiology, 1995, 22(6): 875-884
    Flowers T. J.. Improving crop salt tolerance. Journal of Experimental Botany, 2004, 55(396): 307-319
    Flowers T. J., Garcia A., Koyama M. and Yeo A. R.. Breeding for salt tolerance in crop plants-the role of molecular biology. Acta Physiologiae Plantarum, 1997, 19(4): 427-433
    Gama P. B. S., Tanaka K., Eneji A. E., Eltayeb A. E. and El-Siddig K.. Salt-induced stress effects on biomass, photosynthetic rate, and reactive oxygen species-scavenging enzyme accumulation in common bean. Journal of Plant Nutrition, 2009, 32(5): 837-854
    Garthwaite1 A. J., Bothmer R. V. and Colmer T. D.. Salt tolerance in wild Hordeum species is associated with restricted entry of Na~+ and Cl- into the shoots. Journal of Experimental Botany, 2005, 56(419): 2365-2378
    Genc Y., McDonald G. K. and Tester M.. Reassessment of tissue Na~+ concentration as a criterion for salinity tolerance in bread wheat. Plant, Cell and Environment, 2007, 30(11): 1486-1498
    Genty B., Briantais J. M. and Baker N. R.. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 1989, 990(1): 87-92
    Ghoulam C., Foursy A. and Fares K.. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 2002, 47(1): 39-50
    Giannopolitis C. N. and Ries S. K.. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 1977, 59(2): 309-314
    He C. Y., Zhang J. S. and Chen S. Y.. A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theoretical and Applied Genetics, 2002, 104(6-7): 1125-1131
    Hussain K., Nisar M. F., Majeed A., Nawaz K., Bhatti K. H., Afghan S., Shahazad A. and Zia-ul-Hussnian S.. What molecular mechanism is adapted by plants during salt stress tolerance? African Journal of Biotechnology, 2010, 9(4): 416-422
    Hyten D. L., Song Q. J., Zhu Y. L., Choi Ik-Y., Nelson R. L., Costa J. M., Specht J. E., Shoemaker R. C. and Cregan P. B.. Impacts of genetic bottlenecks on soybean genome diversity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(45): 16666-16671
    Jia Y. J., Cheng D. D., Wang W. B., Gao H. Y., Liu A. X., Li X. M. and Meng Q. W.. Different enhancement of senescence induced by metabolic products of Alternaria alternata in tobacco leaves of different ages. Physiologia Plantarum, 2010, 138(2): 164-175
    Kader M. A. and Lindberg S.. Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice, Oryza sativa L. determined by the ?uorescent dye SBFI. Journal of Experimental Botany, 2005, 56(422): 3149-3158
    Kahn N. A.. NaCl-inhibited chlorophyll synthesis and associated changes in ethylene evolution and antioxidativ enzyme activities in wheat. Biologia Plantarum, 2003, 47(3): 437-440
    Kao W. Y., Tsai T. T. and Shih C. N.. Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments. Photosynthetica, 2003, 41(3): 415-419
    Kao W. Y., Tsai T. T., Tsai H. C. and Shih C. N.. Response of three Glycine species to salt stress. Environmental and Experimental Botany, 2006, 56(1): 120-125
    Koca H., Bor M., ?zdemir F. and Türkan I.. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany, 2007, 60(3): 344-351
    Kronzucker H. J. and Britto D. T.. Sodium transport in plants: a critical review. New Phytologist, 2011, 189(1): 54-81
    Kronzucker H. J., Szczerba M. W., Schulze L. M. and Britto D. T.. Non-reciprocal interactions between K~+ and Na~+ ions in barley (Hordeum vulgare L.). Journal of Experimental Botany, 2008, 59(10): 2793-2801
    Kuroda Y., Tomooka N., Kaga A., Wanigadeva S. M. S. W. and Vaughan D. A.. Genetic diversity of wild soybean (Glycine soja Sieb. et Zucc.) and Japanese cultivated soybeans [G. max (L.) Merr.] based on microsatellite (SSR) analysis and the selection of a core collection. Ggenetic Resources and Crop Evolution, 2009, 56(8): 1045-1055
    Lam H. M., Xu X., Liu X., Chen W., Yang G., Wong F. L., Li M. W., He W., Qin N., Wang B., Li J., Jian M., Wang J., Shao G., Wang J., Sun S. S. M. and Zhang G.. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics, 2010, 42(12): 1053-1059
    Lee J. D., Shannon G., Vuong T. D. and Hguyen H. T.. Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463. Journal of Heredity, 2009, 100(6): 798-801
    Li N., Chen S., Zhou X., Li C., Shao J., Wang R., Fritz E., Hüttermann A. and Polle A.. Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorhiza. Aquatic Botany, 2008, 88(4): 303-310
    López-Climent M. F., Arbona V., Pérez-Clemente R. M. and Gómez-Cadenas A.. Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environmental and Experimental Botany, 2008, 62(2): 176-184
    Lu C. M. and Vonshak A.. Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologia Plantarum, 2002, 114(3): 405-413
    Lu J. M., Liu Y. Y., Hu B. and Zhuang B. C.. Salt glands in Glycine soja L. China. Chinese Science Bulletin, 1999, 44(10): 923-926
    M(?)ser P., Gierth M. and Schroeder J. I.. Molecular mechanisms of potassium and sodium uptake in plants. Plant and Soil, 2002, 247(1): 43-54
    Mehta P., Allakhverdiev S. and Jajoo A.. Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynthesis Research, 2010, 105(3): 249-255
    Mehta P., Jajoo A., Mathur S. and Bharti S.. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiology and Biochemistry, 2010, 48(1): 16-20
    Meloni D. A., Oliva M. A., Martinez C. A. and Cambraia J.. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 2003, 49(1): 69-76
    Misra A. N., Sahu S. M., Misra M., Ramaswamy N. K. and Desai T. S.. Sodium chloride salt stress-induced changes in thylakoid pigment protein complexes, photosystem II activity and thrumoluminesence glow peaks. Zeitschrift für Naturforschung C, 1999, 54c: 640-644
    Misra A. N., Srivastava A. and Strasser R. J.. Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings. Journal of Plant Physiology, 2001, 158(9): 1173-1181
    Mittler R.. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002, 7(9): 405-410
    Mobin M. and Khan N. A.. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology, 2007, 164(5): 601-610
    Mφller I. S., Gilliham M., Jha D., Mayo G. M., Roy S. J., Coates J. C., Haseloff J. and Testerb M.. Shoot Na~+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na~+ transport in Arabidopsis. The Plant Cell, 2009, 21(7): 2163-2178
    Moradi F. and Ismail A.. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of Botany, 2007, 99(6): 1161-1173
    Mudgal V., Madaan N. and Mudgal A.. Biochemical mechanisms of salt tolerance in plants: a review. International Journal of Botany, 2010, 6(2): 136-143
    Munns R. and Tester M.. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681
    Munns R.. Comparative physiology of salt and water stress. Plant, Cell and Environment, 2002, 25(2): 239-250
    Munns R.. Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant, Cell and Environment, 1993, 16(1): 15-24
    Nakano Y. and Asada K.. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1981, 22(5): 867-880
    Neocleous D. and Vasilakakis M.. Effects of NaCl stress on red raspberry (Rubus idaeus L. ‘Autumn Bliss’). Scientia Horticulturae, 2007, 112(3): 282-289
    Netondo G. W., Onyango J. C. and Beck E.. Sorghum and Salinity: I. Response of growth, water relations, and ion accumulation to NaCl salinity. Crop Science, 2004, 44(3): 797-805
    Oh M. J., Chun H. S. and Lee C. B.. Differences in photosynthetic characterization of salt tolerance for two rice (Oryza sativa) cultivars. Journal of Plant Biology, 2003, 46(1): 17-22
    Orsini F., D’Urzo M. P., Inan G., Serra S., Oh D. H., Mickelbart M. V., Consiglio F., Li X., Jeong J. C., Yun D. J., Bohnert H. J., Bressan R. A. and Maggio A.. A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana. Journal of Experimental Botany, 2010, 61(13): 3787-3798
    Parada A. K., Das A. B. and Mittra B.. Effects of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica, 2003, 41(2): 191-200
    Parida A. K. and Das A. B.. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 2005: 60(3), 324-349
    Peng Y. H., Zhu Y. F., Mao Y. Q., Wang S. M., Su W. A. and Tang Z. C.. Alkali grass resists salt stress through high [K~+] and an endodermis barrier to Na~+. Journal of Experimental Botany, 2004, 55(398): 939-949
    Phang T. H., Shao G. H. and Lam H. M.. Salt tolerance in soybean. Journal of Integrative Plant Biology, 2008, 50(10): 1196-1212
    Plett D. C. and Moller I. S.. Na~+ transport in glycophytic plants: what we know and would like to know. Plant, Cell and Environment, 2010, 33(4): 612-626
    Pospí(?)il P.. Production of reactive oxygen species by photosystem II. Biochimica et Biophysica Acta, 2009, 1787(10): 1151-1160
    Redondo-Gómez S., Mateos-Naranjo E., Davy A. J., Fernández-Mu(?)oz F., Castellanos E. M., Luque T. and Figueroa M. E.. Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Annals of Botany, 2007, 100(3): 555-563
    Rajendran K., Tester M. and Roy S. J.. Quantifying the three main components of salinity tolerance in cereals. Plant, Cell and Environment, 2009, 32(3): 237-249
    Seckin B., Turkan I., Sekmen A. H. and Ozfidan C.. The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environmental and Experimental Botany, 2010, 69(1): 76-85
    Shao H., Chu L., Shao M., Jaleel C. and Hong-mei M.. Higher plant antioxidants and redox signaling under environmental stresses. Comptes Rendus Biologies, 2008, 331(6): 433-441
    Shi H., Lee B. H., Wu S. J. and Zhu J. K.. Overexpression of a plasma membrane Na~+/H~+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature, 2002, 21(1): 81-85
    Singh R. J. and Hymowitz T.. Soybean genetic resources and crop improvement. Genome, 1999, 42(4): 605-616
    Strasser R. J., Tsimill-Michael M. and Srivastava A.. Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou, G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 321-362. Springer Press, Netherlands 2004
    Sudhir P. R., Pogoryelov D., Kovács L., Garab G. and Murthy S. D. S.. The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the Cyanobacterium Spirulina platensis. Journal of Biochemistry and Molecular Biology, 2005, 38(4): 481-485
    Sun J., Chen S. L., Dai S. X., Wang R. G., Li N. Y., Shen X., Zhou X. Y., Lu C. F., Zheng X. J., Hu Z. M., Zhang Z. K., Song J. and Xu Y.. Ion flux profiles and plant ion homeostasis control under salt stress. Plant Signaling & Behavior, 2009a, 4(4): 261-264
    Sun J., Chen S. L., Dai S. X., Wang R. G., Li N. Y., Shen X., Zhou X. Y., Lu C. F., Zheng X. J., Hu Z. M., Zhang Z. K., Song J. and Xu Y.. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiology, 2009b, 149(2): 1141-1153
    Sunarpi, Horie T., Motoda J., Kubo M., Yang H., Yoda K., Horie R., Chan W. Y., Leung H. Y., Hattori K., Konomi M., Osumi M., Yamagami M., Schroeder J. I. and Uozumil N.. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na~+ unloading from xylem vessels to xylem parenchyma cells. Plant Journal, 2005, 44(6): 928-938
    Takahashi R., Nishio T., Ichizen N. and Takano T.. Salt-tolerant reed plants contain lower Na~+ and higher K~+ than salt-sensitive reed plants. Acta Physiologiae Plantarum, 2007, 29(5): 431-438
    Tester M. and Davenport R.. Na~+ tolerance and Na~+ transport in higher plants. Annals of Botany, 2003, 91(5): 503-527
    Turan M. A., Türkmen N. and Taban N.. Effect of NaCl on stomatal resistance and proline, chlorophyll, Na~+, Cl- and K~+ concentrations of lentil plants. Journal of Agronomy, 2007, 6(2): 378-381
    Veeranagamallaiah G., Chandraobulreddy P., Jyothsnakumari G. and Sudhakar C.. Glutamine synthetase expression and pyrroline-5- carboxylate reductase activity influence proline accumulation in two cultivars of foxtail millet (Setaria italica L.) with differential salt sensitivity. Environmental and Experimental Botany, 2007, 60(2): 239-244
    Wang S., Zheng W., Ren J. and Zhang C.. Selectivity of various types of salt-resistant plant for K~+ over Na~+. Journal of Arid Environments, 2002, 52(4): 457-472
    Yamaguchi T. and Blumwald E.. Developing salt-tolerant crop plants: challenges and opportunities. Trends in Plant Science, 2005, 10(12): 615-620
    Yang Y., Jiang D. A., Xu H. X., Yan C. Q. and Hao S. R.. Cyclic electron flow around photosystem I is required for adaptation to salt stress in wild soybean species Glycine cyrtolaba ACC547. Biologia Plantarum, 2006, 50(4): 586-590
    Yu B. J., Lam H. M., Shao G. H. and Liu Y. L.. Effects of salinity on activities of H~+-ATPase, H~+-PPase and membrane lipid compositionin plasma membrane and tonoplast vesicles isolated from soybean (Glycine max L.) seedlings. Journal of Environmental Sciences, 2005, 17(2): 259-262
    Zhou S. and Zhao K. F.. Discussion on the problem of salt gland of Glycine soja. Acta Botanica Sinica, 2003, 45(5): 574-580
    Zhu J. K.. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 2003, 6(5): 441-445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700