用户名: 密码: 验证码:
基于三维点云无网格处理的大型锻件尺寸特征曲线重建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型锻件是制造重大装备的基础件,锻件特征尺寸的精确提取对提高锻件制造过程中原材料利用率、改善产品质量和提高产品合格率都具有重要作用。通过尺寸三维点云重建大型锻件的三维特征曲线,正在逐步成为大型锻件尺寸三维测量领域研究的热点和难点。本课题以大型锻件尺寸三维点云的强噪声、海量性和局部化特点为基础,运用三维点云无网格处理理论,对大型锻件尺寸三维特征曲线的精确、快速、可靠重建问题进行研究。
     首先,以各向异性滤波理论为基础,构建基于采样点微分几何信息的大型锻件尺寸三维点云各向异性消噪模型,实现三维点云消噪核函数的形状、方向的自适应调整;基于该模型设计大型锻件尺寸三维点云无网格消噪算法,实现在消除三维点云中强噪声的同时锻件结构特征的有效保持,为大型锻件尺寸特征曲线的精确重建奠定基础。
     其次,将测度理论和离散微分几何估计理论相结合,建立用于定量描述采样点微分几何相似性的信息相似度模型,并以信息相似度最大为原则构建收缩点对;利用采样点与邻域点间的信息相似度构建信息相似度加权二次误差测度,并通过该误差测度最小化实现点对收缩最优坐标的求解;以最小加权二次误差作为点对收缩代价,基于迭代收缩代价最小点对的思想,设计大型锻件尺寸三维点云无网格精简算法,实现精简三维点云的同时有效保持锻件的结构特征,为大型锻件尺寸特征曲线的精确、快速重建提供保障。
     进一步,基于核密度估计理论,建立三维点云拼接测度函数,将BFGS拟牛顿优化算法与模拟退火算法相结合进行测度函数变尺度寻优,提出基于测度函数变尺度寻优的三维点云拼接算法,以解决三维点云拼接精度与收敛区间之间的矛盾,为大型锻件尺寸特征曲线的完整重建奠定基础;将张量分解和多尺度分析有机结合,建立三维点云多尺度张量特征指标,在利用多尺度张量特征指标进行采样点进行特征识别的基础上,通过最小生成森林和伪特征点投影重建点云特征曲线,进而实现大型锻件尺寸特征曲线的可靠重建。
     最后,在激光扫描三维测量平台上进行锻件尺寸三维测量,通过对测得三维点云进行无网格处理重建锻件尺寸特征曲线,验证课题提出算法的精确性、快速性和可靠性。
Large forgings are the fundmental part of the major equipments. Precise extractionof the size of the large forgings plays important roles in improving the utilization of rawmaterials, improving product quality and increasing the rate of qualified products.Reconstruction the feature curve of the workpiece from measured3D point clouds isgradually becoming a hot and difficult point in the field of measurements of largeforgings size. Based on the strong noises, mass and localized characteristics of the3Dpoint clouds of large forgings size, utlizing3D point clouds meshless processing theory,the problem of accurate, rapid and reliable reconstruction methods of the feature curve oflarge forgings were researched indepth.
     Firstly, based on anisotropic denoising theory, a new3D point clouds anisotropicdenoising model was estiblashed for large forgings3D data, using the differentialgeometric information of the sampled points. The shape and orientation of the denoisingkernel function were ajusted adaptivly. A new3D point clouds denoising alghrithm wasproposed for large forgings based on the new model. The strong noises are smoothed,meanwhile the feature feature of the forgings are preserved, laying the foundation for theaccurate reconstruction of the feature curve of large forgings.
     Secondly, measure theory and estimation theory of discrete differential geometrywere combined together. The information similarity model was established toquantitativly describe the differential geometrical similarity between the the sampledpoints. The contract pairs were constructed under the princple of maximum informationsimilarity. The information similarity weighted quadric error matric was construced foreach sampled point based on the information similarity between the sampled point and itsneighbors. The optimal position of the contracted pair was solved by minmizing theweighted error matric, the cost of the contraction was evaluated by the minmum value ofthe weighted error matric. A3D point clouds meshless simplification algorithm wasproposed for larging forgings based on the concept of iteratively contracting the least costpairs, providing guarantees for the accurate and rapid structural curve reconstruction of large forgings.
     Thirdly, a new3D point clouds registration measue was proposed based on kerneldensity estimation theory. The BFGS quasi-Newton optimization and simulated annealingalgorithm was combined together to search the maxmum point of the measure in varyingscaled manner. A robust variant scale3D point clouds registration algorithm was proposedbased on the principle, in order to solve the conflicts between accuracy and convergenceinterval of classical registration algorithms, laying the foundation for the integratedreconstruction of the feature curve of large forgings. Tensor decomposition theory andmulti-scale analysis theory were combined together. Multi-scaled tensor characteristicindex was constructed to describe the characteristics of the sampled points. Based on thecapability of the Multi-scaled tensor characteristic index in distinguishing the featurepoints, the minmum spanning forest algorithm was usd to connect the feature points andconstruct the featured polygonal lines. Furthermore, polygonal lines were smoothed bymoving least squares algorithm, and the fake feature points were projected to thesmoothed curves. In such way, the featured curves of large forgings were constructedreliably.
     Finaly,3D measurement of the simulated forgings was undergone by the laserscanning3D measure platform. The experimental results reveals that the accuracy,rapidity and reliablity of the proposed methods.
引文
[1]刘助柏,倪利勇,等.大锻件形变新理论新工艺.北京:机械工业出版社,2009:3-5
    [2]高峰,郭为忠,等.重型制造装备国内外研究与发展.机械工程学报,2010,46(19):92-107
    [3]中华人民共和国国民经济和社会发展第十二个五年规划纲要.
    [4] Gavin J Bowen,Ian D Blenkinsop,Rose Catchpole and so on.HOTEYE:A novel thermal camerausing higher operating temperature infrared detectors[J]Proceedings of SPIE-The InternationalSociety for Optical Engineering,2005:392-400
    [5] LaCam-Forge (Forge Brochure). FERROTRON Technologies GmbH. Am Schür-mannshütt30,D-47441Moers, Postfach101409, D-47404Moers, Germany.
    [6]高峰,郭为忠,等.大型锻件三维外形尺寸和温度在线检测装置:中国, N101216294A [P].2008.
    [7] Wei Liu, Xinghua Jia, et al. Fast dimensional measurement method and experiment of the forgingsunder high temperature. Journal of Materials Processing Technology,2011,211(2):237-244
    [8]林洪彬,刘彬,张玉存.大型回转类锻件三维重建方法.光学学报,2011,31(7):0715001-1-0715001-6
    [9]胡春海,刘斌,等.基于双CCD的锻件尺寸测量的研究.红外与激光工程,2008,37(4s):11-14
    [10]于鹏,高峰,等.新型大锻件尺寸在线测量系统的关键技术研究.机械设计与研究,2008,24(3):89-92
    [11] Inventions and Innovation: A HotEye(TM) Based Coordinate Measuring Machinie for the ForgingIndustry, Office of Industrial Technologies Energy Efficiency and Renewable Energy.U.S. Depart-ment of Energy,2004
    [12] D. Recker, a, M. Franzkea, G. Hirt.Fast models for online-optimization during open die forging.CIRP Annals-Manufacturing Technology,2011,60(1):295-298
    [13] G. Taubin. A Signal Processing Approach to Fair Surface Design. Proc.22nd Ann. Conf.Computer Graphics and Interactive Techniques,1995:351-358
    [14] T. Jones, F. Durand, and M. Desbrun. Non-Iterative, Feature-Preserving Mesh Smoothing. ACMTrans. Graphics,2003,22(3):943-949,.
    [15] S. Fleishman, I. Drori, and D. Cohen-Or, Bilateral Mesh Denoising, Proc. Int’l Conf. ComputerGraphics and Interactive Techniques,2003:950-953.
    [16] F. Duguet, F. Durand, and G. Drettakis. Robust Higher-Order Filtering of Points. TechnicalReport RR-5165, INRIA,2004.
    [17] Hanqi Fan, Yizhou Yu,et,al. Robust Feature-Preserving Mesh Denoising Based on ConsistentSubneighbor-hoods IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTERGRAPHICS,2010,16:1-13
    [18] Prasun Choudhury, Jack Tumblin. The Trilateral Filter for High Contrast Images and Meshes.Eurographics Symposium on Rendering2003:1-11
    [19] Youyi Zheng, Hongbo Fu, et al,“Bilateral Normal Filtering for Mesh Denoising” Visualizationand Computer Graphics, IEEE Transactions on,2011,17(10):1521-1530
    [20] Jun Wang, Zeyun Yu, et al.“Feature-Preserving Mesh Denoising via Anisotropic Surface Fitting,”JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY2012,27(1):163-173
    [21] Taubin, G. Linear Anisotropic Mesh Filtering. Tech. Rep. IBM Research Report RC2213.2001
    [22] Ohtake Y, Belyaev A G, Seidel H P. Mesh smoothing by adaptive and anisotropic Gaussian filterapplied to mesh normals. In Proc. Vision, Modeling, and Visualization, Erlangen, Germany,2002:203-210.
    [23] Tasdizen, T., Whitaker, R., Burchard, P., and Osher, S. Geometric Surface Smoothing viaAnisotropic Diusion of Normals. In Proceedings, IEEE Visualization.2002:125-132.
    [24] K. Hildebrandt and K. Polthier. Anisotropic Filtering of Non-Linear Surface Features. ComputerGraphics Forum, vol.2004,23(3):391-400.
    [25] Yagou H, Ohtake Y, Belyaev A G. Mesh smoothing via mean and median iterating applied to facenormals. In Proc. Geoemtric Modeling and Processing,2002:124-131.
    [26] X. Sun, P. Rosin, R. Martin, and F. Langbein,“Random Walks for Feature-Preserving MeshDenoising,” Computer Aided Geometric Design,2008,25(7):437-456,.
    [27] Levin, D., Mesh independent surface interpolation. In Geometric Modeling for ScientificVisualization, edited by Brunnett, Hamann and Mueller, Springer-Verlag,2003:37-49.
    [28] Mederos, B., Velho, L., et al. Robust Smoothing of Noisy Point Clouds. Proc. SIAM Conf. onGeometric Design and Computing,2003:1-13.
    [29]王仁芳,李继芳,等.基于采样保真性的点模型去噪.工程图学学报,2009,30(3):105-112
    [30] A. C. ztireli, G. Guennebaud, and M. Gross. Feature Preserving Point Set Surfaces based onNon-Linear Kernel Regression. Eurographics.2009,28(2):493-501
    [31] Guennebaud G., Gross M. Algebraic point set surfaces. ACM Transactions on Graphics.2007,26(3):105-112
    [32] Pauly, M., Kobbelt, L.P., Gross, M. Multiresolution Modeling of Point-Sampled Geometry.Technical Report.2002
    [33] Hu, G.F., Peng, Q.S., Forrest, A.R. Mean shift denoising of point-sampled surfaces. The VisualComputer.2006,22(3):147-157.
    [34] Ren-fang WANG, Wen-zhi CHEN, San-yuan ZHANG, Yin ZHANG, Xiu-zi YE. Similarity-baseddenoising of point-sampled surfaces. Journal of Zhejiang University SCIENCE A,2008,9(6):807-815
    [35] Clarenz, U., Rumpf, M., Telea, A. Fairing of Point Based Surfaces. Computer Graphics.2004:600-603.
    [36] Lange, C., Polthier, K.. Anisotropic smoothing of point sets. Computer Aided Geometric Design,2005,22(7):680-692.
    [37] Xiao, C.X., Miao, Y.W., Liu, S., Peng, Q. S. A dynamic balanced flow for filtering point-sampledgeometry. The Visual Computer.2006,22(3):210-219.
    [38] Garland M, Heckbert P S. Surface simplification using quadric error metrics. In: ACMSIGGRAPH;1997:209–216.
    [39] Heckbert P, Garland M. Optimal triangulation and quadric-based surface simplification. Journal ofComputational Geometry: Theory and Applications1999,14(1):49–65.
    [40] Joel Daniels, Cláudio T. Silva, Jason Shepherd, et al. Quadrilateral mesh simplification. ACMTransactions on Graphics,2008,27(5):1481-1489
    [41] Wu J, Kobbelt L. A stream algorithm for the decimation of massive meshes. Graphics Interface;2003:185-192.
    [42] Cohen-Steiner D, Alliez P, Desbrun M. Variational shape approximation. ACMSIG-GRAPH;2004:905–914.
    [43] Lindstrom P. Out-of-cores implification of large polygonal models. ACM SIGGRAPH;2000:259–262.
    [44] Tamy Boubekeur, Marc Alexa. Mesh simplification by stochastic sampling and topologicalclustering. Computers&Graphics.2009,33:241–249
    [45] Shaffer E, Garland M. Efficient adaptive simplification of messive meshes. IEEE Visualization,2001:127–34.
    [46] Schaefer S, Warren J. Adaptive vertex clustering using octrees. In: Proceedings of SIAMgeometric design and computing.2003:491–500.
    [47] Boubekeur T, Heidrich W, Granier X, Schlick C. Volume-surfacetrees.Computer Graphics Forum.2006,25(3):399–406.
    [48] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva. Point Set Surfaces. InProceedings of IEEE Visualization2001:21-28.
    [49] L. Linsen and H. Prautzsch. Global Versus Local Triangulations. In Eurographics Proceedings,Short Presentations,2001:1-7
    [50] M. Pauly and M. H. Gross. Spectral processing of point-sampled geometry. Computer GraphicsProceedings, Annual Conference Series,2001:379–386.
    [51] Mark Pauly. Point Primitives for Interactive Modeling and Processing of3D Geometry.
    [Dissertation of Federal Institute of Technology of Zurich],2003:98-105
    [52] Mark Pauly, Markus Gross, et al. Efficient Simplification of Point-Sampled Surfaces. IEEEVisualization.2002:163-170
    [53]杜晓晖.基于局部误差测度的几何模型简化方法研究.[北京工业大学博士学位论文].2008:50-60
    [54] Paul J Besl, et al. A Method for Registration of3-D Shapes. IEEE Transactions on PatternAnalysis and Machine Intelligence,1992,14(2):239-256.
    [55] Z. Zhang. Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput.Vision,1994,13(2):119-152
    [56] D. Chetverikov, D. Stepanov, and P. Krsek,“Robust euclidean alignment of3D point sets: thetrimmed iterative closest point algorithm,” Image and Vision Computing.2005,23:299–309
    [57] Emanuele Trucco, Andrea Fusiello, et al. Robust motion and correspondence of noisy3-D pointsets with missing data. Pattern Recognition Letters,1999,20:889-898
    [58] Timo Zin er, Jochen Schmidt, Heinrich Niemann. A refined ICP algorithm for robust3-Dcorrespondence estimation. In Proceedings of ICIP.2003(2):695-698
    [59] D P Huttenlocher, G. A. Klanderman, et al. Comparing images using the hausdorff distance. IEEETrans. Pattern Anal. Mach. Intell.1993,15(9):850-863
    [60] H. Chui and A. Rangarajan. A new algorithm for nonrigid point matching. IEEE Conference onComputer Vision and Pattern Recognition.2000:2044-2051.
    [61] Timothée Jost, Heinz Hugli. A Multi-Resolution Scheme ICP Algorithm for Fast ShapeRegistration. In Proceedings First International Symposium on3D Data Processing Visualizationand Transmission,1995:540-543
    [62] A. Myronenko and X. B. Song. Point-set registration: Coherent point drift. IEEE Transactions onPattern Analysis and Machine Intelligence.2010,32(12):2262–2275
    [63] P Viola andW M.Wells III. Alignement by maximization of mututal information. InternationalJournal of Computer Vision.1997,24(2):137-154
    [64] A. W. Fitzgibbon. Robust registration of2D and3D point sets. Image Vision Comput.2003,21(13):1145-1153
    [65] D Hasler, L Sviaz, et al. Outlier modeling in image matching. IEEE Transactions on PatternAnalysis and Machine Intelligence.2003,25(3):301-315
    [66] Y. Tsin and T. Kanade. A correlation-based approach to robust point set registration. EuropeanConference on Computer Vision.2004:558-569.
    [67] J. Glaunes, A. Trouv′e, and L. Younes. Diffeomorphic matching of distributions: A new approachfor unlabelled point-sets and sub-manifolds matching. IEEE Conference on Computer Vision andPattern Recognition.2010:712-718.
    [68] Bing Jian, Baba C Vemuri. Robust Point Set Registration Using Gaussian Mixture Models. IEEETransactions on Pattern Analysis and Machine Intelligence.2011,33(8):1633-1645
    [69]林洪彬,刘彬,等.逆向工程中散乱点云变尺度配准算法研究.机械工程学报,2011,47(14):1-7
    [70] Lin Hongbin, Liu Bin. Research on a novel3D point cloud robust registration algorithm.International Conference on Computer Design and Applications,2010,5:441-445
    [71] A. Johnson. Spin-images: a representation for3-d surface matching,[Ph.D. thesis, CarnegieMellon University],1997:100-110
    [72] G. C. Sharp, S. W. Lee, ICP registration using invariant features, IEEE Transactions on PatternAnalysis and Machine Intelligence.2002,24(1):90-102
    [73] Y. Keller, Y. Shkolnisky, The angular difference function and its application to image registration,IEEE Transactions on Pattern Analysis and Machine Intelligence.2005,27(6):969-976.
    [74] Jun Jiang, JunCheng, XinglinChen. Registration for3-D point cloud using angular-invariantfeature. Neurocomputing,2009,72:3839-3844
    [75]刘宇,熊有伦.基于法矢的点云拼合方法.机械工程学报.2007,43(8):7-11
    [76]张学昌,习俊通,等.基于扩展高斯球的点云数据与CAD模型配准.机械工程学报,2007,43(6):141-150
    [77]张梅,文静华,等.基于表面间三棱锥体积测度的点云配准.中国机械工程,2010,21(2):175-177,211
    [78] Gumhold, S., Wang, X., Mc Leod, R. Feature Extraction from Point Clouds. Proc.10th Int.Meshing Roundtable,2001:293-305
    [79] K. Demarsin, D. Vanderstraeten, T. Volodine, and D. Roose. Detection of closed sharp edges inpoint clouds using normal estimation and graph theory. Computer-Aided Design,2009,39:276–283
    [80] Lee, Y., Lee, S. Geometric Snakes for Triangle Meshes. EUROGRAPHICS,2002,21(3):51-60
    [81] K. Hildebrandt, K. Polthier, and M. Wardetzky. Smooth feature lines on surface meshes. InSymposium on Geometry Processing,2005:85-90
    [82] Mark Pauly Richard Keiser Markus Gross. Multi-scale Feature Extraction on Point-SampledSurfaces. EUROGRAPHICS2003,22(3):85-93
    [83] P. Jenke, M. Wand, M. Bokeloh, A. Schilling, and W. Strasser. Bayesian point cloud reconstruction.Computer Graphics Forum,2009:25(3):379–388
    [84] Joel Daniels II Linh K. Ha, et al. Robust Smooth Feature Extraction from Point Clouds, IEEEInternational Conference on Shape Modeling and Applications,2007:123-136
    [85]庞旭芳,庞明勇,等.点云模型谷脊特征的提取与增强算法.自动化学报,2010,36(8):1073-1083
    [86] Joel Daniels II, Tilo Ochotta, et al. Spline-based Feature Curves from Point-Sampled Geometry.The Visual Computer,2008,24(6):449-462
    [87] Stylianou G, Farin G. Crest lines extraction from3D triangulated meshes. In: Hierarchical andgeometrical methods in scientific visualization.2003:269–281
    [88] Turk G. Re-tiling polygonal surfaces. Computer Graphics. SIGGRAPH.1992;26(2):55–64.
    [89] K. Watanabe and A. G. Belyaev. Detection of salient curvature features on polygonal surfaces.Computer Graphics Forum,2010,20(3):385–392
    [90] Zhaofei Zhou, Tao Zhang. A precision Ranger based on the Laser with Two Longitudinal Modes.SPIE,1999:21-23
    [91] Genki Cho, Cunwei Lu, Takumi Oshikawa, et al. Shape Measurement Technique forHigh-temperature and Large-size Forging Using the Multi-spectrum Image Analysis. Journal Title;IPSJ Transactions on,2010,48(2):691-700
    [92] S.B. Dworkina and T.J. Nye. Image processing for machine vision measurement of hot formedparts. Journal of Materials Processing Technology,2009,174(3):1-6
    [93] Nye, T.J., Elbadan, A. M., Bone, G. M. Real-Time Process Characterization of Open Die Forgingfor Adaptive Control. ASME Journal of Engineering Materials Technology,2008,123(4):511-516
    [94] Daniel Reem, An algorithm for computing Voronoi diagrams of general generators in generalnormed spaces, In Proceedings of the sixth International Symposium on Voronoi Diagrams inscience and engineering.2009:144-152
    [95] Andres R. S., Angel D. S., Michel D. Edge registration versus triangular mesh registration, acomparative study. Signal Processing: Image Communication,2008,20:853-868
    [96] U. Clarenz, U. Diewald, and M. Rumpf,“Anisotropic Geometric Diffusion in SurfaceProcessing,” Proc. Conf. Visualization2009:397-405,.
    [97] Y. Ohtake, A. Belyaev, and I. Bogaevski,“Polyhedral Surface Smoothing with SimultaneousMesh Regularization,” Proc. Conf. Geometric Modeling and Processing’00(Theory andApplications),2008:229-237
    [98] M. Desbrun, M. Meyer, et al. Anisotropic Feature-Preserving Denoising of Height Fields andBivariate Data. Graphics Interface,2007,11(10):145-152
    [99]胡事民,杨永亮,来煜坤.数字几何处理研究进展.计算机学报,2009,32(8)1451-1469
    [100] Branch, J., Prieto, F., and Boulanger, P. A Hole-Filling Algorithm for Triangular MeshesUsing Local Radial Basis Function. In Proceedings of IMR.2008:411-431.
    [101] Kumar, Amitesh, Alan Shih, et al. A hole-filling Algorithm Using Non-uniform RationalB-splines.16th International Meshing Roundtable,2010:169-182.
    [102] X. J. Wu, Mi. Y. Wang, et al. An Automatic Hole-Filling Algorithm for Polygon Meshes.Computer-Aided Design and Applications,2008,5(6):889-899.
    [103] G. Casciola, D. Lazzaro, et al Fast surface reconstruction and hole filling using Radial BasisFunctions, Numerical Algorithms. Numerical Algorithms,2011,9:289-305.
    [104] Alan Brunton, Stefanie Wuhrer, et al. Filling Holes in Triangular Meshes by Curve Unfolding.IEEE international conference on shape modeling and applications.2009:66-72.
    [105] Seyoun Park, Xiaohu Guo. Shape and Appearance Repair for Incomplete Point Surfaces.IEEE International Conference on Computer Vision,2010:1260-1267.
    [106] Zouina Aktouf, Gilles Bertrand, et al. A three-dimensional holes closing algorithm. PatternRecognition Letters,2010,23:523–531
    [107] J. Verdera, V. Caselles, M. Bertalmio, G. Sapiro, Inpainting surface holes, Proceedings of theICIP,2009:903–906.
    [108] Joshua Podolak and Szymon Rusinkiewicz. Atomic volumes for mesh completion.Eurographics Symposium on Geometry Processing,2010:
    [109] James Davis Stephen R. Marschner, et al. Filling Holes in Complex Surfaces usingVolumetric Diffusion. International Symposium on In3D Data Processing Visualization andTransmission,2009:428-861.
    [110] T. Ju, Robust repair of polygonal models, Proceedings of the SIGGRAPH,2010:888–895
    [111] V. Savchenko, N. Kojekine, An approach to blend surfaces, Proceedings of the CGI,2008:139–150.
    [112] Yongtae Jun. A piecewise hole filling algorithm in reverse engineering. Computer-AidedDesign,2005,37:263–270.
    [113] Pavel Chalmoviansky and Bert Juttler. Filling Holes in Point Clouds. In M. Wilson and R.R.Martin (eds.) The Mathematics of Surfaces X, Lecture Notes in Computer Science, Springer,2008:196–212.
    [114] Jianning Wang, Manuel M. Oliveira. Filling holes on locally smooth surfaces reconstructedfrom point clouds. Image and Vision Computing,2008,25:103-113.
    [115] Pauly, M., Gross, M. Spectral Processing of Point-Sampled Geometry. Proc. ACMSIGGRAPH,2001:379-386.
    [116] Amenta, N., Kil, Y. J. Defining point set surfaces. ACM Trans. on Graph.2004,23(3):264-270.
    [117] Carr, J. C, Beatson, R.K., et al. Reconstruction and Representation of3D Objects with RadialBasis Functions. Proc. ACM SIGGRAPH,2010:67-76.
    [118] Samozino, M., Alexa, M., Alliez, P., Yvinec, M.. Reconstruction with Voronoi CenteredRadial Basis Functions. Proc. Eurographics,2009:51-60.
    [119] Dey, T.K., Sun, J. An Adaptive MLS Surface for Reconstruction with Guarantees. Proc.Symp. on Geometry Processing,2009:43-52.
    [120] Lipman, Y., Cohen-Or, D., Levin, D. Error Bounds and Optimal Neighborhoods for MLSApproximation. Proc. Eurographics,2008:71-80
    [121] Pauly, M., Keiser, R., Kobblet, L.P., Gross, M. Shape modeling with point-sampled geometry.ACM Trans. on Graph.2003,22(3):641-650.
    [122] Pauly, M., Mitra, N.J., Guibas, L.J.,. Uncertainty and Variability in Point Cloud Surface Data.Proc. Eurographics Symp. On Point-Based Graphics,2008:77-84.
    [123] Schall, O., Belyaev, A., et al,. Robust Filtering of Noisy Scattered Point Data. EurographicsSymp. On Point-Based Graphics,2009:71-77.
    [124] Jenke, P., Wand, M., Bokeloh, M., Schilling, A., Strasser, W. Bayesian point cloudreconstruction. Computer Graphics Forum,2011.25(3):379-388.
    [125] Evangelos Kalogerakis, Derek Nowrouzezahrai,et al. Extracting lines of curvature from noisypoint clouds. Computer-Aided Design,2011,41:282-292

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700