用户名: 密码: 验证码:
巨型重载锻造操作机系统性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大锻件制备是重型装备制造业的基础,而锻造自动化是提高大锻件生产率和质量并降低制造成本的必要条件。本文结合大锻件锻造自动化的需要,针对巨型重载锻造操作机系统的性能建模与分析展开研究,包括操作机的运动学建模以及运动和承载性能分析、动态抗倾覆稳定性指标、结合锻造工艺的压机与操作机联动整体运动学建模、联动锻造中用于操作机柔顺控制的复合刚度模型、以及程序化自由锻造工艺仿真模型,讨论了联动锻造系统整体可视化仿真软件的设计与实现。主要内容如下:
     1)给出了一种新的串并联混合结构的锻造操作机,建立了具有封闭解的运动学正反解和解析形式的运动雅克比计算算法,在此基础上进行了该操作机的运动特性以及承载性能的分析,由此建立起重载操作机数学模型。
     2)基于操作机使用过程中安全性的需要,提出了一种新的移动操作手动态抗倾覆稳定性指标,该指标具有明确的物理意义,考虑了移动操作手工作状态下各种动静态因素的影响。
     3)利用自由锻造工艺分析中的展宽系数理论,建立了操作机与压机联动锻造时操作机的夹持端的顺应速度模型,在此基础上建立了整体协调运动模型。该模型是进行操作机轨迹规划以及进行虚拟锻造系统运动仿真的基础。
     4)建立了联动锻造时锻件变形与操作机柔顺控制之间的力学模型。首先考虑了轴类锻件变形时的弹塑性形变效应,建立了锻件非变形区的弹性刚度模型;然后利用保守同余刚度变换方法,建立了操作机的完备操作空间刚度模型;锻件的弹塑性变形与操作机的柔顺控制响应之间互相影响,形成耦合的力学和变形关系。在锻件弹性刚度模型和操作机完备操作空间刚度模型基础上建立了整体的复合刚度模型。
     5)利用展宽系数理论,结合空间几何变换方法,建立了程序化锻造时锻件的变形模型。并形成了多工步自由锻造工艺的快速规划和仿真算法。
     6)提出了虚拟锻造工厂的软件建模体系结构,对虚拟锻造系统进行了软件分析和设计,并对其中的一些关键技术如多工步锻造工艺自动FEA软件的实现、复杂塑性有限元变形模型在虚拟现实系统中的可视化等问题进行了研究,给出了虚拟锻造软件的机械——工艺协同仿真解决方案。
     本文的研究成果是巨型重载操作机系统、程序化锻造工艺以及数字化虚拟锻造系统的设计基础。
The manufacturing of heavy forgings is the foundation of heavy equipment industry,and the automation of forging process is the necessary condition for the production ofhigh-productivity, high-quality and low-cost heavy forgings. This work focuses on theneed of automation in heavy forging production, and discussed some key technologies onthe modeling and performance analysis of heavy-duty forging manipulator system, whichcan be integrated with forging press to realize programmed open-die forging process.These key technologies include kinematic modeling and analysis of forging manipulator,dynamic tip-over stability of mobile manipulator, the overall model of the coordinatedforging system that includes press, manipulator and the forging process, the compoundstiffness model for the compliant control of manipulator, pass schedule of programmedopen-die forging process, and the software realization of virtual open-die forging plants.This dissertation’s main work can be concluded as:
     1) A new-type serial-parallel forging manipulator is presented, the closed formdirect and inverse kinematic solutions are derived, and the analytic algorithm for thecomputation of Jacobian matrix is also presented. Based on which the kinematicperformance and the load capacity are analyzed. All those lead to the establishment of themathematic model of the forging manipulator.
     2) A new tip-over stability measure for mobile manipulators is proposed, whichhelps to improve the operational safety of the forging manipulator. This measure has aconcrete physical meaning, considering all static and dynamic factors under different working state of mobile manipulators.
     3) The compliance velocity of the manipulator gripper during forging is derived onthe basis of Spread Coefficient theory of open-die forging process, based on which theoverall coordinated model of the integrated forging manipulator system is established.This model can be used for trajectory plan or kinematic simulation of virtual forgingsystem.
     4) The mechanical interaction of the deformed workpiece and the compliantcontrolled manipulator is built. Firstly the elastic and plastic deformation model of theshaft-shaped workpieces are investigated and the elastic stiffness matrix of thenon-deformation portion of the workpiece is derived; Then the conservativeoperational-space stiffness matrix of the manipulator is computed by using the method ofConservative Congruence Transformation (CCT); The compound stiffness model of thewhole system is established base the elastic stiffness matrix and the conservativeoperational-space stiffness matrix.
     5) The simulation algorithm for square bar drawing process between simple dies isproposed based on Spread Coefficient theory and geometric transformation. The real-timesimulation algorithm of programmed forging process is then formed.
     6) The software architecture of the virtual forging system is proposed, and thedesign and analysis processes of the software are conducted. Some key technologies forthe software development, such as automatic simulation of multi-step open-die forgingprocess and the visualization of the simulated complex forging process in virtual realityenvironment, are investigated.
     This work provides a relatively complete theoretic base for the analysis and design ofheavy-duty forging manipulators, programmed forging process conducted by coordinatedpress and manipulators, and the realization of virtual forging system.
引文
[1] Groche P, Fritsche D, Tekkaya E A, Allwood J M, Hirt G, and Neugebauer R. Incremental BulkMetal Forming [J]. CIRP Annals-Manufacturing Technology,2007,56(2):635-656.
    [2]高俊峰.我国快锻液压机的发展与现状[J].锻压技术,2008,33(6).
    [3] The Metallurgical and Research Committee of the Open Die Forging Institute. Open dieforging manual [M],3ed., T.M.a.R.C.o.t.O.D.F. Institute Ed., Forging Industry Association,1982.
    [4]中国机械工程学会锻压学会.锻压手册[M],锻压手册,2ed.,王仲仁Ed.,机械工业出版社,2002.
    [5] Baldassi M. Open Die Forging Presses with Manipulators [J]. Forging,2003,14(5):16-18.
    [6] Lilly K W, and Melligeri A S. Dynamic simulation and neural network compliance control ofan intelligent forging center [J]. Journal of Intelligent&Robotic Systems,1996,17(1):81-99.
    [7] Robert H H, Forging manipulator,1972
    [8] K.Erwin F W, Gripper Feed and Gripper Resilience Cylinders on Forging manipulators,1983.
    [9] K. Nosaka K H, Forging Manipulator,1986.
    [10] Schubert P, Forging manipulator, SMS Hasenclever Maschinenfabrik GmbH (Dusseldorf, DE),1989.
    [11] Westermeyer W, Process and apparatus for operating a press unit, Pahnke Engineering GmbH&Co. KG (Dusseldorf, DE),1995.
    [12]余发国,高峰,郭为.锻造操作机的回顾与展望[J].机械设计与研究,2007,(专刊)):12-15.
    [13] Pahnke H E. New Trends in Forging Press Drives?[J]. Sprechsaal Verlag, World Steel andMetalworking, Export Manual '79,1980:142-149.
    [14] Appleton E, Heginbotham W B, and Law D. Open die forging with industrial robots [J].Industrial Robot,1979,6(4):191-194.
    [15] Heginbotham W B, Sengupta A K, and Appleton E. An ASEA robot as an open-die forgingmanipulator[C],//Information Control Problems in Manufacturing Technology1979.Proceedings of the Second IFAC/IFIP Symposium,1980,183-193.
    [16] Appleton E. Open-die forging operations by industrial robot [J]. Robotic technology,1983,15:160-168.
    [17] Stanford K. OPEN-DIE PRESS PLANT MODERNISES FORGING OPERATIONS [J].Metallurgia,1982,49(5).
    [18] Kopp R, Schaeffer L, and Schuler G. INCREMENTAL FORGING WITH INTEGRATEDOPEN-DIE-FORGING PRESSES [J]. MPT. Metallurgical plant and technology,1982,5(6):76-81.
    [19] Westermeyer W B. Modernization of the open-die forging plant at Sandvik AB, Sweden [J].MPT Metallurgical Plant and Technology International,1994,17(4):86-89.
    [20] Future developments in metal forming presses and tool changing systems, Metal FormingPractise,2006, p.351-366.
    [21] Aksakal B. Analysis on a flexible forging cell [J]. Indian Journal of Engineering and MaterialsSciences,2003,10(2):113-122.
    [22] Nye T J, Elbadan A M, and Bone G M. Real-time process characterization of open die forgingfor adaptive control [J]. Journal of Engineering Materials and Technology-Transactions of theAsme,2001,123(4):511-516.
    [23]王凤喜.锻造液压机与操作机的发展[J].锻压机械,1998,33(6):3-5.
    [24]蔡墉.我国自由锻液压机和大型锻件生产的发展历程[J].大型铸锻件,2007,1(37-44.
    [25]余发国.锻造操作机的机构设计[D],燕山大学,2007
    [26]余发国,高峰,史巧硕.基于gf集的锻造操作机构型方法[J].机械工程学报,2008,44(11):152-159.
    [27] Tomlinson A, and Stringer J D. Spread and elongation in flat tool forging [J]. Journal of theiron and steel institute,1959:157-162.
    [28] THOMAS J M, TOMLINSON, A. COMPUTER CONTROL FOR AUTOMATION OFHEAVY FORGING PRODUCTION [J]. IRON STEEL INST J.,1966,204(5):423-433.
    [29] Stewart D. A platform with six degrees of freedom [J]. Proc. Inst. Mech. Engrs, Part I,1965,180(15):371-386.
    [30] Gao F, Li W, Zhao X, Jin Z, and Zhao H. New kinematic structures for2-,3-,4-, and5-DOFparallel manipulator designs [J]. Mechanism and Machine Theory,2002,37(11):1395-1411.
    [31] Li Q, Huang Z, and Herv J M. Type synthesis of3R2T5-DOF parallel mechanisms using thelie group of displacements [J]. IEEE Transactions on Robotics and Automation,2004,20(2):173-180.
    [32]万胜狄,王运鹏,沈元彬等.锻造机械化与自动化[M],机械工业出版社,1983.
    [33] Kong X, and Gosselin C M. A class of3-DOF translational parallel manipulators with linearinput-output equations [J]. Proceedings of the Workshop on Fundamental Issues and FutureResearch Directions for Parallel Mechanisms and Manipulators,2002:25-32.
    [34] Tsai L W. Robot Analysis: the Mechanics of Serial and Parallel Manipulators [M], JohnWiley&Sons, Inc.,1999.
    [35] Mohamed M G, and Duffy J. DIRECT DETERMINATION OF THE INSTANTANEOUSKINEMATICS OF FULLY PARALLEL ROBOT MANIPULATORS [J]. Journal ofmechanisms, transmissions, and automation in design,1985,107(2):226-229.
    [36] Kim D, Chung W, and Youm Y, Analytic Jacobian of in-parallel manipulators, Proceedings-IEEE International Conference on Robotics and Automation,2000,2376-2381.
    [37] Joshi S A, and Tsai L W. Jacobian analysis of limited-DOF parallel manipulators [J]. Journal ofMechanical Design, Transactions of the ASME,2002,124(2):254-258.
    [38] McGhee R B a I G, I. Adaptive locomotion of a mulitilegged robot over rough terrain [J]. IEEETrans.Syst.,Man Cybernetics,1979,9(4):176-182.
    [39] Messuri D A, and Klein C A. AUTOMATIC BODY REGULATION FOR MAINTAININGSTABILITY OF A LEGGED VEHICLE DURING ROUGH-TERRAIN LOCOMOTION [J].IEEE journal of robotics and automation,1985, RA-1(3):132-141.
    [40] Nagy P V, Desa S, and Whittaker W L. Energy-based stability measures for reliablelocomotion of statically stable walkers. Theory and application [J]. International Journal ofRobotics Research,1994,13(3):272-287.
    [41] Dubowsky S, and Vance E E, Planning mobile manipulator motions considering vehicledynamic stability constraints,1989,1271-1276.
    [42] Sugano S, Huang Q, and Kato I, Stability criteria in controlling mobile robotic systems,1993,832-838.
    [43] Huang Q, Sugano S, and Tanie K, Motion planning for a mobile manipulator consideringstability and task constraints, Proceedings-IEEE International Conference on Robotics andAutomation,1998,2192-2198.
    [44] Papadopoulos E G R D A, A new measure of tip over stability margin for mobile manipulators,Proceedings of the IEEE international conference on robotics and automation,,1996,3111-3116.
    [45] Papadopoulos E G R D A. The Force-Angle Measure of Tip over Stability Margin for MobileManipulators [J]. Journal of Vehicle Systems Dynamics,2000,33(29-48.
    [46] Iagnemma K. R A, Dubowsky S.,Pirjanian P.,Huntsberger T.,Schenker P, Mobile RobotKinematic Reconfigurability for Rough-Terrai, Proceedings SPIE’s International Symposiumon Intelligent Systems and Advanced Manufacturing,2000,4196-4147.
    [47] Ghasempoor A S N. A Measure of Stability for Mobile Manipulators With Application toHeavy Duty Hydraulic Machines [J]. ASME Journal of Dynamic Systems,Measurement,andControl,1998,120,360-370.
    [48] Ali S M A a A K, Stability Evaluation of Mobile Robotic Systems Using Moment-HeightMeasure, Proc. of the IEEE Int.Conf on Robotics, Automation and Mechatronics2006,97-102.
    [49] Ali S M A a A K, Moment-Height Tip-Over Measure for Stability Analysis of Mobile RoboticSystems, Proceedings of the2006IEEE/RSJ International Conference on Intelligent Robotsand Systems,2006,9-15.
    [50] Bruyninckx H, and DeSchutter J. Specification of force-controlled actions in the ''Task FrameFormalism''-A synthesis [J]. Ieee Transactions on Robotics and Automation,1996,12(4):581-589.
    [51] Salisbury J K. Active stiffness control of a manipulator in cartesian coordinates [J].Proceedings of the19th IEEE Conference on Decision&Control Including the Symposium onAdaptive Processes,1980:95-100.
    [52] Cutkosky M R, and Kao I. COMPUTING AND CONTROLLING THE COMPLIANCE OF AROBOTIC HAND [J]. Ieee Transactions on Robotics and Automation,1989,5(2):151-165.
    [53] Gosselin C. Stiffness mapping for parallel manipulators [J]. Ieee Transactions on Robotics andAutomation,1990,6(3):377-382.
    [54] Griffis M, and Duffy J. Global stiffness modeling of a class of simple compliant couplings [J].Mechanism and machine theory,1993,28(2):207-224.
    [55] Ciblak N, and Lipkin H. Synthesis of Cartesian stiffness for robotic applications [J]. Icra '99:Ieee International Conference on Robotics and Automation, Vols1-4, Proceedings,1999:2147-2152.
    [56] Ceccarelli M, and Carbone G. A stiffness analysis for CaPaMan (Cassino Parallel Manipulator)[J]. Mechanism and machine theory,2002,37(5):427-439.
    [57] Alici G, and Daniel R W. STATIC FRICTION EFFECTS DURING HARD-ON-HARDCONTACT TASKS AND THEIR IMPLICATIONS FOR MANIPULATOR DESIGN [J].International Journal of Robotics Research,1994,13(6):508-520.
    [58] Howard S, Zefran M, and Kumar V. On the6X6cartesian stiffness matrix forthree-dimensional motions [J]. Mechanism and machine theory,1998,33(4):389-408.
    [59] Chen S F, and Kao I. Theory of stiffness control in robotics using the conservative congruencetransformation [J]. Robotics Research,2000:9-16.
    [60] Chen S F, and Kao I. Geometrical approach to the conservative congruence transformation(CCT) for robotic stiffness control [J].2002Ieee International Conference on Robotics andAutomation, Vols I-Iv, Proceedings,2002:544-549.
    [61] Chen S F, and Kao I. Geometrical method for modeling of asymmetric6x6Cartesian stiffnessmatrix [J].2000Ieee/Rsj International Conference on Intelligent Robots and Systems (Iros2000), Vols1-3, Proceedings,2000:1217-1222.
    [62] Haung C T, Hung W H, and Kao I. New conservative stiffness mapping for the Stewart-Goughplatform [J].2002Ieee International Conference on Robotics and Automation, Vols I-Iv,Proceedings,2002:823-828.
    [63] Chen S F, Li Y M, and Kao I. A new theory in stiffness control for dextrous manipulation [J].2001Ieee International Conference on Robotics and Automation, Vols I-Iv, Proceedings,2001:3047-3054.
    [64] Shih-Feng C, and Imin K, Simulation of conservative congruence transformation.Conservative properties in the joint and Cartesian spaces, Robotics and Automation,2000.Proceedings. ICRA '00. IEEE International Conference on,2000,1283-1288vol.1282.
    [65] Chen S F. The6x6stiffness formulation and transformation of serial manipulators via the CCTtheory [J].2003Ieee International Conference on Robotics and Automation, Vols1-3,Proceedings,2003:4042-4047.
    [66] Pashkevich A, Chablat D, and Wenger P. Stiffness analysis of overconstrained parallelmanipulators [J]. Mechanism and machine theory,2009, In Press, Corrected Proof
    [67] Alici G, and Shirinzadeh B. Enhanced stiffness modeling identification and characterization forrobot manipulators [J]. Ieee Transactions on Robotics,2005,21(4):554-564.
    [68] Shutt A. A note on spread in indenting [J]. Applied Scientific Research,1960,9(1):389-392.
    [69] Hill R. A general method of analysis for metal-working processes [J]. Journal of the Mechanicsand Physics of Solids,1963,11(5):305-326.
    [70] Baraya G L, and Johnson W, Flat Bar Forging, Proc. of5th Int. MTDT Conference,1964,449-469.
    [71] Pahnke H J. Fundamentals of Programmed Forging [J]. Metallurgical Plant and Technology,1983,5(92-97.
    [72] Knap M, Kugler G, Palkowski H, and Turk R. Prediction of material spreading in hot open-dieforging [J]. Steel Research International,2004,75(6):405-410.
    [73] Sagar R, and Juneja B L. An upper bound solution for flat tool forging taking into account thebulging of sides [J]. International Journal of Machine Tool Design and Research,1979,19(4):253-258.
    [74] Braun-Angott P, Berger, B, An Upper Bound Approximation for Spread and Pressure In FlatTool Forging, Proceedings of the International Conference on Numerical Methods in IndustrialForming Processes, Pineridge press,1982,165-174.
    [75] Aksakal B, Osman F H, and Bramley A N. Analysis for the automation of small batchmanufacturing using open die forging [J]. CIRP Annals,1993,42(1):273-278.
    [76] Aksakal B, Osman F H, and Bramley A N. Upper-bound analysis for the automation ofopen-die forging [J]. Journal of Materials Processing Technology,1997,71(2):215-223.
    [77] Nye T J. Control strategy and upper bound solution for non-flat tool open die forgingautomation [J]. American Society of Mechanical Engineers, Manufacturing EngineeringDivision, MED,1999,10(739-746.
    [78] Osman F H, and Ferreira J. Investigation into the Automation of Incremental Formingprocesses [J]. Proceedings of the Institution of Mechanical Engineers--Part B--EngineeringManufacture,1999,213(3):311-315.
    [79] Cho J R, Bae W B, Kim Y H, Choi S S, and Kim D K. Analysis of the cogging process forheavy ingots by finite element method and physical modelling method [J]. Journal of MaterialsProcessing Technology,1998,80-81(161-165.
    [80] Kim P H, Chun M S, Yi J J, and Moon Y H. Pass schedule algorithms for hot open die forging[J]. Journal of Materials Processing Technology,2002,130(516-523.
    [81] Aivazi R, and Yanagimoto J. Automated sequence design for slab stretching with arbitraryheight distribution using one-step FEM analysis [J]. Journal of Materials ProcessingTechnology,2004,151(1-3):146-154.
    [82] Choi S K, Chun M S, Van Tyne C, and Moon Y H. Optimization of open die forging of roundshapes using FEM analysis [J]. Journal of Materials Processing Technology,2006,172(1):88-95.
    [83] Liu W, and Nye T J. Adaptive control for intelligent open die forging [J].2004,15(759-766.
    [84] Aksakal B, Osman F H, and Bramley A N. Determination of experimental axial and sidewaysmetal flow in open die forging [J]. Materials&Design,2008,29(3):576-583.
    [85] Wang W R, Chen G L, and Lin Z Q. Forging and kinetics coupling simulation of manipulatorin heavy forging [J]. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai JiaotongUniversity,2009,43(1):33-37.
    [86] Part, Chen G, Wang H, Lin Z, and Liu G, Performance analysis of a forging manipulator basedon the composite modeling method, Lecture Notes in Computer Science (including subseriesLecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),2008,152-160.
    [87] Bal M, and Hashemipour M, Applications of Virtual Reality in Design and Simulation ofHolonic Manufacturing Systems: A Demonstration in Die-Casting Industry, Holonic andMulti-Agent Systems for Manufacturing,2007, p.421-432.
    [88] Park S C. A methodology of creating a virtual model for a flexible manufacuring system [J].Computers in Industry,2005,51):734-746.
    [89] al. E L e, Contribution to Virtual Manufacturing Backgroud Research,1995.
    [90] Shukla C, Vazquez M, and Frank Chen F. Virtual manufacturing: An overview [J]. Computers&Industrial Engineering,1996,31(1-2):79-82.
    [91] Mujber T, Szecsi T, and Hashmi M. Virtual reality applications in manufacturing processsimulation [J]. Journal of Materials Processing Tech.,2004,155(1834-1838.
    [92] Kim Y S, Yang S H, Shan D B, Choi S O, Lee S M, and You B S. Three-dimensionalrigid-plastic FEM simulation of metal forming processes [J]. Journal of Materials Engineeringand Performance,2006,15(3):275-279.
    [93] Choi S K, Chun M S, Van Tyne C J, and Moon Y H. Optimization of open die forging of roundshapes using FEM analysis [J]. Journal of Materials Processing Technology,2006,172(1):88-95.
    [94] Herbertz R, and Kopp R. The finite element method as an instrument for solving formingproblems, illustrated by the example of hammer forging [J]. Stahl und Eisen|Stahl und Eisen,1984,9):57-60.
    [95] Zuo X, Wei Y, Chen J, Zeng L, and Ruan X. A CAD system integrated3D FEM system forbulk forming process simulation [J]. Chinese Journal of Mechanical Engineering,1999,35(5):90-93.
    [96] Lee W B, Cheung C F, and Li J G. Applications of virtual manufacturing in materialsprocessing [J]. Journal of Materials Processing Technology,2001,113(1-3):416-423.
    [97] KIMURA F. Product and process modelling as a kernel for virtual manufacturing environment[J]. CIRP Annals,1993,42(1):147-150.
    [98] Iwata K, Onosato M, Teramoto K, and Osaki S. A Modelling and Simulation Architecture forVirtual Manufacturing Systems [J]. Cirp Annals-Manufacturing Technology,1995,44(1):399-402.
    [99] Kopp R, Hofmann O, Horst C, Neumann L, Honnet V, and Plociennik C, Simulation OfCoupled Processes And Product Properties, AIP Conference Proceedings, AIP,2004,2173.
    [100] Kopp R, Hofmann O, Honnet V, and Plociennik C, Real Metal Forming and Virtual Reality,Proceedings of the10thInternational Conference on Metal Forming,2004.
    [101] Korves B, Loftus,M. Designing an immersive virtual reality interface for layout planning [J].Journal of Materials Processing Technology,2000,107(425-430.
    [102] Peng Q, Hall, F.R., Lister, P.M. Application and evaluation of VR-based CAPP system [J].Journal of Materials Processing Technology,2000,107(153-159.
    [103] TriKa S N, Banerjee,P.,Kashyap,R.L. Virtual Reality Interfaces for Feature-BasedComputer-Aided Design System [M],1996.
    [104] Korves B, and Loftus M. The application of immersive virtual reality for layout planning ofmanufacturing cells [J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,1999,213(1):87-91.
    [105] Khalil W, and Kleinfinger J F, A new geometric notation for open and closed-loop rotbots,IEEE International Conference on Robotics and Automation, IEEE,1986,1174-1179.
    [106] Burington R. Handbook of Mathematical Tables and Formulas [M], Handbook ofMathematical Tables and Formulas, McGraw Hill,1973.
    [107] W.Beyer, CRC Standard Mathematical Tables, CRC Standard Mathematical Tables,25thedition ed., CRC Press,Inc.,1980.
    [108] Tomlinson A, and Stringer J D. Spread and elongation in flat tool forging [J]. Journal of theiron and steel institute,1959,193(157-162.
    [109] Merlet J P. Parallel Robots [M],2nd ed., Springer,2006.
    [110]严隽琪,范秀敏,蒋祖华等.虚拟制造系统的理论与技术基础研究[J].中国机械工程,1999,10(9):1068-1071.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700