用户名: 密码: 验证码:
大型天然气管网仿真计算引擎的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近10年来,我国天然气工业进入快速发展期,管道仿真技术水平也迅速提高,国内油气储运领域内诸多学者对相关技术进行了深入研究并开发出了相应的管道仿真计算软件,这极大地促进了我国管道运营水平的提高。由于国内天然气管道工业起步晚、基础研究薄弱等原因,国内管道仿真技术与国际上先进国家还有很大的差距,国内还没有形成一款商业化天然气管道仿真软件产品。迄今为止,国内大型油气管道仿真计算与运行分析仍然依赖国外进口商业软件(主要是SPS、TGNET等国际商业管道仿真软件),而国外仿真软件存在价格昂贵、技术垄断、技术服务不到位、产品扩展难等不足,这在很大程度上限制了国内管道公司的业务发展。因此开发出具有完全自主知识产权的仿真软件产品已经势在必行。这对于完全掌握管道仿真核心技术,打破国外公司长期以来对国内市场的垄断,促进国内管道仿真技术的进步具有十分重要的意义。
     纵观国外管道仿真技术的发展历程,经历了从探索和尝试阶段、仿真计算软件初步形成、软件的初步工业应用、软件的产品化和商品化到以软件产品为工具定制服务五个阶段。而国内由于现代天然气管道工业起步晚等原因,国内的管道仿真技术处于软件的初步工业应用阶段,还没有完成软件的产品化与商业化。
     本文以构建大型商业化天然气管网仿真计算引擎为目标,在总结分析国内外管道仿真领域相关最新研究成果的基础上,对所涉及的关键技术进行了研究。具体来讲,本论文研究工作主要有如下几个方面:
     (1)按照大型商业软件产品的架构体系,以面向对象的设计原则为出发点,综合运用面向模式的架构设计理念与现代架构设计技术对天然气管网仿真计算引擎进行了架构设计。
     (2)考虑任意拓扑结构的天然气管网,采用有向图对管网进行逻辑表征,在此基础上完成管网的拓扑排序、分支点及分支提取、边界识别、模型的有效性验证等预处理。
     (3)讨论了大型天然气管网的数值系统的建立方法与步骤,给出了管段和非管元件的数值形式。
     (4)深入研究了求解大型天然气管网数值系统时涉及的关键技术,阐述了蛙跳策略、迎风策略的综合应用,以及初始状态的建立过程。
     (5)深入研究了压缩机的动态仿真问题,灵活运用“延迟抖动”的策略,实现了气体管网仿真中压缩机的平稳启动和停机,并给出了压缩机动态仿真的方法和步骤。
     (6)引入正交测试技术对仿真引擎的最大处理能力进行了探索。
     (7)以西气东输一线为例,进行了动态仿真模拟,分别在稳定性、准确性和计算效率方面与SPS进行了对比分析。结果表明,该仿真计算引擎计算结果精度高、易用性强和效率高,具有很强的工程应用价值。
In recent ten years, the natural gas industry has entered into the phase of rapid development. And pipeline simulation technology has improved rapidly in our country. Though many academics studied the technologies in the field of oil&gas storage and transportation. any commerical pipeline simulation software that can apply to all topological structure of gas pipe network and dynamic simulation in complex hydraulic conditions did not developed sucessfully. The calculation and operation analysis of oil&gas pipeline still depend on foreign commerical simulation software (SPS, TGNET etc). There are some serials problem such as technological monopoly, unsatisfactory service and unenough expansibility etc. It largely obstructs the devlopment of local's pipe corporation. So, it is necessary to develop pipeline simulation software with independent intellectual rights. It is significant for mastering the pipeline simulation technology, breaking the long-term monopoly from foreign and improving the technical progress in our pipe simulation.
     In this paper, it is pointed out that there is not any commerical pipeline simulation software with good commonability. Firstly, the recent research achivements in the field at home and abroad have been reviewed. Then, the key technology involved in gas pipe network simulation engine is presented that:the logical description on topological structure of large-scale gas pipe network, the establishment on numerical system of gas pipe network, the solving technology on numerical system and key problem, the dynamic simulation of compressor, the architecture design and implementation by the criterion of large-scale commerical software, the orthogonal test of simulation engine. At last, the stability, pricise and performance of simulation engine are illustrated by pratical example. Major jobs of this paper are as follows.
     (1) According to the research and development criterion of large-scale commerical software, the architect design and implementation of gas pipe network simulation engine are completed with the compressive application of the design concept based-on pattern-oriented, the design technology of architect, OOD and OOP.
     (2) All topological structure of gas pipe network is described effectively by digraph. On this basis, the topological sorting sequence, the collection of branch nodes and branches, the identification of externals, the validation of pipe network model's availability.
     (3) The method and steps on establiment of large-scale gas pipe network are studied. The numerical form of pipeleg and other pipeline elements are presented.
     (4) The key technologies involved in the solution on numerical system of large-scale gas pipe network are studied. It is presented that the comprehensive application on strategy of frog-leg and upwind. It is also showed that the process of initial status.
     (5) It is presented thoroughly that the problem on the dynamic simulation of compressor. The steady process on starting and stopping of compressor are implemented by applying the strategy named "delay jitter". The method and steps on dynamic simulation of compressor are illustrated.
     (6) The orthogonal test is applied to accomplish the overall test on simulation engine and find out the bottleneck of simulation engine's performance.
     (7) Taking WestEast natural gas transmission project for example, the computational accuracy, computational efficiency and usability are show by contrasting the dynamic simulation results of this software and SPS,and this simulation software is very valuable in engineering practice.
引文
[1]潘家华.我国天然气管道工业的发展前景[J].油气储运,2006,25(8):1-5.
    [2]胡见义.中国天然气发展战略的若干问题[J].天然气工业,2006,(01).
    [3]刘雯,邹晓波.国外天然气管道输送技术发展现状[J].石油工程建设,2005,(12).
    [4]阎光灿.世界长输天然气管道综述[J].石油工程建设,2005,(12).
    [5]中国石油管道公司管道科技中心信息与经济研究所.天然气管道[M].北京:石油工业出版社,2002.
    [6]戚爱华.我国油气管道运输发展现状及问题分析[J].国际石油经济,2009,(12).
    [7]吴宏.西气东输管道运行管理研究[D].西南石油大学博士学位论文,2005.
    [8]姚莉,张丽娜,赵芸.国内外天然气储运技术现状与发展趋势综述[J].天然气经济,2004,05.
    [9]姚莉,于磊,杨春,陈伟,李海山.国内外天然气储运技术的发展动态[J].油气储运,2005,(04).
    [10]郑志炜,吴长春.输气管道系统供气调峰技术进展[J].科学导报:2011,29(12):75-79.
    [11]李庆扬,王能超,易大义.数值分析(第四版)[M].清华大学出版社(北京),2006,10:61-90.
    [12]陆金甫,关治等.偏微分方程数值解法(第二版)[M].清华大学出版社(北京),2004,01:45-80.
    [13]陶文铨.数值传热学[M].西安交通大学出版社,2001.
    [14]李长俊.天然气管道输送[M].北京:石油工业出版社,2008:156-185.
    [15]张国忠.管道瞬变流动分析[M],石油大学出版社1994.
    [16]蒲家宁.管道水击分析与控制[M],机械工业出版社1991.
    [17]姚光镇.输气管道设计与管理[M],中国石油大学出版社1991.
    [18]汪玉春.管网系统分析[M],西南石油学院研究生教材.
    [19]李长俊,汪玉春,王元春.输气管道系统仿真技术发展状况[J].管道技术与设备,1999,05.
    [20]李长俊,柏毅,赵金洲.基于泛函理论分析输气管道不稳定流动[J].重庆建筑大学学报.2005,03.
    [21]李长俊,曾自强.气体管网系统的仿真[J].油气储运,1997,02.
    [22]李长俊,南发学,亢春.输气管道稳态计算公式改进研究.西南石油大学学报(自然科学版).2008,05.
    [23]杨毅,周志斌,李长俊等.天然气管输调节控制仿真模型[J].天然气工业:2008,28(10):98-10.
    [24]刘恩斌,李长俊,成琳琳.天然气集输管网仿真技术研究[J].西安石油大学学报,2009,24(3):63-65.
    [25]李长俊.天然气在管道内的不稳定流动分析[J].天然气工业:1992,12(4):69-71.
    [26]李长俊,江茂泽.输气管道中的不稳定流动分析[J].石油学报,1998,19(4):99-103.
    [27]李长俊,曾自强,江茂泽.天然气在管道系统中不稳定流动的分析[J].天然气工业,1994,14(6):54-59
    [28]刘伟,唐文芳,连家秀,石虎,王洁清.城市燃气管网水力计算软件的开发[J].油气储运,2002,21(1):25-27.
    [29]吴玉国,陈保东,王玉国.大型稀疏方程组的解法在输气管数值计算中的应用[J].2004,11(1).
    [30]李德波.复杂环状管网水力计算方法探究[J].节能技术.2005,04.
    [31]姜瑛.管网系统动态仿真数学模型的建立及求解[J].石油天然气学报.2010,02.
    [32]王寿喜,曾自强.管网模拟特征线法[J].天然气工业.1986,02.
    [33]王寿喜.管网稳态分析线性化法[J],天然气工业,,:1987年04期
    [34]蒋仕章,王寿喜,樊成.集气站系统模型与仿真研究[J].天然气工业,2001,03.
    [35]孙建国,王寿喜.气体管网的动态仿真[J].油气储运,2001,08.
    [36]唐建峰,段常贵,李玉星.燃气长输管道动态模拟及未段储气研究[J], 油气储运,2000,07.
    [37]唐建峰,李玉星等.川气东送管道模拟仿真软件研发[J].天然气工业,2008,28(3):114.
    [38]唐建峰,段常贵,吕文哲,宋庆杰.输气管道静态模拟及管道末段储气量计算[J],油气储运,2001,09.
    [39]姜笃志,宫敬,许艳清.天然气管道设计输气规模研究[J].油气储运:2007,26(5)22-25.
    [40]蒋方美,吴长春,李华.西气东输管道的短期调峰方案[J], 油气储运,2004,09.
    [41]吴长春,张鹏,蒋方美.输气管道仿真软件及其在供气调峰中的应用[J].石油工业技术监督, 2005,(05):34.
    [42]欧阳忠滨,吴长春,艾慕阳.输油管道仿真技术及其应用[J].油气储运:2004,23(8):1-5.
    [43]熊辉,袁立玮等.仿真技术在输气管道调度管理培训中的应用[J].油气田地面工程,2005,24(12):17.
    [44]王建国.ATMOS模拟仿真系统在天然气管道的应用[J].天然气技术,2008,2(4):42.
    [45]苏欣,章磊等.SPS与TGNET在天然气管网仿真中应用与认识[J].天然气与石油,2009,27(1):1.
    [46]吴岩,宫敬.西气东输管道子系统辨识建模研究[J], 天然气工业,2007,10.
    [47]王阳明.天然气长输管道仿真系统的设计[J].管道技术与设备:2006(4):23-25.
    [48]马江平.城市燃气管网动态模拟技术的研究[D].华中科技大学硕士论文,2006:41.
    [49]蒋仕章,蒲家宁.水力瞬变特征线法和隐式差分法的对比分析[J].油气储运,2001,20(1):12-14.
    [50]高兰周,侯根富,王东.中心差分法在燃气管道动态模拟中的应用[J].山西建筑,2010,36(24):187.
    [51]刘振方,唐善华等.天然气管道合理管存方法的应用[J].油气储运,2009,28(9):70.
    [52]吴建星,白春华.气动阀门发声器内流场的数值仿真[J].弹箭与制导学报,2008,01.
    [53]孔祥杰,刘正先等.计算软件对离心压缩机性能的数值模拟及与试验结果的对比验证[J].风机技术,2008,02.
    [54]温选锋,袁民建,谭佳健.离心压缩机进口导叶流场的数值模拟[J].流体机械,2008,08.
    [55]赵斌,孙铁.离心压缩机叶轮内部流场的数值模拟[J].压缩机技术,2007,01.
    [56]任建民,赵斌.往复式活塞压缩机活塞的温度场仿真研究[J].煤矿机械:2011,32(8):72-73.
    [57]钱学军.往复式压缩机变工况运行计算机模拟与试验研究[D].西南石油大学,2005.
    [58]刘振全.往复式压缩机的电子计算机模拟和机理设计[J].甘肃工业大学学报:1988,14(3):30-39.
    [59]苏顺玉,张春枝等.涡旋压缩机非稳态工作过程的数值模拟[J].建筑热能通风空调:2011,29(6):94-97.
    [60]吴小华,杨俊玲等.直线电机驱动热压缩机数值模拟及实验研究[J].工程热物理学报,2011,32(05).
    [61](美)Tuncer Cebeci等.符松译.工程计算流体力学[M].清华大学出版社,2009,04:113-140.
    [62](美)Cormen, T. H.等,潘金贵等译,算法导论(第二版)[M].机械工业出版社(北京),2006,01:322-380
    [63]黄敏.多层次公交线网拓扑结构分析[J].公路交通科技,2010,27(5):93-99.
    [64]周璞,刘卫宁等.基于路网拓扑结构的无方向参数地图匹配算法[J].计算机工程与应用,2006,33(8):188-190.
    [65]黄敏,熊志等.基于路网拓扑结构的指路标志标识系统数据模型的研究与应用[J].测绘科学,2008,33(6):192-194.
    [66]孙庆.基于图形数据库的电力网络拓扑方法的研究与应用[D].南京理工大学硕士毕业论文,2008.06.
    [67]孙棣华,肖锋,廖孝勇,赵敏,吴宏伟,唐亮.基于预处理的城市路网拓扑结构构建算法[J].2008,44(23):233-236.
    [68]彭继军,田贯三等.燃气管网拓扑结构的计算机生成方法及评价[J].山东建筑工程学院学,2002,17(2):50-56.
    [69]郝川,李英涛,张乃通.任意拓扑结构战术地域分组交换网的性能分析[J].通信学报,1997,18(1):22-26.
    [70]王桃,李杰,陈宏亮.一种多子网物理拓扑结构的发现算法[J].小型微型计算机系统.2010,32(2):234-238.
    [71]唐苏妍,张伟等.网络化反导防御系统仿真模型框架研究[J].系统仿真学报,2010,22(7):1654-1659.
    [72]李亚男,刘飞,杨明.基于知识的仿真模型验证方法的研究[J].系统仿真学报,2009,21(3):140-143.
    [73]李文皓,张珩.用于阵形控制的无人机编队飞行仿真平台设计与实现[J].系统仿真学报, 2009,21(3):691-694.
    [74]周翔,谢廷毅,高蕾.通用集成仿真平台的开发[J].计算机仿真,2010,27(3):295-297.
    [75]宋毅军,杨格兰,田尊华.太空环境建模研究与实现[J].计算机仿真,2010,27(1):40-42.
    [76]章志文,林天华,蒋永实.一个实用的基于HLA的空管仿真系统设计[J].微计算机信息:2010,19(1):1051-1068.
    [77]赵晓睿,高晓光.大规模分布仿真系统架构设计技术参考模型[J].系统仿真学报,2006,18(3):613-617
    [78]黄臻,蔡勇,吴磊,孔力.大型船舶联网设备网络模拟器软件设计[J].计算机工程与应用,2007,43(35):114-116.
    [79]张浩华,赵海,赵明.大型水电仿真系统的模型驱动架构设计[J].计算机工程与应用,2009,45(4):72-75.
    [80]阎细圣,郭裕顺,卢山鹰,周磊.光学仿真软件的系统架构设计[J].计算机仿真,2009,26(9):264-268.
    [81]刘艳艳,罗克露. 基于特定域软件体系结构的软件复用[J].微计算机信息:2010,19(3):1051-068.
    [82]喻之斌,金海,邹南海.计算机体系结构软件模拟技术[J].软件学报:2008,19(4):1051-1068.
    [83]张成,吴信才等.基于构建库/作流的可视化软件开发[J].计算机工程与应用:2008,44(10):82-87.
    [84]扈红超,伊鹏,郭云飞.高性能交换与调度仿真平台的设计与实现[J].软件学报:2008,19(4):1036-1050.
    [85]章剑林,李班,徐从富.面向应用的通用服务平台设计与实现[J].计算机工程与应用:2008,44(18):66-70.
    [86]张成立,吴元强.线性化处理方法在水力机械运动分析中的应用[J].昆明理工大学学报,2001,26(3):1-.
    [87]郭朝晖,郑加成,吴铁军.近似线性化方法综述[J].控制欲决策,1999,14(5):385-391.
    [88]齐文浩,薄景山.土层地震反应等效线性化方法综述[J].世界地震工程,2007,23(4):221-226.
    [89]Grady Booch, James Raumbaugh, Ivar Jacobson. UML用户指南[M].邵维忠,麻志毅,马浩海,刘辉,第2版,北京:人民邮电出版社,2006:287-295.
    [90]Sherif M. Yacoub, Hany H. Ammar. Pattern-Oriented Analysis and Design:Composing Patterns to Design Software. Addison Wesley,2003.
    [91]Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. 设计模式—可复用面向对象软件的基础[M].马晓星蔡敏刘建中,北京:机械工业出版社,2000:287-295.
    [92]任露泉.试验设计及其优化[M].北京:科学出版社社,2009:12-30.
    [93]徐仲安等.正交试验设计法简介[J].科技情报开发与经济,2002,12(5):148-150.
    [94]于秀山.正交试验设计方法在测试用例设计中的应用.计算机工程与应用,2004,20(4):62-64.
    [95]李刚毅,金蓓弘.自动化回归测试的技术和实现[J].计算机应用研究,2006,23(2):186-188.
    [96]严进宝,徐锡山,钟读杭.基于正交试验设计的软件可靠性测试[J].计算机工程,2006,32(04):52-54.
    [97]岳海,王宝.航天软件测试用例设计方法应用[J].航天控制,2006,24(4):57-61.
    [98]陈策,于凤泰等.正交试验及其在软件测试用例设计中的应用[J].计算机应用与软件,2008,25(7):158-160.
    [99]赵同,兰雨晴等.基础软件平台的正交组合测试方法设计与应用[J].计算机工程与应用,2008,44(4):86-88.
    [100]汤红霞,方木云等.基于正交法的软件测试用例生成[J].计算机工程与设计,2008,29(14):3673-3676.
    [101]李秋英,李海峰,徐刚.基于覆盖率信息的软件可靠性增长测试实践[J].计算机应用研究,2010,27(11):2594-2597.
    [102]Mitchell Luskin. An Approximation Procedure for Nonsymmetric Nonlinear Hyperbolic Systems with Integral Boundary Conditions [J]. SIAM J.NUMBER. ANAL.1979,16(1):145-164.
    [103]Philip T.Keenan. Collocation and Upwinding for Thermal Flow in Pipelines:The Linearized Case [J]. International Journal for Numerical Methods in Fluids,1996,22:835-849.
    [104]Numerical Simulation of Gas Pipeline Networks:Theory, Computational inplementation, and Industry applications, R.I.II'kaev, V.E.Seleznev, V.V.Aleshin, G.S.Klishin, URSS 2005
    [105]Chapman K.S., Abbaspour M., Non-isothermal Copressor Station Transient Modeling, PSIG 2003.
    [106]Pipeline Thermal Models. Jason Modisett[C], PSIG,2002.
    [107]What Can Go Wrong? [C], Jerry L.Modisett, PSIG.2006.
    [108]Philip T.Keenan. Thermal simulation of pipeline flow [D]. SIAM J.Numer. Anal,1995. 32:1225-1262.
    [109]Patton. R. Software Testing [M].北京:机械工业出版社,2006:256-300.
    [110]E.B. Wylie, V. Streeter. Fluid Tmnsients. McGraw Hill,New York, 1978.
    [111]R.I. kaev, V.E. Seleznev, V.V. Aleshin, G.S. Klishin. Numerical Simulation of Gas Pipeline Networks [J].
    [112]Theory. Computational implementation and Industry applications. URSS.2005.
    [113]M. Lush, T. Blake. The existence of a global weak solution to the nonlinear waterhammer problem. Marh.1982(35).
    [114]Kim Seong. Minimum-Cost Fuel Consumption on Natural Gas Transmission Network Problem. PH.D Dissertation Abstract. Texas A & M University,1999.
    [115]T.D.TAYLOR, N.E.WOOD, J.E.POWERS. A Computer Simulation of Gas Flow in Long Pipelines, The Univeristy of Oklanhoma nonnan, OKLA. December,1962:297-302.
    [116]O.P.Hall, Jr. TRW Systems. Application of Digital Simulation Techniques to a Natural Gas Transmission System,1969, American Institute of Mining, Metallrugical, and Petroleum Engineers. Inc.
    [117]V.L.Streeter. E.B.Wylie. Natural Gas Pipeline Transients, SPE 44th Annual Fall Meeting,1969
    [118]E, BEWAWNWIL, MICHAEL A. STONER, VICTOR L. STREETER. Network System Transient Calculations by Implicit Method. SPE2963 1971.
    [119]H. H. RACHFORD, JR. Some Applications of Transient Flow Simulation to Promote Understanding the Performance of Gas Pipeline Systems 1974.
    [120]E. BENJAMIN WYLIE, VICTOR L. STREETER, MICHAEL A. STONER. Unsteady-State Natural-Gas Calculations in Complex Pipe Systems [J]. SPE 1974:35-43.
    [121]James W. Crafton, Member SPE-AIME, Victor H.Dyal. An Iterative Solution for the Gas Pipeline Network Problem[C]. SPE 1976:1-16.
    [122]Tatsuo Tanaka. A Computer Simulation of Un-steady State Gas Flow In Pipeline,1980.
    [123]Vadim S. Tikhonov, Vladimir K. Zubarev. Simulation of Nonlinear Vibrations of an Elevating Pipeline[J],1982.
    [124]Tom van der Hoevn, Theo A.G., Bakker. Gas Transmission System Simulator[C], PSIG 1985.
    [125]Cesar A.Luongo. An Efficient Program for Transient Flow Simulation In Natrual Gas Pipelines[C]. PSIG 1986.
    [126]Jerry L. Modisette, Ray S.Whaley. Commercial Applications of Gas Pipeline Simulation[C].PSIG 1989, P1-13.
    [127]K.K. Botros D.B.Mah, P.J. Campbell.Dynamic Simulation of Compressor Station Installations Including Control Systems[C],1989 PSIG.
    [128]Tom van der Hoeven. Some Mathematical Aspects of Gas Network Simulation[C]. PSIG 1992:1-15.
    [129]Frank W Letniowski. Compressor Station Modeling in Networks[C].PSIG 1993.
    [130]Junyang Zhou and M.A. Adewumi. Simulation of Transients in Natural Gas Pipelines[C]. PSIG 1995.
    [131]Howard C. Shaw, Mike L. Wheeler and Ray S. Whaley. On-line Simulation for the Gas Controllers[C]. PSIG 1997.
    [132]Sidney Pereira dos Santos. Transient Analysis:A Must In Gas Pipeline Design[C]. PSIG 1997.
    [133]Eun-Lyong Lee, Seung-Yong Chang, In-Won Kim. A Comparative Study of Statistical and Mathematical Methods for Natural Gas Pipeline Network Analysis [J]. SPE 1998.
    [134]Junyang Zhou and Michael A. Adewumi. Gas Pipeline Network Analysis Using an Analytical Steady-State Flow Equation[C], SPE,1998.
    [135]Ian Cameron. Using an Excel-Based Model For Steady-State And Transient Simulation[C]. PSIG.1999.
    [136]F. Podenzani. N. Mancini.FLOW IN GAS PIPELINES:A CONSERVATIVE APPROACH FOR SIMULATION OF TRANSIENT, PHENOMENA AT HIGH MACH NUMBERS[R].2002, P158-161.
    [137]Rainer Kurz, Sebouh Ohanian. Modeling Turbomachinery in Pipeline Simulations. PSIG, 2003.
    [138]Chapman, K.S., Abbaspour. M. Non-isothermal Compressor Station Transient Modeling. PSIG03A3 2003.
    [139]Susan K. Bachman, Mary J. Goodreau. Steady State-Is The Solution Realistic For The Piping Network? PSIG.2003.
    [140]Sebouh Ohanian, Rainer Kurz. Transient Simulation of the Effects of Compressor Outage, Solar Turbines Incorporated.PSIG. 2003.
    [141]Leonidas Kappos, Michael J.Economides. Definitive Method of Flow Analysis of Surface Pipeline Networks. SPE,2004.
    [142]Hiroyuki Makino, Takehiro Inoue. Shigeru Endo, Takahiro Kubo. Takeshi Matsumoto. Simulation Method for Shear Fracture Propagation in Natural Gas Transmission Pipelines. ISOPE-2003:60-68.
    [143]Seungyong Chang. A Program Development for Unsteady Gas Flow Analysis In Complex Pipe Networks[R], R & D Center, Korea Gas Corporation,2004.
    [144]Robert J. McKee.Simulation of Centrifugal Compressor Trips for Surge Avoidance System Design. PSIG,2007.
    [145]Paul Jukes, James Wang, Billy Duron. Solving Pipeline Technology Challenges in the GoM by Innovation, Advanced Analysis Tools, and Engineering Competency. OTC 2008:1-20.
    [146]Zdenek Vostry, Martin Styblo.Gas Network Simulation and Uncertainty of Pipe Leg Surroundings Parameters. PSIG 2009.
    [147]Rainer Kurz, Modeling Emergency Shutdowns of Centrifugal Compressors, PSIG, 2009.
    [148]Tom van der Hoeven. Network Simulation of Transmission and Distribution Systems. PSIG,2009.
    [149]D. W. Schroeder, Jr. A Tutorial on Pipe Flow Equations. PSIG,2010.
    [150]D. W. Schroeder. Pipeline Efficiency Considerations in Natural Gas Networks. PSIG,2010.
    [151]Ed Nicholas. The impact of the pipe and ground on pipeline temperature transients. PSIG,2011.
    [152]Doug Fauer, P.E. The Making of a Useful Pipeline Simulation Model[R]. Southern Natural Gas.
    [153]Sergio Alexandre Mendonca Lacerda. The Use of Pipeline Simulation to Analyse the Effects of a Gas Pipeline Rupture. PSIG,2010.
    [154]Jorg Seeliger. Gunter Wagner, Thermal Billing using Calorific Valuesprovided by Pipeline Simulation[R]. LIWACOM Informationstechnik GmbH, Essen,2002:1-10.
    [155]Krstic, Miroslav. Analysis of Gas Distribution Networks Topological Framework and Algorithms. SPE.1991.
    [156]F.Glover, D.Kinggman, N.Philips, G.T.Ross. Integrating modeling alogorithm design and computational implementation to solve a large scale problem, Annals of Operations Research 5,1985, 06:395-411.
    [157]Olaf Zimmermannl, Thomas Gschwindl,Jochen Kusterl, Frank Leymann2, Nelly Schusterl. Reusable Architectural Decision Models for Enterprise Application Development[C]. QoSA 2007, LNCS 4880,2007:15-32.
    [158]E.S. Al-Shaer, Koon-Seng Lim and Rolf Stadler. Developing Pattern-Based Management Programs[C], MMNS 2001:345-358.
    [159]David Davis. Complex Software Problem Solving by Means ofAbstractive Techniques[C]. EUROCAST 2007:1191-1198.
    [160]Li Xiaoyong and Ma Wendi. Optimization for Mix Design of High-Performance, Concrete Using Orthogonal Test[C].ICCIC,2011:364-372.
    [161]Botros, K. K., Campbell. P., J., Mah, D. B. Dynamic Simulation of Compressor Station Installations Including Control Systems[C]. PSIG.1989.
    [162]Botros.K, Campbell.P, Mah. D. B. Dynamic Simulation of Compressor Station Operation Including Centrifugal Compressor and Gas Turbine [J]. Transactions of the ASME. Vol.1991(113):300-311.
    [163]Botros, K. K. Transient Phenomena in Compressor Stations during Surge [J]. Journal of Engineering for Gas Turbines and Power,1994(116):133-142.
    [164]Bryant, M. Complex Compressor Station Modeling[C]. PSIG,1997.
    [165]Stanley, R. A., Bohannan, W. R. Dynamic Simulation of Centrifugal Compressor Systems [J]. Proceedings of the Sixth Turbo machinery Symposium,1977:123-131.
    [166]Schultz, J. M. The Polytropic Analysis of Centrifugal Compressors [J]. Journal of Engineering for Power,1962:69-82.
    [167]Carter, R. G. Compressor Station Optimization:Computational Accuracy and Speed[C]. PSIG,1996.
    [168]Jenicek, T., Kralik, J. Optimized Control of Generalized Compressor Station[C]. PSIG,1995.
    [169]Phillippi, G. Basic Compression Short Course. GMC,2002. Oct 7-9, Nashville, TN.
    [170]Mathews, H. Compressor Performance Analysis. GMC,2000, Oct.4, Colorado Springs, CO.
    [171]Murphy, H. G. Compressor Performance Modeling to Improve Efficiency and the Quality of Optimization Decisions[C]. PSIG,1989.
    [172]Hartwick. W. Efficiency Characteristics of Reciprocating Compressors. American Society of Mechanical Engineers. Diesel and Gas Engine Power Division.1968. Dec:1-5.
    [173]Hartwick, W. Power Requirements and Associated Effects of Reciprocating Compressor Cylinder Ends Deactivated by Internal Bypassing[C]. American Society of Mechanical Engineers. Diesel and Gas Engine Power Division,1974.
    [174]Metcalf, J. R. Effects of Compressor Valves on Reciprocating Compressor Performance. GMC, 2000,Oct.4, Colorado Springs, CO.
    [175]Pierson, J. L., Wilcox, K. D. A computer System for Analysis of Multi-Stage Reciprocating Compressors[C]. PSIG,1984.
    [176]William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery. The Art of Scientific Computing (Third Edition) [M]. Cambridge University Press,2007:477-486.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700