用户名: 密码: 验证码:
等离子喷涂层的竞争性失效行为和寿命预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钻探机具是钻探工程和地质工程装备中的关键零部件,磨粒磨损、粘着磨损、接触疲劳、腐蚀磨损等常见的表面失效对于钻探机具的服役可靠性、生产安全和工作效率具有不可忽视的影响。因此,采用先进的表面工程技术对钻探机具易损零部件表面进行强化,提高其耐磨耐蚀性能,是避免钻探装备失效并延长其服役寿命的有效途径。超音速等离子喷涂Al_2O_3/40%wt. TiO_2复合陶瓷涂层的致密度、韧性和结合强度较高,具有优异的耐磨性和相对较好的耐蚀性及耐接触疲劳性能,适用于对钻探机具易损件进行表面强化。
     本文采用正交优化试验的方法,研究了超音速等离子喷涂Al_2O_3/40%wt. TiO_2复合陶瓷涂层过程中喷涂距离、喷涂电流、喷涂电压和氩气流量等喷涂参数对涂层质量的影响规律,确定了最优喷涂参数,并采用微观分析手段对涂层的微观结构、化学成分和力学性能进行表征和测试。
     为了研究复合陶瓷涂层在真实接触状态下的失效机制和寿命演变规律,制造了一台能够通过改变滑差率来实现对“纯滚动”、“滚动/滑动共存”和“纯滑动”等接触状态进行模拟的对辊式接触疲劳/磨损多功能试验机,作为对涂层耐磨性能和接触疲劳性能进行综合评价的力学实验平台。
     基于新型接触疲劳/磨损多功能试验机,系统研究了复合陶瓷涂层在不同接触应力水平下的滚动接触疲劳失效行为和寿命演变规律。利用有限元法模拟得到涂层内部及界面处最大剪切应力和正交剪切应力的分布状态,探讨了涂层内部微观结构和剪切应力的分布规律等因素对接触疲劳裂纹萌生与扩展过程的影响,采用经验模态分解法得到了涂层接触疲劳分层失效过程中的典型声发射信号的波形和频谱,建立了涂层接触疲劳寿命的P-N曲线和P-S-N曲线,能够实现对一定接触应力范围内涂层接触疲劳寿命的预测。
     系统研究了复合陶瓷涂层在不同滚动/滑动接触状态下的竞争性失效行为和寿命演变规律。发现当存在滑动接触时,涂层的主要失效模式为表面磨损和界面分层,研究了涂层表面、内部及界面处最大剪切应力的分布规律,探讨了表面滑动磨损及其引发的表面微观脆性断裂和涂层减薄进程对界面分层失效的影响机制,采用经验模态分解法分离出滚动/滑动共存状态下涂层表面磨损失效过程中典型的声发射信号的波形和频谱,发现涂层的竞争性寿命服从Weibull分布,且滑差率越高时寿命越分散,建立了涂层竞争性寿命P-N曲线。
Drilling implement are the key parts in the equipment of drilling engineering and geotechnicalengineering. The common surface failure such as abrasive wear, adhesive wear, contact fatigue,and corrosion wear greatly affects the service reliability, production safety and workingefficiency of drilling implement. Thus, in order to improve the wear resistance and corrosionresistance, avoid failure as well as prolong the service life of drilling equipment, advancedsurface engineering technologies are often used to strengthen the surfaces of damageable parts ofdrilling implement. Supersonic plasma spraying Al_2O_3/40%wt. TiO_2composite ceramic coatingswith high density, toughness and bonding strength, possess excellent wear resistance, relativelygood corrosion resistance as well as resistance to contact fatigue properties, which is suitable forsurface strengthening of damageable parts of drilling implement.
     This dissertation used the orthogonal test to investigate the effects of spraying parameters suchas spraying distance, spraying current, spraying voltage and argon flow rate on the coatingquality to determine the optimal spraying parameters. Various means of microscopic analysiswere used to characterize the microstructure, chemical composition and mechanical properties ofthe composite ceramic coatings.
     In order to study the failure mechanism and life evolution laws of the composite ceramiccoatings under the real contact conditions, a contact fatigue/wear multi-function testing machinewith double roller was made. It can achieve the simulation of "rolling","rolling/slidingcoexistence" and "pure sliding" contact conditions by adjusting the slip ratio, and can be used asa mechanical experimental platform to evaluate the wear resistance and contact fatigueperformance of coatings.
     Based on the new type contact fatigue/wear multifunctional testing machine, the failurebehavior and life evolution laws of the composite ceramic coating were investigated underdifferent contact stresses. The finite element method was used to simulate the distribution of themaximum shear stress and orthogonal shear stress within the coating as well as in the interfacebetween the coating and substrate. The effects of coating microstructure and shear stressdistribution on the initiation and propagation process of contact fatigue cracks were alsodiscussed. Empirical mode decomposition method was used to obtain the waveform andspectrum of typical acoustic emission signals during the coating delamination failure process ofcontact fatigue. The P-N and P-S-N curves of contact fatigue life were established. Theseanalyses can realize the contact fatigue life prediction of coatings under a certain contact stressrange.
     The competing failure behavior and life evolution laws of the composite ceramic coating were researched under different rolling/sliding contact conditions. It was found that when the slidingcontact existed, the main failure modes of coatings are surface wear and interface delamination.The distributions of the maximum shear stress on the coating surface, within the coating as wellas in the interface between the coating and substrate were also investigated. The effectmechanisms of surface sliding wear, brittle fracture and thinning process on the interfacedelamination failure were discussed. Empirical mode decomposition method was used toseparate the waveform and spectrum of typical acoustic emission signals during the surface wearfailure process under the rolling/sliding coexistence condition. It was found that the competinglife of the coating obeys the Weibull distribution, and the life is more dispersed at higher slipratio. The competing life P-N curve of the coating was finally established.
引文
Ageorges H., Ctibor P. Comparison of the structure and wear resistance of Al2O3-13wt.%TiO2coatings made by GSP and WSP plasma process with two different powders. Surface&Coatings Technology,2008,202:4362-4368.
    Ahmed R. Contact fatigue failure modes of HVOF coatings. Wear,2002,253:473-487.
    Ahmed R., Hadfield M. Failure modes of plasma sprayed WC-15%Co coated rolling elements.Wear,1999,(230):39-55.
    Akdogan G., Stolarski T.A., Tobe S. Surface fatigue of molybdenum and Al-bronze coatings inunlubricated rolling/sliding contact. Wear,2002,253:319-330.
    Al-Dossary S., Raja Hamzah R.I., Mba D. Observation of changes in acoustic emissionwaveform for varying seeded defect sizes in a rolling element bearing. Applied Acoustics,2009,70:58-81.
    Arias-Cuevas O., Li Z., Lewis R. A laboratory investigation on the influence of the particle sizeand slip during sanding on the adhesion and wear in the wheel-rail contact. Wear,2011,271:14-24.
    Asamene K., Sundaresan M. Analysis of experimentally generated friction related acousticemission signals. Wear,2012,296:607-618.
    Bansal P., Padture N.P,. Vasiliev A., et al. Improved interfacial mechanical properties ofAl2O3-13wt%TiO2plasma-sprayed coatings derived from nanocrystalline powders. ActaMaterialia,2003,51(10,11):2959-2970.
    Bingley M.S., Schnee S. A study of the mechanisms of abrasive wear for ductile metals underwet and dry three-body conditions. Wear,2005,258:50-61.
    Bolelli G., Bonferroni B., Cannillo V., et al. Wear behaviour of high velocity suspension flamesprayed (HVSFS) Al2O3coatings produced using micron-and nano-sized powdersuspensions. Surface&Coatings Technology,2010,204:2657-2668.
    Chang H., Han E.H., Wang J.Q., et al. Acoustic emission study of fatigue crack closure ofphysical short and long cracks for aluminum alloy LY12CZ. International Journal of Fatigue,2009,31:403-407.
    Chen C., Kovacevic R., Jandgric D. Wavelet transform analysis of acoustic emission inmonitoring friction stir welding of6061aluminum. International Journal of Machine Tools&Manufacture,2003,43:1383-1390.
    Choi Y., Liu C.R. Wear, Rolling contact fatigue life of finish hard machined surface: Part2.Experimental verification,2006,261(5-6):492-499.
    Choudhury A., Tandon N. Application of acoustic emission technique for the detection of defectsin rolling element bearings. Tribology International,2000,33:39-45.
    Clare J.H., Crawmer D.E. Thermal spray coatings. ASM Handbook,1994,5:361-374.
    Culha O., Celik E., AkAzem N.F., et al. Microstructural, thermal and mechanical properties ofHVOF sprayed Ni-Al-based bond coatings on stainless steel substrate. Journal of MateriaslProcessing Technology,2008,204:221-230
    Dong X., Zhang H., Wang X. Finite element analysis of wear for centrifugal slurry pump.Procedia Earth and Planetary Science.2009,1:1532-1538.
    Donzella G., Faccol M.i, MazzùA., et al. Progressive damage assessment in the near-surfacelayer of railway wheel-rail couple under cyclic contact. Wear,2011,271:408-416.
    Elforjani M., Mba D. Observations and location of acoustic emissions for a naturally degradingrolling element thrust bearing. Journal of Failure Analysis and Prevention,2008,8:370-385.
    Ennaceur C., Laksimi A., Herve C., et al. Monitoring crack growth in pressure vessel steels bythe acoustic emission technique and the method of potential difference. InternationalJournal of Pressure Vessels and Piping,2006,83:197-204.
    Fan Y., Gu F., Ball A. Modelling acoustic emissions generated by sliding friction. Wear,2010,268:811-815.
    Farleya J., Wrobel L.C., Mao K. Performance evaluation of multilayer thin film coatings undermixed rolling-sliding dry contact conditions. Wear,2010,268:269-276.
    Fernandez J.E., Rodriguez R., Wang Y., et al. Sliding wear of a plasma-sprayed Al2O3coating.Wear,1995,181-183:417-425.
    Franklina F.J., Garnhamb J.E., Fletchera D.I., et al. Modelling rail steel microstructure and itseffect on crack initiation. Wear,2008,265:1332-1341.
    Fujii M., Ma J., Yoshida A., et al. Influence of coating thickness on rolling contact fatigue ofalumina ceramics thermally sprayed on steel roller. Tribology International,2006,39:1447-1453.
    Fujii M., Yoshida A., Ma J., et al. Rolling contact fatigue of alumina ceramics sprayed on steelroller under pure rolling contact condition. Tribology International,2006,39:856-862.
    Gallardo E.A., Lewis R. Coating and treatment solutions for rolling/sliding component contacts.Wear,2009,267:1009-1021.
    Gao Y., Wang C., Yao M., et al. The resistance to wear and corrosion of laser-cladding Al2O3ceramic coating on Mg alloy. Applied Surface Science,2007,253:5306-5311.
    Gareth Pierce S., Worden K., Bezazi A. Uncertainty analysis of a neural network used for fatiguelifetime prediction. Mechanical Systems and Signal Processing,2008,22:1395-1411.
    Goberman D., Sohn Y.H., Shaw L., et al. Microstructure development of Al2O3-13wt%TiO2plasma sprayed coatings derived from nanocrystalline powders. Acta Materialia,2002,50(5):1141-1152.
    Gopalakrishnan M.V., Krishnamurthy R., Golkularathnam C.V. Rolling contact fatigue studieson spray formed ceramics composite rolling elements. Journal of Materials ProcessingTechnology,2007,185:233-237.
    Govindarajan N., Gnanamoorthy R. Study of damage mechanisms and failure analysis ofsintered and hardened steels under rolling-sliding contact conditions. Materials Science andEngineering A,2007,445-446:259-268.
    Grabowska J., Palacz M., Krawczuk M. Damage identification by wavelet analysis. MechanicalSystems and Signal Processing,2008,22:1623-1635.
    Gu D.S., Kim J.G., An Y.S., et al. Detection of faults in gearboxes using acoustic emission signal.Journal of Mechanical Science and Technology,2011,25(5):1279-1286.
    Guo Y.B., Schwach D.W. An experimental investigation of white layer on rolling contact fatigueusing acoustic emission technique. International Journal of Fatigue,2005,27:1051-1061.
    Hase A., Mishina H., Wadac M. Correlation between features of acoustic emission signals andmechanical wear mechanisms. Wear,2012,292-293:144-150.
    Hase A., Wada M., Mishina H. The relationship between acoustic emissions and wear particlesfor repeated dry rubbing. Wear,2008,265:831-839.
    Hogmark S., Hedenqvist P. Tribological characterization of thin hard coatings. Wear,1994,179(1-2):147-154.
    Holmberg K., Matthews A., Ronkainen H. Coatings tribology-contact mechanisms and surfacedesign. Tribology International,1998,31(1-3):107-120.
    Huang H.E., Shen Z., Long S.R., et al. The empirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time series analysis. Proceedings the Royal ofSociety A,1998,454(1971):903-995.
    Ito S., Shima M., Jibiki T., et al. The relationship between AE and dissipation energy for frettingwear. Tribology International,2009,42:236-242.
    Jiang R., Zuo M.J., Li H.X. Weibull and inverse Weibull mixture models allowing negativeweights. Reliability Engineering and System Safety,1999,66:227-234.
    Kang J.J., Wang C.B., Wang H.D., et al. Characterization and tribological behavior ofFeS/ferroalloy composite coating under dry condition. Materials Chemistry and Physics,2011,129(1-2):625-630.
    Kang J.J., Wang C.B., Wang H.D., et al. Characterization and tribological properties ofcomposite3Cr13/FeS layer. Surface&Coatings Technology,2009,203(14):1927-1932.
    Kang J.J., Wang C.B., Wang H.D., et al. Microstructure and tribological properties of compositeFeCrBSi/FeS layer. Part J: Journal of Engineering Tribology,2010,224(8):807-813.
    Kang J.J., Wang C.B., Wang H.D., et al. Research on tribological behaviors of composite Zn/ZnScoating under dry condition. Applied Surface Science,2012,258(6):1940-1943.
    Kang J.J., Xu B.S., Wang H.D., et al. Progress of nondestructive detection technology onremanufacturing coatings. Rare Metal Materials and Engineering,2012,41(S1):399-402.
    Karam s M.B., Y ld zl K., Ayd n G.C. Sliding/rolling wear performance of plasma nitrided H11hot working steel. Tribology International,2012,51:18-24.
    Karamis M.B., Yildizli K., Cakyrer H. Wear behaviour of Al-Mo-Ni composite coating atelevated temperature. Wear,2005,258(5-6):744-751.
    Khader I., Kurten D., Kailer A. A study on the wear of silicon nitride in rolling-sliding contact.Wear,2012,296:630-637.
    Klaffke D., Santner E., Spaltmann D, et al. Influences on the tribological behaviour ofslip-rolling DLC-coatings. Wear,2005,259:752-758.
    Kristoffer Bruzelius, D. Mba. A fundamental study on the impact of surface integrity by hardturning on rolling contact fatigue. NDT&E International.2004,37:507-516.
    Kueppers U., Putz C., O. Spieler, et al. Abrasion in pyroclastic density currents: Insights fromtumbling experiments. Physics and Chemistry of the Earth,2012,45-46:33-39.
    Kuroda S., Clyne T.W. The quenching stress in thermally sprayed coatings. Thin Solid Films,1991,200(11):49-66.
    Kusoglu I.M., Celik E., Cetinel H., et al. Wear behavior of flame-sprayed Al2O3-TiO2coatings onplain carbon steel substrates. Surface&Coatings Technology,2005,200:1173-1177.
    Ling J., Pan J. A maximum likelihood method for estimating P-S-N curves. Internal Journal ofFatigue,1997,19(5):415-419.
    Liu H., Jiang Y., Zhou R., et al. Wear behaviour and rolling contact fatigue life of Ti/TiN/DLCmultilayer films fabricated on bearing steel by PIIID. Vacuum,2012,86:848-853.
    L hr M., Spaltmann D., Binkowski S., et al. In situ Acoustic Emission for wear life detection ofDLC coatings during slip-rolling friction. Wear,2006,260:469-478.
    Lu X.C., Yan D.R., Yang Y., et al. Bimodal Distribution of microstructure and mechanicalproperties of plasma sprayed nanostructured Al2O3-13wt%TiO2coatings. Journal ofInorganic Materials,2011,26(9):1003-1008.
    Matsui M., Kakishima H. Improvement of tribological performance of steel by solid lubricantshot-peening in dry rolling/sliding contact wear tests. Wear,2006,260:669-673.
    Meyer W.B. Metal spraying in United States: A JTST historical paper. Journal of Thermal SprayTechnology,1996,5(1):79-83.
    Miguel J.M., Guilemany J.M., Mellor B.G., et al. Acoustic emission study on WC-Co thermalsprayed coatings. Materials and Science Engineering A,2003,352:55-63.
    Nakajima A., Mawatari T., Yoshida M., et al. Effects of coating thickness and slip ratio ondurability of thermally sprayed WC cermet coating in rolling/sliding contact. Wear,2000,241:166-173.
    Nuruzzaman D.M., Nakajima A., Mawatari T. Effects of substrate surface finish and substratematerial on durability of thermally sprayed WC cermet coating in rolling with slidingcontact. Tribology International,2006,39:678-685.
    Osmundsen P., Toft A., Dragvik K.A. Design of drilling contracts-Economic incentives andsafety issues. Energy Policy,2006,34:2324-2329.
    Pellizzari M., De Flora M.G. Influence of laser hardening on the tribological properties of forgedsteel for hot rolls. Wear,2011,271:2402-2411.
    Piao Z.Y., Xu B.S., Wang H.D. Investigation of spalling mechanism of the thermal sprayedcoating under rolling contact by FIB-SEM. Engineering Failure Analysis,2012,25(10):106-111.
    Piao Z.Y., Xu B.S., Wang H.D., et al. A separation of experimental study on coatings failuresignal responses under rolling contact. Tribology International,2011,44(11):1304-1308.
    Piao Z.Y., Xu B.S., Wang H.D., et al. Effect of thickness and elastic modulus on stress conditionof fatigue-resistant coating under rolling contact. Journal of Central South University ofTechnology,2010,17(5):899-905.
    Piao Z.Y., Xu B.S., Wang H.D., et al. Influence of undercoating on rolling contact fatigueperformance of Fe-based coating. Tribology International,2010,43(1-2):252-258.
    Piao Z.Y., Xu B.S., Wang H.D., et al. Investigation of fatigue prediction of Fe-Cr alloy coatingsunder rolling contact based on acoustic emission technique Applied Surface Science,2011,257(7):2581-2586.
    Piao Z.Y., Xu B.S., Wang H.D., et al. Investigation of rolling contact fatigue lives of Fe-Cr alloycoatings under different loading conditions. Surface&Coatings Technology,2010,204(9-10):1405-1411.
    Picoli S., Mendes R.S., Malacarne L.C. q-exponential, Weibull, and q-Weibull distributions: anempirical analysis. Physica A,2003,324:678-688.
    Quillien M., Gras R., Collongeat L., et al. A testing device for rolling-sliding behavior in harshenvironments: the twin-disk cryotribometer. Tribology International,2001,34:287-292.
    Rahman Z., Ohba H., Yoshioka T., et al. Incipient damage detection and its propagationmonitoring of rolling contact fatigue by acoustic emission. Tribology International,2009,42:807-815.
    Ramalho A., Esteves M., Marta P. Friction and wear behavior of rolling-sliding steel contacts.Wear,2013, http://dx.doi.org/10.1016/j.wear.2012.12.008.
    Roques A., Browne M., Thompson J., et al. Investigation of fatigue crack growth in acrylic bonecement using the acoustic emission technique. Biomaterials,2004,25:769-778.
    Roy H., Parida N., Sivaprasad S., et al. Acoustic emissions during fracture toughness tests ofsteels exhibiting varying ductility. Materials Science and Engineering A,2008,486:562-571.
    Sahaba A.R.M., Saad N.H., Kasolang S., et al. Impact of plasma spray variables parameters onmechanical and wear behaviour of plasma sprayed Al2O33%wt TiO2coating in abrasionand erosion application. Procedia Engineering,2012,41:1689-1695.
    Scharf T.W., Singer I.L. Role of the transfer film on the friction and wear of metal carbidereinforced amorphous carbon coatings during run-in. Tribology Letters,2009,6(1):43-53.
    Schwach D.W., Guo Y.B. A fundamental study on the impact of surface integrity by hard turningon rolling contact fatigue. International Journal of Fatigue,2006,28:1838-1844.
    Scott K.T., Kingswell R. Thermal spraying, in advanced surface coatings a handbook of surfaceengineering. Eds., D.S. Rickerby, A. Mathws, Chapman and Hall, New York,1991:216-243.
    Shan D., Hashemi H.N. Fatigue-life prediction of SiC aluminum composite using a Weibullmodel. NDT&E International,1999,32:265-274.
    Singh S.K., Srinivasan K., Chakraborty D. Acoustic emission studies on metallic specimen undertensile loading. Material and Design,2003,24:471-481.
    Sivapragash M., Lakshminarayanan P.R., Karthikeyan R., et al. Fatigue life prediction of ZE41Amagnesium alloy using Weibull distribution. Materials&Design,2008,29:1549-1553.
    Smith R.W. Equipment and theory, in: A lesson from thermal spray technology, Course51,Lesson, Test2, Materials Engineering Institute. Materials Park. OH: ASM International.New York,1992:63-69.
    Song E.P., Ahn J., Lee S., et al. Effects of critical plasma spray parameter and spray distance onwear resistance of Al2O3-8wt.%TiO2coatings plasma-sprayed with nanopowders. Surface&Coatings Technology,2008,202:3625-3632.
    Song E.P., Ahn J., Lee S., et al. Microstructure and wear resistance of nanostructured Al2O3-8wt.%TiO2coatings plasma-sprayed with nanopowders. Surface&Coatings Technology,2006,201:1309-1315.
    Stewart S., Ahmeda R., Itsukaichi T. Contact fatigue failure evaluation of post-treatedWC-NiCrBSi functionally graded thermal spray coatings. Wear,2004,257:962-983.
    Sun J., Wood R.J.K., Wang L., et al. Wear monitoring of bearing steel using electrostatic andacoustic emission techniques. Wear,2005,259:1482-1489.
    Sun L., Gao D., Zhu K. Models&tests of casing wear in drilling for oil&gas. Journal ofNatural Gas Science and Engineering,2012,4:44-47.
    Tao S., Yin Z., Zhou X., et al. Sliding wear characteristics of plasma-sprayed Al2O3and Cr2O3coatings against copper alloy under severe conditions. Tribology International,2010,43:69-75.
    Tian W., Wang Y., Yang Y. Fretting wear behavior of conventional and nanostructured Al2O3-13wt%TiO2coatings fabricated by plasma spray. Wear,2008,265:1700-1707.
    Tian W., Wang Y., Yang Y. Three body abrasive wear characteristics of plasma sprayedconventional and nanostructured Al2O3-13%TiO2coatings. Tribology International,2010,43:876-881.
    Unnthorsson R., Runarsson T.P., Jonsson M.T. Acoustic emission based fatigue failure criterionfor CFRP. International Journal of Fatigue,2008,30:11-20.
    Wang J., Zhang L., Sun B.D., et al. Study of the Cr3C2-NiCr detonation spray coating. Surface&Coatings Technology,2000,130(1):69-73.
    Warren A.W., Guo Y.B. Acoustic emission monitoring for rolling contact fatigue of superfinishedground surfaces. International Journal of Fatigue,2007,29:603-614.
    Wilkinson P., Reuben R.L. Tool wear prediction from acoustic emission and surfacecharacteristics via an artificial neural network. Mechanical Systems and Signal Processing,1999,13(6):955-966.
    Xu D., Karger-Kocsis J. Rolling and sliding wear properties of hybrid systems composed ofuncured/cured HNBR and partly polymerized cyclic butylenes terephthalate(CBT).Tribology International,2010,43:289-298.
    Yang Y., Zhu Y., Liu Z., et al. Laser remelting of plasma sprayed Al2O3ceramic coatings andsubsequent wear resistance. Materials Science and Engineering A,2000,291:168-172.
    Zhang J., Sun K., Wang J., et al. Sliding wear behavior of plasma sprayed Fe3Al-Al2O3gradedcoatings. Thin Solid Films,2008,516:5681-5685.
    Zhang X.C., Xu B.S., Tu S.D, et al. Effect of spraying power on the microstructure andmechanical properties of supersonic plasma-sprayed Ni-based alloy coatings. AppliedSurface Science,2008,254:6318-6326.
    Zhang X.C., Xu B.S., Tu S.T., et al. Fatigue resistance and failure mechanisms of plasma-sprayed CrC-NiCr cermet coatings in rolling contact. International Journal of Fatigue,2009,31(5):906-915.
    Zhang X.C., Xu B.S., Tu S.T., et al. Rolling contact fatigue mechanism of a plasma-sprayed andlaser-remelted Ni alloy coating. Fatigue&Fracture of Engineering Materials&Structures,2009,32(2):84-96.
    Zhang X.C., Xu B.S., Wang H.D., et al. An analytical model for predicting thermal residualstresses in multilayer coating systems. Thin Solid Films,2005,488:274-282.
    Zhang X.C., Xu B.S., Wang H.D., et al. Analyses of interfacial stress and normal stress in anelongated film strip/substrate system. Thin Solid Films,2006,515:2251-2256
    Zhang X.C., Xu B.S., Wang H.D., et al. Analytical modeling of edge effects on the residualstresses within the film strip/substrate systems, Part I: interfacial stresses. Journal ofApplied Physics,2006,100:113524-1-8.
    Zhang X.C., Xu B.S., Wang H.D., et al. Analytical modeling of edge effects on the residualstresses within the film strip/substrate systems, Part II: Normal stresses. Journal of AppliedPhysics,2006,100:1135245-1-9.
    Zhang X.C., Xu B.S., Wang H.D., et al. Application of functionally graded interlayer on reducingthe residual stress discontinuities at interfaces within a plasma-sprayed thermal barriercoating. Surface and Coatings Technology,2007,201:5716-5719.
    Zhang X.C., Xu B.S., Wang H.D., et al. Effects of compositional gradient and thickness ofcoating on the residual stresses within the graded coating. Materials and Design,2007,28:1192-1197.
    Zhang X.C., Xu B.S., Wang H.D., et al. Effects of oxide thickness, Al2O3interlayer and interfaceasperity on residual stresses in thermal barrier coatings. Materials and Design,2006,27:989-996.
    Zhang X.C., Xu B.S., Wang H.D., et al. Error analyses on some typically approximate solutionsof residual stress within a thin film on a substrate. Journal of Applied Physics,2005,98:053516-1-5.
    Zhang X.C., Xu B.S., Wang H.D., et al. Hertzian contact response of single-layer, functionallygraded and sandwich coatings. Materials and Design,2007,28:47-54.
    Zhang X.C., Xu B.S., Wang H.D., et al. Issues in the failure behavior of the protective organiccoatings under corrosive conditions. Transactions of Nonferrous Metals Society of China,2004,14:395-404.
    Zhang X.C., Xu B.S., Wang H.D., et al. Modeling of the residual stresses in plasma-sprayingfunctionally graded ZrO2/NiCoCrAlY coatings using finite element method. Materials andDesign,2006,27:308-315.
    Zhang X.C., Xu B.S., Wang H.D., et al. Modeling of thermal residual stresses in multilayercoatings with graded properties and compositions. Thin Solid Films,2006,497:223-231.
    Zhang X.C., Xu B.S., Wang H.D., et al. Optimum designs for multilayered film structures basedon the knowledge on residual stresses. Applied Surface Science,2007,253:5529-5535.
    Zhang X.C., Xu B.S., Wang H.D., et al. Prediction of three-dimensional residual stresses in themultilayer coating-based systems with cylindrical geometry. Composites Science andTechnology,2006,66:2249-2256.
    Zhang X.C., Xu B.S., Wang H.D., et al. Residual stress redistribution within high-temperaturecoatings due to surface cracks. Materials and Design,2007,28:2336-2343.
    Zhang X.C., Xu B.S., Wang H.D., et al. Residual stress relaxation in film/substrate system due tocreep deformation, Journal of Applied Physics,2007,101,083530-1-6.
    Zhang X.C., Xu B.S., Wang H.D., et al. Residual stresses distributions within high-temperaturecoatings. Surface and Coatings Technology,2007,201:6660-6662.
    Zhang X.C., Xu B.S., Wang H.D., et al. Thermal residual stresses in multilayered coatings.Journal of Material Science&Technology,2005,21:599-605.
    Zhang X.C., Xu B.S., Wang H.D., et al. Underlying mechanism of stress generation in surfacecoatings.Surface and Coatings Technology,2007,201:6715-6718.
    Zhang X.C., Xu B.S., Wu Y.X., et al. Porosity, mechanical properties, residual stresses ofsupersonic plasma-sprayed Ni-based alloy coatings prepared at different powder feed rates.Applied Surface Science,2008,254:3879-3889.
    Zhang X.C., Xu B.S., Xuan F.Z, et al. Rolling contact fatigue behavior of plasma-sprayedCrC-NiCr cermet coatings. Wear,2008,265(11-12):1875-1883.
    Zhang X.C., Xu B.S., Xuan F.Z., et al. Fatigue resistance of plasma-sprayed CrC-NiCr cermetcoatings in rolling contact. Applied Surface Science,2008,254(13):3734-3744.
    Zhang X.C., Xu B.S., Xuan F.Z., et al. Rolling contact fatigue behavior of plasma-sprayedCrC-NiCr cermet coatings. Wear,2008,265:1875-1883.
    Zhang Z.Q., Li G.L., Wang H.D., et al. Investigation of rolling contact fatigue damage process ofthe coating by acoustics emission and vibration signals. Tribology International,2012,47(1):25-31.
    Zheng X.L., Wei J.F. On the prediction of P-S-N curves of45steel notched elements andprobability distribution of fatigue life under variable amplitude loading from tensileproperties. International Journal of Fatigue,2005,27:601-609.
    Zhu K.P., Wong Y.S., Hong G.S. Wavelet analysis of sensor signals for tool condition monitoring:A review and some new results. International Journal of Machine Tools and Manufacture,2009,49(7-8):537-553.
    Zhu Z.K., Yan R.Q., Luo L.H., et al. Detection of signal transients based on wavelet and statisticsfor machine fault diagnosis. Mechanical Systems and Signal Processing,2009,23(4):1076-1097.
    储胜利,樊建春,张来斌,等.全尺寸石油套管冲击滑动复合磨损试验机的研制.润滑与密封,2007,32(7):125-128+155.
    何继宁,阎殿然,董艳春,等.等离子喷涂Al2O3与Al2O3/TiO2涂层中的相变及涂层的耐腐蚀行为.金属热处理,2005,30(8):46-48.
    李子丰,王长进,李天降,等.油井钻杆-套管摩擦磨损试验机的研制.石油机械,2006,34(11):11-13+19.
    刘宝林,彭鹏,高德利,等.油气钻探技术中耐磨材料的研究进展.硅酸盐通报,2009,28(3):553-557.
    刘广志.科学钻探促动地球科学发展.世界科技研究与发展,2000,22(4):10-15.
    邱铁兵.试验设计与数据处理.合肥:中国科学技术大学出版社,2008.
    石成刚,马卫国,陈定玺,等.爆炸喷涂WC-Co涂层研究及在螺杆钻具中的应用.石油机械,2005,33(5):19-22.
    宋生印,刘永刚,王力,等.套管钻井用套管外表面磨损后剩余强度分析.石油机械,2006,34(2):7-10.
    万里平,孟英峰,蔚悯若,等.气基流体欠平衡钻井腐蚀/冲蚀研究进展.天然气工业,2007,27(6):64-67.
    王成彪,刘家浚,韦淡平,等.摩擦学材料及表面工程.北京:国防工业出版社,2012.
    王海军.热喷涂工程师指南.北京:国防工业出版社,2010.
    王海军.热喷涂技术问答.北京:国防工业出版社,2006.
    王海军.热喷涂实用技术.北京:国防工业出版社,2006.
    王韶云,李国禄,王海斗,等.重熔处理对NiCrBSi涂层接触疲劳性能的影响.材料热处理学报,2011,32(11):135-139.
    魏振毅,叶辉,赵小健,等.等离子喷涂Al2O3-13wt%TiO2纳米涂层的组织性能.材料热处理学报,2009,30(2):146-151.
    温诗铸,黄平.摩擦学原理.北京:清华大学出版社,2008.
    吴子健.热喷涂技术与应用.北京:机械工业出版社,2007.
    徐滨士,朱绍华.表面工程的理论与技术.北京:国防工业出版社,2010.
    徐滨士.装备再制造工程的理论与技术.北京:国防工业出版社,2007.
    许刘万,曹福德,葛和旺.中国水文水井钻探技术及装备应用现状.探矿工程(岩土钻掘工程),2007,(1):33-38+43.
    鄢泰宁,补家武,吴翔,等.试论月球表面钻探取样的难点与关键技术.地质科技情报,2004,23(4):12-14.
    杨晖,王良.等离子喷涂的电弧伏安特性.焊接学报,2007,28(12):77-80.
    杨明纬.声发射检测.北京:机械工业出版社,2005.
    于翔,刘宝林,王成彪.载能粒子沉积用于钻探机具的硬质润滑薄膜.探矿工程(岩土钻掘工程),2009,(S1):74-81.
    张凌,宁伏龙,蒋国盛,等.海洋水合物钻探取心与处理现状分析.探矿工程(岩土钻掘工程),2009,(S1):100-103.
    张晓东,贾国超,吴臣德.空气钻井钻具冲蚀磨损机理的分析.西南石油大学学报(自然科学版),2009,31(2):139-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700