用户名: 密码: 验证码:
太阳能明托热机的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会文明的不断进步和人们生活水平的不断提高,人们对能源的需求量也越来越大。而常规能源日渐枯竭,因此大力发展各种可再生能源成为当务之急。太阳能集热和各种余热、废热等低品质热能来源广泛、总量巨大,但从中提取机械能难度较大。明托热机是一种可将太阳能或其他低品质热能转化为机械能的装置,具有低转速,高扭矩的特点,能在较小的温差下吸热做功,具在独特优势。但其较低的性能阻碍了自身的发展和应用。
     明托热机的理论研究还不完善,此前关于明托热机的理论研究较少,仅一篇论文提出明托热机理论效率的计算方法,但公式在随后的应用过程中出现被误用的现象。本文将就明托热机目前存在的问题进行研究和探讨,在分析、计算和提高热机性能方面做出尝试。
     本文主要内容包括明托热机的理论研究、数值模拟和实验研究。
     研究首先阐述了明托热机原始结构模型的能量吸收和转化过程,分析原始结构模型效率低下的原因,提出了改进结构模型,通过添加绝热内壁面与绝热活塞等附属结构,按作用将工质分为相变做功和传导配重两个部分,仅使需要相变做工的工质吸热,使仅起传导配重作用的工质与热源隔离,以此减少大量吸热量和缩短吸热时间,大幅提高热机效率和功率。
     理论分析部分,基于前人所做分析和假设,提出适用于明托热机原始和改进结构模型的显热法和焓差法两个改进的效率公式,以方便计算并避免被误用的问题;小温差条件下进一步简化明托热机改进结构模型的理论公式,结论显示其效率接近卡诺循环效率。针对太阳能集热器集热和聚光集热两种典型太阳能热利用方式,提出适用于恒定热源温度条件和恒定热流密度条件下明托热机原始和改进结构模型的功率公式,填补热机理论功率计算空白;在改进结构模型中,进一步的简化分析表明,其在恒定热源温度条件下最大功率出现在工质工作温差为冷、热源温差一半的时候。
     应用数值模拟的方法,通过自主编程,选取6种常见工质,应用对应态理论求解工质热物性参数,分别计算了明托热机原始和改进结构模型在恒定热源温度和恒定热流密度条件下的性能表现。模拟结果显示,明托热机原始结构模型的效率和功率较低,且受工质热物性影响较大,恒定热源温度条件下热机最大功率出现在工质工作温差略小于冷、热源温差一半的时候;在恒定热流密度条件下,工质需要较高的工作温度,实用性较低。明托热机改进结构模型的效率和功率都很高,受工质热物性影响较小,在恒定热源温度条件下热机最大功率出现在工质工作温差略大于冷、热源温差一半的时候;在恒定热流密度条件下,工作温度明显低于原始结构模型,且顶部容器内工质温度随工作温差增大而减小,符合实际可能的应用条件,实用性较强。在恒定热源温度条件下,不同的传热系数对明托热机原始和改进结构模型的的效率影响不大,较高的传热系数可明显提高两种热机模型的功率。
     为测试明托热机性能,一个采用丙酮作为工质的直径2米的原始结构型明托热机被用于实验研究中,在40℃、50℃和60℃热源温度条件下监测热机内部工质循环过程中的温度和压力动态变化情况,首次观测到了温度和压力变化趋势先一致、后背离的现象,并定性和定量分析其变化过程,计算出热机不同部分的具体吸热量,为探索热机能量转化分配规律,优化热机设计提供参考。
     综上所述,本文着重于明托热机的效率和功率的理论研究,提出了明托热机改进结构模型,针对不同集热条件进行了模拟研究,同时进行了基于动态观测的实验研究,为明托热机的进一步发展和优化,尤其在太阳能热利用方面,提供参考和建议。
Requirement for energy is growing rapidly with the continuous progress of human civilization and the continuous improvement of people's living standards. Development of renewable energy is of great significance because of existence of threat of conventional energy exhaustion. Heat source from solar collectors and other low-quality heat are good complementary and alternative with a variety of sources and a huge amount. But there are still some difficulties in production of mechanical energy with them. Minto solar heat engine is a device that coverts solar energy or other waste heat into mechanical energy. The engine with characteristic of low speed and high torque can be driven by a small temperature difference. But low performance hindered the development and application of the heat engine.
     There are few theoretical studies on the Minto solar heat engine. Only one paper presented its thermal efficiency formula which is misused sometimes in the later studies. Theoretical study of Minto solar heat engine is not perfect yet. The aims of this paper are to discuss the problems existing, and to make some attempts in analysis, calculation, and improvement of performance of Minto solar heat engine.
     The main contents of this paper include theoretical, numerical simulation and experimental study of Minto solar heat engine.
     First of all, energy convention and distribution absorbed from heat source is analysis in order to analyze the reasons for the low efficiency of original Minto engine. Then an improved Minto engine model with structural improvements is presented. Additional internal adiabatic wall and adiabatic piston is used to divide working fluid into two parts:one small part that has phase change and product useful work can absorb energy from heat source; and the other major part which is on transmission and weight function and doesn't have phase change is insulated from heat source in order to avoid energy waste and improve the efficiency and power greatly.
     In the theoretical analysis part, based on the previous assumption and analysis, both sensible heat method and enthalpy method thermal efficiency formula applies to both original and improved Minto aolsr heat engine are presented in order to simplify calculation and avoid being misused. The thermal efficiency formula of improved Minto engine is simplified when temperature difference of working fluid is small, then conclusion that its thermal efficiency is close to Carnot maximum efficiency is made. According to the two typical applications that solar collector and solar concentrator, both power formula for original and improved Minto solar heat engine are presented that applies to constant temperature heat sources and to constant heat flux density, which fill the gaps of theoretical power ayalysis. In the improved Minto engine, a conclusion is made that the maximum power appears when working temperature difference is about half of that of low and high temperature heat sources.
     Using numerical simulation methods with independent programming,6materials are chosen to estimate the performance of both original and improved Minto solar heat engine under conditions of constant temperature heat sources and to constant heat flux density. The thermophysical properties of working fluid are calculated by the principle of Corresponding States. Simulation results show that the thermal efficiency and power of original Minto engine is low under both conditions, and impacted greatly by thermophysical properties of working fluid. Under condition of constant temperature heat sources, maximum power appears when working temperature difference is a bit less than half of that of heat sources. Under condition of constant heat flux density, temperatures of working fluid are high, which is practical difference. The thermal efficiency and power of improved Minto engine is high under both conditions, and impacted less by thermophysical properties of working fluid. Under condition of constant temperature heat sources, maximum power appears when working temperature difference is a bit more than half of that of heat sources. Under condition of constant heat flux density, temperatures of working fluid are low, which is in line with the actual conditions of application. Under condition of constant temperature heat sources, thermal efficiency of both original and improved Minto engine is impacted less by different heat transfer coefficient, and higher heat transfer coefficients will significantly improve the power of heat engine.
     A two-meter in diameter original Minto solar heat engine with acetone as working fluid is build in order to test the performance. Dynamic temperature and pressure data is recorded when the temperature of high temperature source is40℃,50℃, and60℃. A phenomenon has been observed first time that pressure is consistent with temperature at first and then inconsistent. Qualitative and quantitative analysis of the process of the change is promoted. Different parts of heat absorption of this experiment are calculated. All above may provide some suggestions for further design and optimization of Minto solar heat engine.
     In summary, this paper focuses on the theoretical research on the thermal efficiency and power of Minto solar heat engine. This paper presented the model of improved Minto solar heat engine, some results of targeted simulation study, and experimental analysis based on dynamic process. It may provide some suggestions on development and optimization of Minto engine, especially in solar energy applications.
引文
[1]陈则韶.2008.高等工程热力学[M].北京:高等教育出版社.
    [2]杜春旭,王普,马重芳等.2010.线性菲涅耳聚光系统无遮挡镜场布置的光学几何方法[J].光学学报,30(11):3276-3282.
    [3]符慧德.2012.热管式光伏光热综合利用系统的理论和实验研究[D]:[博士].安徽:中国科学技术大学.
    [4]国家统计局能源统计司.2012.中国能源统计年鉴[J].中国统计出版社.
    [5]国务院新闻办公室.2012.中国的能源政策(2012)[M].北京:人民出版社.
    [6]韩崇巍.2009.太阳能双效溴化锂吸收式制冷系统的性能研究[D]:[博士].安徽:中国科学技术大学.
    [7]黄素逸,王晓墨等.2008.能源与节能技术[M].北京:中国电力出版社.
    [8]慧聪太阳能网.2013.太阳能热利用产业亟待回归正常轨道[0L]http://info.solar.hc360.c om/2013/03/050902121922.shtml
    [9]霍志臣;罗振涛.2006.国内外平板太阳能热水器发展概况.太阳能.2006(6):1-2.
    [10]江清阳.2012.与新型百叶集热墙结合的复合太阳能炕系统实验和理论研究[D]:[博士].安徽:中国科学技术大学.
    [11]金东寒.2009.斯特林发动机技术[M].黑龙江:哈尔滨工业大学出版社.
    [12]李宏岳.2012.能源消费和中国经济增长关系研究[J].经济问题探索,2012(1):14-19.
    [13]李楠,孙文策,张财红,史玉凤.2011.表层结冰对太阳池性能的影响研究.32(8):1200-1205
    [14]罗成龙.2010.与建筑一体化太阳能双效集热器系统的实验和理论研究,中国科学技术大学博士论文[D].
    [15]罗运俊,何梓年,王长贵.2005.太阳能利用技术[M].北京:化学工业出版社.
    [16]梅映新,李志,夏焕锦.2012.低品位热能回收发电应用研究[J].船电技术,2012(32):1-3.
    [17]王爱兰.我国能源结构与能源经济效率的国际比较[J].环球中国,2012(6):43-45.
    [18]王庆一.2006.我国能源密集产品单位能耗的国际比较及启示[J].国际石油经济,2006(2),24-30.
    [19]王刚,陈则韶,胡芃艽等.2012.太阳能等照度带聚焦菲涅耳透镜研究[J].太阳能学报,33(1):81-85.
    [20]王华,王辉涛.2010.低温余热发电有机朗肯循环技术[M].北京:科学出版社.
    [21]汪玉林.2007.低温余热能源发电装置综述[J].热电技术,93(1):1—4.
    [22]王云峰,季杰,何伟,等.2012.抛物碟式太阳能聚光器的聚光特性分析与设计[J].光学学报,32(1):1-8.
    [23]谢果,郑宏飞,王海江,等.2010.新型槽式太阳能聚光集热器的研究与试验[J].可再生能源,2010(6):1-5.
    [24]熊亚选,吴玉庭,马重芳,等.2010.槽式太阳能聚光器性能数值研究[J].工程热物理学报,31(3):495-498.
    [25]杨敏林,杨晓西,林汝谋等.2008.太阳能热发电技术与系统[J].热能动力工程,23(3):221-226.
    [26]鄢琼伟,陈浩.2011.GDP与能源消费之间的关系研究[J].中国人口·资源与环境,21(7):13-19.
    [27]杨世铭,陶文铨.2006.传热学[M],高等教育出版社.
    [28]英国石油公司(BP).2012.BP世界能源统计年鉴[OL]http://news.xinhuanet.com/energy/ 2012-06/27/c_123335323.htm
    [29]于晓燕,崔爱红.2011.我国太阳能利用的现状、问题与对策[J].科技信息,2011(3):53-54
    [30]赵争鸣,刘建政,孙晓瑛,袁立强.2005.太阳能光伏发电及其应用[M].北京:科学出版社.
    [31]张军,孟祥睿,马新灵.2012.低品位热能利用技术[M].北京:化学工业出版社.
    [32]张耀明.2009.太阳能热发电技术[J].高科技与产业化.2009(7):28-30.
    [33]中国国家标准化管理委员会.2011.GB/T 26972-2011聚光型太阳能热发电术语[S].北京:中国标准出版社.
    [34]中国能源研究会.2012.2012中国能源发展报告[M].北京:中国电力出版社.
    [35]中国气象局太阳能风能资源评估中心.2012.http://cwera.cma.gov.cn/cn/.
    [36]中华人民共和国国务院新闻办公室.2007.中国的能源状况与政策[M].北京:人民出版社
    [37](日)滨口和洋,户田富士夫,平田宏一.曹其新,凌芳等译.2010.斯特林引擎模型制作[M].上海:上海交通大学出版社.
    [38]C. M. P. Cunha, A. R. Parise.1992. Modelling of the Dynamics of a Low-speed Gas-liquid Heat Engine. Solar Energy.48(6):353-361.
    [39]E. F.. Lindsley. cited 2011. Wally Minto's Wonder Wheel. Popular Science.1976 Mar. Available from:http://www.rexresearch.com/minto/minto.htm
    [40]F.P.Lncropera, D.P.DeWitt, T.L.Bergman, A.S.Lavine. cited 2012. Fundamentals of Heat and Mass Transfer.6th ed. translated by Ge Xinshi and Ye Hong. Beijing:Chemical Industry Press; Chinese.
    [41]J. A. R., Parise.1989. Mathematical Modelling of a Low Speed Gas-Liquid Heat Eng ine. Proceedings of the 24th Intersociety Energy Conversion Engineering Conference. 6-11; Washington, D.C.. p.2565-2569.
    [42]Mauro Marques Burjaili, Jose Alberto Reis Parise.1989. Experimental Analysis of a Low-Speed Heat Engine. Experimental Thermal and Fluid Science,2(1):45-50.
    [43]Muller-Steinhagen H, Heck K.1986. A simple friction pressure drop correlation for t wo-phase flow in pipes[J]. Chemical Engineering Progress,20:297-308.
    [44]Riaz M.1976. A theory of Concentrators of Solar Energy on a Central Receiver for Electric Power Generation [J]. J. Eng. Power ASME,98(3):375-385.
    [45]Saitoh H, Hamada Y, Kubota H, et al.2003. Field experiments and analyses on a hy brid solar collector[J]. Applied Thermal Engineering,23:2089-2105.
    [46]Sui Lin, R. Bhardwaj.1980. The Effect of Material Properties on the Thermal Efficie ncy of the Minto Solar Wheel. J. Eng. Power.102:504-507.
    [47]Sui Lin.1980. The Thermodynamic Cycle of the Minto Solar Wheel. ASHRAE Tran s.86(1):408-419.
    [48]Sootha G, Negi B.1994. A Comparative Study of Optical Designs and Solar Flux Co ncentrating Characteristics of a Linear Fresnel Reflector Solar Concentrator with Tubul ar Absorber [J]. Solar Energy Materials and Solar Cells,32(2):169-186.
    [49]Terence I. Quichenden, Kathryn M. Hindmarsh, Kean-Guan Teoh.2004. Experimental Study of the Minto Engine-A Heat Engine for converting Low Grade Heat to Mec hanical Energy. J. Sol. Energy Eng.126(1):661-668.
    [50]The Mother Earth News editors.1976. Mother's Minto Wheel:A Report. The Mother Earth News. Jul.40:102. Available from http://www.motherearthnews.com/Nature-Com munity/1976-07-01/Chemistry-Book-Lessons.aspx
    [51]The Mother Earth News editors.1976. Is This The 'Breakthroug' Solar Engine We've All Been Looking For? The Mother Earth News.38:96. cited 2011. Available from http://www.motherearthnews.com/Green-Transportation/1976-03-01/Solar-Engine.aspx
    [52]Wikipedia Foundation. Minto wheel [OL]. Available from:http://en.wikipedia.org/wiki/ Minto wheel

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700