用户名: 密码: 验证码:
机房用乙二醇换热器优化控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源紧张日益严峻,节能减排已经成为全世界最为关注的热门课题之一。能源消耗总量中通信设备的耗能占有一定的份额,通信机房和通信基站内部设备散热量大,需要全年无间歇的制冷以控制室内温度,此外,通信设备的正常运行对环境中的湿度和洁净度等参数都有严格的要求。空调作为目前通信机房的主要温控设备,其耗电量占通信机房总耗电量的45%左右,泄漏时并产生温室气体。乙二醇换热器利用机房室外的自然冷源与室内的温差进行换热,能够屏蔽室外空气中的灰尘、杂质和水分的影响,但是乙二醇换热器的工作前提是室内外存在一定的温差,这使得乙二醇换热器的使用具有局限性,小能够完全的替代空调在通信机房控温中的作用,通过乙二醇换热器与空调系统的联动控制能够实现通信机房的节能目标。本文对乙二醇换热器重点进行了以下几个方面的研究:
     1)对自然冷源在不同气候区的利用率进行了深入研究,以实际的通信机房为样本,建立了通信机房的模拟模型,对机房模型在不同气候区的建筑特性和热负荷特性进行了系统的分析,结果表明:哈尔滨地区通信机房适合的围护结构为砖混37利彩钢板50;北京、武汉、南宁、昆明地区通信机房适合的围护结构是砖混24和彩钢板50:哈尔滨地区的通信机房在冬季存在空调热负荷,北京、武汉、南宁和昆明地区的通信机房全年需要制冷;在全年的制冷需求中,哈尔滨地区自然冷源可利用时间达到9个月,北京、武汉、昆明地区自然冷源可利用时间在6个月左右,南宁地区有3个月的时间可采用自然冷源技术;自然冷源技术在通信机房制冷中的应用可以分担空调大部分冷负荷,缩短空调的上作时间,从而节约空调能耗;通过对自然冷源利用率的分析,为乙二醇换热器的可行性提供了理论依据。
     2)对乙二醇换热器理论模型的参数进行了分析和计算,主要从两方面进行研究,一是对换热器内部流体的物理特性分析,包括乙二醇溶液的密度、比热、导热系数和动力黏度;二是换热器热学参数的计算,包括换热器结构的初步规划及几何参数计算、换热器载冷剂的流速、室内和室外风量的确定、室内和室外换热器传热半均温差的计算、管内膜管外膜传热系数的计算、翅片效率计算、换热系数及换热器外形结构计算、风机与循环泵的选型。结果表明:哈尔滨地区适合选择换热器的工质为50%体积浓度乙二醇溶液,北京地区适合选择40%体积浓度乙二醇溶液为换热器的载冷剂,武汉和昆明较为适合20%体积浓度乙二醇溶液为换热器工质,南宁地区常年温度高于水的冰点,只需O%浓度的工质即可。换热器模型可以适用于5个代表性地区的通信机房。
     3)对乙二醇换热器的控制参数进行了优化设计,通过系统的理论分析和计算,建立了能够满足约束的功率模型,并通过遗传算法和有效集算法搜索得到了在离散温差点的功率模型最优解,进而利用Elman神经网络对连续温差的功率和频率特性进行预测,分别得到50%、40%、20%、0%体积浓度乙二醇溶液为工质的功率与频率模型。通过模型控制变频参数并计算出泵和风机的换热量和消耗功率,与热半衡实验室模拟环境中测得的实际数据进仃误差分析,结果表明:功率模型与实测数据的绝对误差均可以控制在5%范围内,能够满足实际变频控制的需求,因此通过功率模型确定变频参数实现换热器泵和风机的节能是准确可靠的。
     4)对乙二醇换热器在通信机房中的节能效果进行了全面的分析,通过建立乙二醇换热器的能效比模型,得出5个代表性城市通信机房在所适合的围护结构中,采用乙二醇换热器与空调联动系统制冷的全年能耗,与单独采用空调制冷的全年能耗。进而计算出乙二醇换热器的节能率和年利用时间。结果表明:在承担同样的机房冷负荷条件下,采用乙二醇换热器的耗能要显著小于空调的耗能;哈尔滨地区通信机房可利用乙二醇换热器的时间近9个月、北京超过6个月、武汉超过5个月、南宁约3个月、昆明达到6个月;哈尔滨地区砖混37围护结构中采用乙二醇换热器与空调联动系统全年节能率达到31.9%,北京、武汉、南宁、昆明地区砖混24围护结构中采用联动系统全年节能率分别为24%、20.5%、10.5%、33.5%;哈尔滨、北京、武汉、南宁、昆明地区彩钢板50围护结构中,采用联动系统节能率达到42.7%、35.4%、28.4%、12.9%、34.5%;乙二醇换热器在我国通信机房的节能应用中能够发挥巨大的潜力。
     本文的研究工作为乙二醇换热器在通信机房中的节能提供了理论和应用依据,尤其在换热器的设计和变频控制思想方面提供了重要的技术支持,同时在乙二醇换热器对自然冷源的利用方面,对其地域特性和节能效率进行了全面深入的研究,为通信机房的节能减排开辟了广阔的应用前景。
Energy saving and emission reduction have been one of the hot problems all over the world with the increasingly rigorous energy crisis. The consumption of communication equipment in which the internal units of communication center and communication base station have large amounts of heat dissipation and need refrigeration year-round without intermission to control the indoor temperature occupies a large part of total energy consumption. In addition, there is strict requires for some environment parameters, such as humidity and cleanliness, in the normal operation of communication equipment. At present, air-condition which power consumption account for about45%of the total power consumption of communication center and produce greenhouse gases is the main temperature control equipment in communication center. The ethylene glycol heat exchanger which works with the difference in temperature between the ambient energy and inside can screen the effect of dust, impurities and moisture outside air. However, the ethylene glycol heat exchanger does not replace the air condition due to the boundedness that the operation premise of ethylene glycol heat exchanger is temperature difference. The energy saving goal of communication center can be achieved with the linkage control of ethylene glycol heat exchanger and air condition system. In this paper, the research of ethylene glycol heat exchanger focuses on following aspects.
     1) After the in-depth study of utilization of ambient energy in different climate zones, the simulation model of communication center which is built in terms of actual communication center is systematically analyzed on structure characteristics and heating load characteristics in different climate zones. The results show that the suited building envelope of communication center for Harbin is brick37and color plate50, the suited building envelope of communication center for Beijing, Wuhan, Nanning and Kunming is brick24and color plate50, air condition heating load of communication center exists in Harbin's winter and the communication center of Beijing, Wuhan, Nanning and Kunming need refrigeration year-round, the available time of ambient energy for Harbin is9months, for Beijing, Wuhan and Nanning is about bmonths and for Nanning is3months, the ambient energy technology in communication center which share the most cooling load for air condition and shorten the working time of air condition can save the energy consumption of air condition and the theory of ethylene glycol heat exchanger is feasible by means of the analysis of ambient energy utilization.
     2) The simulation model parameters of ethylene glycol heat exchanger are analyzed and calculated on two aspects. One is the physical characteristics analysis of fluid in heat exchanger, including the density, specific heat, thermal conductivity and dynamic viscosity of glycol solution. Another is the calculation of heat parameter, including the preliminary scheme and geometric parameters calculation of heat exchanger structure, the flow velocity of heat exchanger secondary refrigerant, the air quantity outside and inside, the mean temperature difference of heat exchanger outside and inside, the heat transfer coefficient of tube film inside and outside, the fin efficiency, the coefficient and appearance structure of heat transfer and the type selection of draught fan and circulating pump. The results show that in Harbin, the suited refrigerant of heat exchanger is50%volume concentration glycol solution, in Beijing, the value is40%volume concentration, in Wuhan and Kunming, the refrigerant of heat exchanger is20%volume concentration glycol solution and0%volume concentration is needed in Nanning where the temperature is above the freezing point of water year-round. The heat exchanger model is suit for ccmmimication center of five representative areas.
     3) The control parameters of ethylene glycol heat exchanger are optimally designed and the power model which satisfies the constraint is built in terms of the theoretical analysis and calculation. The optimal solution of power model on discrete temperature difference points is obtained with the genetic algorithm and effective set algorithm. And then, the power characteristics and frequency characteristics of continuous temperature difference are forecasted with Elman neural network to get the power and frequency model with the50%,40%,20%and0%volume concentration glycol solution as the refrigerants. The error analysis between heat transfer and consumed power of pump and draught fan from model which can control frequency conversion parameter and actual data obtaining from the simulation environment in heat balance laboratory is done to get the results that the absolute error which is controlled in5%can meet the actual frequency conversion controlling requirement. Therefore, the energy conservation of heat exchanger pump and draught fan is precise and reliable with frequency conversion parameter which is controlled by power model.
     4) With the comprehensive analysis of energy conservation with ethylene glycol heat exchanger in communication center, with linkage system of ethylene glycol heat exchanger and air condition and the annual energy consumption with independent control of air condition among the suited building envelop in communication center of five representative areas can be obtained by building the energy efficiency ratio model of ethylene glycol heat exchanger. Then the energy conservation rate and annual utilization time of ethylene glycol heat exchanger are figured out. The results show that energy consumption with ethylene glycol heat exchanger is significantly smaller than energy consumption with air condition under the same cooling load conditions in center. The utilization times with ethylene glycol heat exchanger in the five representative areas are about9months in Harbin, more than6months in Beijing, more than5months in Wuhan, about3months in Nanning and6months in Kunming. In Harbin, the annual energy conservation rate can reach31.9%under the linkage system of ethylene glycol heat exchanger and air condition with brick37building envelope, moreover, in Beijing, Wuhan, Nanning and Kunming, the annual energy conservation rate can separately reach24%,20.5%,10.5%, and33.5%under the linkage system of ethylcne glycol heat exchanger and air condition with brick24building envelope. In Harbin, Beijing, Wuhan, Nanning and Kunming, the annual energy conservation rate can separately reach42.7%,35.4%,28.4%,12.9%and34.5%under the linkage system with plate50building envelope. Therefore, on the energy conservation application of China's communication centers, the ethylene glycol heat exchanger can express great potential.
     In this paper, the research applies the theory and application foundation for the energy conservation of ethylene glycol heat exchanger in communication, especially, offering the technology supply on heat exchanger design and frequency conversion control theory. Meanwhile, the comprehensive and in-depth research of region characteristics and energy conservation efficiency on the ambient energy utilization of ethylene glycol heat exchanger open up vast potential for future development for the green energy conservation of communication.
引文
[1]吴明明.中国能源消费与经济增长关系研究[D].华中科技大学,2011.
    [2]钱伯章.世界能源消费现状和可再生能源发展趋势[J].节能与环保,2006(3):8-11,2006(4):13-16.
    [3]秦湘灵,刘琳,曾鸣,等.Power customer value assessment research based on K-Means method[C]. International Conference on Management and Service Science. MASS,2009, Wuhan. China.
    [4]秦大志.移动通信基站节能技术[J].邮电设计技术,2008,(6):58-59.
    [5]陈沂,吴基,王飞,等.广州地区通信基站通风冷却节能技术研究[J].建筑科学,2008,24(12):27-31.
    [6]《通信行业能源管理体系及审计方法》研究[EB/OL].[2010-5-4].http://www.comjn.cn/ news/display/article/86.
    [7]赵宇新.“十二五“节能减排开始节电或成运营商关注重点[EB/OL].[2010-11-25].http: //www.donews.com/tele/201011/283965.shtm.
    [8]刘涛.移动通信基站的综合节能[J].电信工程技术与标准化:2006,6:32-34.
    [9]黄成龙,杨文鹏.移动通信基站节能控制的理论与实践[J].西安工程大学学报,2008,22(2):205-209.
    [10]基站节能系统技术规---智能换热器部分[S].中国移动通信企业标准QB-W-004-2006
    [11]《中华人民共和国通信行业标准YD/T1624-2007》[S].
    [12]周峰.两相闭式热虹管传热机理及其换热机组工作特性的研究[D].北京工业大学,2011.
    [13]范合君.中国电力产业规制与改革博弈分析[D].首都经济贸易大学,2005.
    [14]Hayama H.Nakao M.Air flow systems for telecommunications equipment rooms[C]//Source: INTELEC. Tenth International Telecommunincations Energy Conference Conference Proceedings(Cat No.89 CH2849-8),1989.
    [15]Noh Hong-Koo, Kyu Sop song, Soo Keun Chun. The cooling characteristics on the air supply and return flow system in the telecommunication cabinet room[C]//Twentieth International Telecommunication Energy Conference(Cat No.98ch36263),1999.
    [16]Nakao Masaki, Hayama hirofumi, Nishioka Masatoshi. Which Cooling air supply system is better for a high heat density room Under floor or Overhed[C]//International Telecommunincations Energy Conference(Proceedings):393.
    [17]李长云.利用自然冷源进行隔绝换热的节能措施[J].电信技术,2008,(8):52-53.
    [18]王景刚,康利改,刘杰.廊坊IDC机房空调节能改造可行性分析[J].制冷与空调,2009,9(1): 78-82.
    [19]董峰.高性能计算机机房专用空调节能措施的探讨[J].电信技术,2008,(2):75-77.
    [20]江亿,郑川,杨文俊,等.热管技术在移动通信基站环境控制中的应用及节能研究项目介绍[J].广东科技,2010,(9):98.
    [21]陈育伟.寒冷地区程控机房利用自然冷源空调节能的探讨[J].邮电设计技术,2003,(1):45-49.
    [22]侯福平.通信基站空调系统节能技术探讨[J].通信电源与基站空调的安全节能,2006,(6):20-21.
    [23]中国电信集团.通信机房用电分析及节能方法概述[J].广东通信技术,2009,(2):38--46.
    [24]唐子明.中央空调变频节能技术研究及工程应用[D].重庆大学,2005.
    [25]夏志慧.变频空调压缩机控制系统的研究[D].哈尔滨工业大学,2007.
    [26]汪东,陈克胜.移动通信基站空调节能技术方案分析[J].机电工程技术,2010,39(4):46-49.
    [27]中国电信集团.机房新风直接引入节能技术[J].广东通信技术,2009,(5):28-34.
    [28]Shehabi. Arman.Energy Implications of Economizer Use in California Data Centers[R]. Lawrence BerKeley National Laboratory,2008.
    [29]中国电信集团,机房新风热交换节能技术[J].广东通信技术,2009,(6):47-54.
    [30]鲍玲玲,王景刚,张明杰,等.通信机房用空气换热器的性能测试与分析[J].制冷空调与电力机械,2008,29(2):71-73.
    [31]庄骏,张红.热管技术及其工程应用[M].北京:化学工业出版社,2000:350-360.
    [32]杨茂光.内蒙移动通信楼乙二醇空调节能改造[C].2008通信电源学术研讨会论文集,2008.
    [33]甘庆军.蓄冰桶内冰晶溶解过程的数学模型研究[J].流体机械,2005,33(4):62-64.
    [34]陈金榜.蓄冰空调系统中蓄冰设备的技术性能分析[J].机电技术,2007,(2):67-68.
    [35]黄建恩.高涛.一种士壤蓄冷与双级热泵集成系统[J].暖通空调,2007,37(11):40-42.
    [36]董小勇,郭宪民,汪伟华.多功能空调冰蓄冷实验装置的研制及应用[J].暖通空调,2008,38(3):6-10.
    [37]华贲.大型LNG接收站冷能的综合利用[J].天然气工业,2008,(3):10-15.
    [38]熊永强,华贲,贾德民.以冷媒为介质的液化天然气冷能利用系统[J].现代化工,2009,29(3):72-76.
    [39]Q. Liao, M.D. Xin. Experimental investigation on forced convective heat transfer and pressure drop of ethylene glycol in tubes with three-dimensional internally extended surface[J]. Experimental Thermal and Fluid Science, Volume 11, Issue 4, November 1995, Pages:343-347
    [40]S. Sanitjai, R.J. Goldstein. Heat transfer from a circular cylinder to mixtures of water and ethylene glycol[J]. International Journal of Heat and Mass Transfer, Volume 47, Issue 22, October 2004, Pages:4785-4794.
    [4l]刘乐,姜桂传.以乙二醇水溶液为载冷剂的制冷系统设计探讨[C].2005年山东省制冷空调学术年会论文集,2005.
    [42]蒋彦龙,元伟伟,张秋,等.MW级风力发电机水冷系统的优化设计[J].南京航空航天大学学报,2008,40(2):199-204.
    [43]Masoud Dehghandokht, Mesbah G Khan, Amir Fartaj, Sepehr Sanaye. Flow and heat transfer characteristics of water and ethylene glycol-water in a multi-port serpentine meso-channel heat exchanger[J]. International Journal of Thermal Sciences, Volume 50, Issue 8, August 2011, Pages:1615-1627.
    [44]S.M. Peyghambarzadeh, S.H. Hashemabadi, S.M. Hoseini, M. Seifi Jamnani. Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators[J]. International Communications in Heat and Mass Transfer, Volume 38, Issue 9, November 2011, Pages:1283-1290.
    [45]Faisal A. Siddiqui, Engr Sarbadaman Dasgupta, Amir Fartaj. Experimental investigation of air side heat transfer and fluid flow performances of multi-port serpentine cross-flow mesochannel heat exchanger[J]. International Journal of Heat and Fluid Flow, Volume 33, Issue 1, February 2012, Pages:207-219.
    [46]郎铁军.一种可全年供冷的节能型风冷冷水机组的研制[J].制冷与空调,2012,12(1):27-32.
    [47]Dong Won Lee, Eung Sang Yoon, Moon Chang Joo, Atul Sharma. Heat transfer characteristics of the ice slurry at melting process in a tube flow[J]. International Journal of Refrigeration, Volume 29, Issue 3, May 2006, Pages:451-455.
    [48]S.Kalaiselvam, P. Karthik,, S. Ranjit Prakash. Numerical investigation of heat transfer and pressure drop characteristics of tube-fin heat exchangers in ice slurry HVAC system[J]. Applied Thermal Engineering, Volume 29, Issues 8-9, June 2009, Pages: 1831-1839.
    [49]葛轶群.二元冰真空制备技术研究[D].上海海事大学硕士论文,2007.
    [50]P. Pronk, T.M. Hansen, C.A. Infante Ferreira, GJ. Witkamp. Time-dependent behavior of different ice slurries during storage[J]. International Journal of Refrigeration, Volume 28, Issue 1, January 2005, Pages:27-36.
    [51]Simone Renaud-Boivin, Michel Poirier, Nicolas Galanis. Experimental study of hydraulic and thermal behavior of an ice slurry in a shell and tube heat exchanger[J]. Experimental Thermal and Fluid Science, Volume 37, February 2012, Pages:130-141.
    [52]钟栋梁.二元冰蓄冷系统测控技术的研究[D].上海海事大学硕士论文,2005.
    [53]V. Langlois, W. Gautherin, J. Laurent, L. Royon, L. Fournaison, A. Delahaye, X. Jia. Ultrasonic determination of the particle concentration in model suspensions and ice slurry [J]. International Journal of Refrigeration, Volume 34, Issue 8, December 2011, Pages: 1972-1979.
    [54]A. Melinder, E. Granryd. Characterisation of ice and THF hydrate slurry crystal size distribution by microscopic observation method[J]. International Journal of Refrigeration, Volume 33, Issue 8, December 2010, Pages:1639-1647.
    [55]Xie H, Wang J, Xi T, et al. Thermal conductivity enhancement of suspensions containing nanosized alumina particles[J]. Journal of Applied Physics,2002,91(7):4568-4572.
    [56]Keblinski P, Eastman J A, Cahill D G. nanofluids for thermal transport[J]. Materials Today.2005,6:35-44.
    [57]Tyagi H, Phelan P E, Prasher R. Predicted Efficiency of a Nanofluid-Based Direct Absroption Solar Receiver[C]//ASME Energy Sustainability Conference, California,2007: 729-736.
    [58]Das S K, Putra N, Roetzel W. Pool boiling characteristics of nano-fluids[J]. International Journal of Heat and Mass Transfer,2003,46 (5):851-862.
    159]万峰,夏清,姚文杰,等.纳米材料对太阳能集热器应用的影响[J].陶瓷,2011,(6):16-18.
    [60]宋玲利,张仁元,毛凌波.纳米流体光热转换特性的研究[J].广东工业人学学报,2011,2: 56-58.
    [61]林艺锋.二次换热式太阳能热水器的应用研究[D].广东工业大学硕士论文,2011.
    [62]Yonghan Kim, Yongchan Kim. Heat transfer characteristics of flat plate finned-tube heat exchangers with large fin pitch[J]. International Journal of Refrigeration,2005,28(6): 851-858.
    [63]Tang LH, Zeng M, Wang QW. Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns[J]. Experimental Thermal and Fluid Science,2009,33(5):818-827.
    [64]Jader R Barbosa Jr, Claudio Melo, Christian JL Hermes, et al. A study of the air-side heat transfer and pressure drop characteristics of tube-fin "no-frost" evaporato[J]. Applied Energy, 2009,86(9):1484-1491.
    [65]李斌等.低密度翅片管换热器的传热和阻力特性研究[J].西安交通大学学报,1993,27(2):81-86.
    [66]Atkinson K N. Drakulic R. Two and three dimension numericalmodels of heat transfer over louvered fin arrays in compac heat exchangers[J]. Int J HeatMassTransfer,1998,41: 4063-4080.
    [67]Yun JY, LeeK S. Investigation ofheat transfer characteristics on vinous kinds of fin and tube heatexchangerswith interrupted surfaces[J]. Int. J, HeatMassTransfer,1999,42:2375-2385.
    [68]康海军,李妩,李慧珍,等.平直翅片管换热器传热与阻力特性的实验研究[J].西安交通大学学报,1994,28(1):91-98.
    [69]WangC C, FuWL, ChangCT. Heattransfer and friction character-istics of typical wavy fin-and-tube heat exchange[J]. ExperimentalThermal and Fluid Science,1997,14 (2): 174-186.
    [70]Madi MA, John R A, Heikal MR. Performance characteristics correlation for round tube and plate finned heat exchangers[J]. Int J Refrig,1998,21 (7):507-517.
    [71]Ricardo RM, Sen M, Yan KT, et al. Effect of fin spacing on convection in a plate fin and tube heat exchanger[J]. Int J HeatMass Transfer,2000,43:39-51.
    [72]Wang C C, ChiK Y. Heat transfer and friction characteristics of plain fin-and-tube heat exchangers[J]. Int. J Heat Mass Transfer,2000,43:2681-2691.
    [73]姬长发,傅明星,王美,等.管翅换热器换热与流动的三维定常特性分析[J].西安科技大学学报,2007,27(2):182-186.
    [74]闭敬春,陶涛,彭晓峰.椭圆管直翅换热器翅片效率地计算[J].工程热物理学报,2001,22(4):473-476.
    [75]Leu J S, Liu MS, Liaw J S, et al. A numerical investigation of louvered fin-and tube heat exchangers having circular and oval tube configurations [J]. Int J Heat and MassTransfer, 2001,44:4235-4243.
    [76]Wang. CC, Lee WS, Sheu WJ, Chang YJ, et al. A comparison of the airside Performance of the Fin-and-tube heat exchangers in wet conditions with and without hydrophilic coating [J]. Applied Thermal Engineering,2002,22:269-278.
    [77]何江海,陈蕴光,徐正本,等.风冷式平直翅片管换热器的数值分析[J].制冷与空调,2003,3(4):26-28.
    [78]He Yaling, Zhang W, Tao Wenquan, et al. Numerical simulation of heat transfer of air across finned tube-banks[C]. Proceedings of the 3rd International Symposium on the Heat Transfer and Energy Conser-Vation, Guangzhou,2004, (1):697-702.
    [79]Tao WQ, He Y L, Qu Z G, et al. Application of the field synergy principle in developing new type heat transfer enhanced surfaces[C]. Proceedings of the 3rd International Symposium on the Heat Transfer and Energy Conservation, Guangzhou,2004, (2):921-933.
    [80]冯毅,李毅欣.环形翅片的分析模拟与优化设计[J].低温与超导,2010,38(1):53-55.
    [81]汪磊磊,由世俊,王书中,等.水平管束降膜流动模态转变实验研究[J].建筑科学,2010,26(10):318-323.
    [82]王敬欢,黄虎,张忠斌,等.不同型式的翅片管式换热器迎风面风速不均匀性实验研究[J].建筑科学,2012,28(2):32-36.
    [83]王军,佟威,石磊,等.PID神经网络解耦控制技术在VAV中的应用[J].西北大学学报,2002,32(3):237-239.
    [84]王建明,李训铭.变风量系统空调房间建模与特性参数估算[J].计算机仿真,2002,19(4):69-72.
    [85]Shengwei Wang, Jianying Qin. Sensor fault detection and validation of VAV terminals in air conditioning systems[J]. Energy Conversion and Management, Volume 46, Issues 15-16, September 2005, Pages:2482-2500.
    [86]Jianying Qin, Shengwei Wang. A fault detection and diagnosis strategy of VAV air conditioning systems for unproved energy and control performances[J]. Energy and Buildings Volume 37, Issue 10, October 2005, Pages:1035-1048.
    [87]Jun Wang, Yan Wang, Huihe Shao. Performance improvement of VAV air conditioning control system through diagonal matrix decoupling and Lonworks technology[J]. Energy and Buildings, Volume 37, Issue 9, September 2005, Pages:911-919.
    [88]Wu Chen, Shiming Deng. Development of a dynamic model for a DX VAV air conditioning system[J].Energy Conversion and Management, Volume 47, Issues 18-19, November 2006, Pages:2900-2924.
    [89]刘冰,赵哲身.运行工况下变风量空调机频率-静压-风速特性的测试和建模[J].现代机械,2007,(3):25-27.
    [90]胡玉玲,曹建国.变风量空调系统末端的变论域模PID控制[J].控制工程,2008,15(5):564-567.
    [91]胡钦华,董阿妮,任庆昌.自适应解耦补偿控制在变风量空调系统中的应用[J].计算机工程与应用,2009,45(3):194-197.
    [92]Toiga N. Aynur, Yunho Hwang, Reinhard Radermacher. Simulation of a VAV air conditioning system in an existing building for the cooling mode[J]. Energy and Buildings, Volume 41, Issue 9, September 2009, Pages:922-929.
    [93]Young Hum Cho, Mingsheng Liu. Minimum airflow reset of single duct VAV terminal boxes[J]. Building and Environment, Volume 44, Issue 9, September 2009, Pages:1876-1885.
    [94]邱国永,何大四,范晓伟.基于预测控制的变风量空调送风系统控制特性研究[J].中原工学院学报,2011,22(1):26-30.
    [95]陈海焱.影响单式泵变流量空调水系统旁通流量的因素[J].西南科技大学学报,2002,17(4):47-50.
    [96]王红霞,李德英.循环水泵变流量调节及其在计量收费中的作用[J].区域供热,2003,(1):1-4.
    [97]姜凌,张彦.蒸发器侧冷水系统定流量和变流量的设计探讨[J].制冷技术,2006,(2):20-22.
    [98]刘付林,潘玉勤.变流量变温差调节对对流型散热器热工性能影响的研究[J].建筑节能,2010,38(2):26-28.
    [99]龙惟定,王民,谢爱霞.空调水系统变流量的运行特性[J].流体机械,2010,38(3):71-75.
    [100]封小梅,简弃非,左政.冷却水系统变流量的全年工况节能分析[J].建筑科学,2010,26(4):80-84.
    [101]陈劲晖,李萌,吴刚.一次泵交流量系统的应用探讨[J].流体机械,2005,33(6):35-38.
    [i02]伊连云,贺廉云,董玲.基于PLC的变频恒压变流量供水节能系统的研究与应用[J].能源技术,2005,26(6):257-260.
    [103]李苏泷.集中空调冷去『j水变流量问题辨析[J].暖通空调,2005,35(6):52-54.
    [104]李丽萍.变频恒压变流量加入温度参数的模糊控制的应用[J].电工技术.2006,(8):59-61.
    [105]付林,狄洪发.变流量工况下的散热器动态仿真[J].清华大学学报网络预览,2008,48(12):2029-2032.
    [106]孙爱国,梁路军.水源热泵机组地下水变流量运行特性研究[J1.暖通空调,2010,40(11):83-85.
    [107]陈涛.一次泵变流量系统机房侧能耗动态模拟及节能研究[D].湖南科技大学硕士论文, 2008.
    [108]郭安.基于GA的一次泵变流量系统运行参数优化[D].大连理工大学硕士论文,2008.
    [109]张再鹏,陈焰华,符永正.一次泵变流量系统研究现状综述[J].暖通空调,2009,39(6):47-50.
    [110]Shengwei Wang, John Burnett. Online adaptive control for optimizing variable-speed pumps of indirect water-cooled chilling systems[J]. Applied Thermal Engineering, Volume 21, Issue 11, August 2001, Pages:1083-1103.
    [111]R. Harish, E.E. Subhramanyan, R. Madhavan, et al. Theoretical model for evaluation of variable frequency drive for cooling water pumps in sea water based once through condenser cooling water systems[J]. Applied Thermal Engineering, Volume 30, Issues 14-15, October 2010, Pages:2051-2057.
    [112]Zhao Tianyi, Zhang Jili, Ma Liangdong. On-line optimization control method based on extreme value analysis for parallel variable-frequency hydraulic pumps in central air-conditioning systems[J]. Building and Environment, Volume 47, January 2012, Pages: 330-338.
    [113]《民用建筑热工设计标准》[S].GB50176-93.
    [114]韦延年.地区气候特征与气候适应性对节能住宅建筑热工设计的影响[J].四川建筑科学研究,2001,27(3):65-68.
    [115]张亚杰,尹纲领,李永安.基于DeST-h软件的城市住宅基础室温分析[J].山西建筑,2009,35(3):25-26.
    [116]郭江峰.换热器的热力学分析与优化设计[D].山东大学,2011.
    [117]马晓驰.国内外新型高效换热器[J].化工进展,2001,(1):49-51.
    [118]刘道平.乙二醇的物性参数及其应用中应注意的问题[J].冰蓄冷节能技术,23-27.
    [119]谭志成.乙二醇及其水溶液二元体系理化性能数据的测定[J].化学工程,1983(1):41-50.
    [120]史美中,王中铮.热交换器原理与设计[M].南京:东南大学出版社,2009:7-18.
    [121]余建祖.换热器原理与设计[M].北京:北京航空航天大学出版社,2005:32-35.
    [122]赖周平.空气冷却器[M].北京:中国石化出版社,2010:26-30.
    [123]陶文铨.传热学[M].西安:西北工业大学出版社,2006:357-396.
    [124]马义伟.空冷器设计应用[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [125]陈卓如.工程流体力学[M].北京:高等教育出版社,2004:231-289.
    [126]张也影.流体力学[M].北京:高等教育出版社,1999:19-313.
    [127]杨诗成.泵与风机[M1.北京:中国电力出版社,2007:7-188.
    [128]李敬,崔振东,李明,等.变速给水泵特性的数学模型[J].东北电力学院学报,2004,24(6):24-27.
    [129]伍小亭,芦岩.循环水泵变频调速运行实例研究[J].暖通空调,2006:36(8):25-32.
    [130]傅建中,陈子辰.精密机械热误差校正机理及参数遗传优化[J].浙江大学学报,2003,37(6):719-723.
    [131]Faruk Mendi, Tamer Baskal, Kurtulus Boran, et al. Optimization of module, shaft diameter and rolling bearing for spur gear through genetic algorithm[J]. Expert Systems with Applications, Volume 37, Issue 12, December 2010, Pages:8058-8064.
    [132]MATLAB中文论坛.MATLAB神经网络30个案例分析[M].北京:北京航空航天出版社,2010:21-45.
    [133]Rasit Koker, Design and performance of an intelligent predictive controller for a six-degree-of-freedom robot using the Elman network[J]. Information Sciences, Volume 176, Issue 12,22 June 2006, Pages:1781-1799.
    [134]苏刚,王玲玲,徐永生.基于改进Elman网络的燃气负荷预测[J].东南大学学报(自然科学版),2006,36(supl):168-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700