用户名: 密码: 验证码:
地能利用热泵系统能量多样化机制及其效能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可再生能源是未来能源可持续发展的必然选择,地能利用及其地下浅层良好的热库作用为热泵技术提供了应用空间,并倍受各国重视。浅层地能无论在建筑暖通工程,还是在交通工程道桥融雪化冰能源利用领域都具有一定的利用潜力。但是,严寒地区建筑暖通冷热负荷失衡问题一直困扰地能的热泵工程应用,由此人们也一直探索解决方案,寻求最佳效能。
     本论文针对地能利用热泵系统能量多样化机制及效能的关键应用基础问题开展研究,提出热泵热力系统模型分析计算方法,为工程设计和运行预测提供途径,利用数字化手段,开展逐年热力性能分析和前瞻性研究,以利于指导工程实践。
     实验工程和计算分析表明,严寒地区地源热泵系统,采用单供热或负荷差距较大的冷热联供方式,由于冷热负荷失衡,导致地温逐年下降,造成热泵系统功耗上升,系统能效比逐步下降。为了消除和减轻地库能量的单一消耗,必须采取措施和调整运行机制,通过冷热联供、主动蓄能、间歇运行等多种能源机制改善和补充地库能量,实现高效运行和地下能量的有效平衡,进一步改善北方地区地源热泵技术的应用。
     本论文在国家自然科学基金项目(No.41072198)的资助下,开展地能利用热泵系统模拟计算和实验研究,通过理论分析、模型计算,结合实验研究,为地源热泵工程设计和运行工况预测提供途径,认识多孔源地源热泵系统应用及其地下传热、蓄能过程的能量特性,通过预测性多年运行工况及效能分析,探索地能利用热泵系统能量多样化和优化运行机制问题。研究工作主要包括地下换热器G函数应用及其模型分析、热泵热力系统集成及其模块建立、热力过程仿真分析及其实验验证、联供机制与效能分析、蓄能作用性研究等。创新性地开展了时间步长特性研究,为多年度长周期、分时短周期及其变周期的定时域分析提供更有效的计算精度保证。系统地开展了Matlab/Simulink计算控制平台的模块建立、模块嵌接和耦合调用研究,确立了热泵热力系统基本的分析方法,为预测分析提供重要手段。提出热泵热力系统单供、冷热联合、冷热联供与蓄能复合模式下的运行机制以及能量地下存储动态控制方法。该地下岩土传热控制技术将为地下蓄能和地下传热的能流控制提供新的控制理念,为进一步实现严寒地区地下能量高效利用技术的突破奠定基础。
     在地下换热器传热过程分析中,利用G函数构建地下换热器基本数学模型,建立孔壁温度控制方程,为了能够有效地开展多年度长周期预测分析和分时短周期细节分析,计算步长特性研究成为模拟计算方法的首要问题之一。研究表明,时间步长是计算过程的重要因素,特别对长时间运行工况计算时间的影响尤为重要,应根据模拟环境运行时间选用合适的时间步长处理相应时刻脉冲负荷下地下换热器孔壁温度。此外,进一步分析了随着运行时间,不同地孔数量的孔壁温度对负荷的响应特性。
     在地下换热器模型传热研究中,系统地讨论了有关孔直径、孔内支管间距和回填材料物性参数对地下换热器孔内热阻的影响规律,分析地下换热器出口流体温度、地下换热器内循环流体流速、岩土初始温度和孔间距对地下换热器内流体温度、设计孔深度和热泵耗功的影响特性,为研究系统长期运行工况及能耗奠定基础。
     在热泵热力系统集成模块中,分别构建了热泵模型、太阳能瞬时辐射模型、太阳能集热器模型、蓄热水箱模型和建筑负荷端等模型,进一步开展了模型的验证分析。系统地开展了Matlab/Simulink计算控制平台的模块建立、模块嵌接和耦合调用研究,确立了热泵热力系统基本的计算分析方法,为地能利用热泵系统能量多样化机制及效能研究提供耦合分析重要手段。
     结合实验工程,模拟计算和实验测试研究多年长期冬季供暖系统运行工况,分析地下换热器进出口流体温度变化规律、热泵机组和系统的能耗及能效比、能源利用率和热泵机组热力完善度。实验测试期间数据与模型计算表明地下换热器内流体温度变化基本一致,能耗和能效比吻合度较好,验证计算模块和分析方法的可行性。实验也进一步验证表明,以供热为主的北方地区没有采用蓄补能的地源形式,长期运行将导致系统能耗增加,地下换热器温度逐年下降,热泵和系统能效比降低等。
     针对严寒地区和夏热冬冷地区,开展热泵热力系统单供和联供运行机制和效能预测分析,证明连续多年单向负荷运行,会改变地下均衡温度,导致热泵系统耗能增加,能效比明显降低。解决的方法之一就是适当开展冷热联供运行,通过冷热负荷的地下能量补充,缓解岩土温度不断偏离初始温度,提升热泵运行效能。结果显示热泵系统在冷热负荷差异较大的情况下,即使采用冷热联供运行方式,也会导致地下换热器温度改变,热泵和系统能耗增加和能效比逐年降低,其中的缓解作用并不明显,失衡仍然占据主导作用。
     为了消除或减轻地下冷热负荷失衡导致热泵热力系统恶化现象,利用Matlab/Simulink平台开展热泵热力系统蓄能作用研究,对连续蓄能份额调控、间歇蓄能控制模式、冷热联供与蓄能复合模式开展多年长周期仿真分析,研究不同蓄能模式地下换热器内流体温变、热泵机组效能比及能耗情况。
     热泵热力系统在非采暖期连续蓄能,通过调控系统蓄能负荷与建筑物热负荷比例,计算20年内运行期间内系统运行工况及效能,当蓄能负荷与热负荷比例在0.8~1.0范围内,有利于系统的长期运行。热泵热力系统间歇蓄能模式从蓄能间歇周期和蓄能负荷峰值角度讨论,全日间歇蓄能模式和低峰间歇蓄能模式可实现系统设备的高效低能耗运行。针对热泵热力系统冷热联供与蓄能复合模式,通过对比不同过渡季节蓄能模式,研究可知随着运行时间的增加,采取前、后过渡季节蓄能双重模式节能效果更加明显,并表现出整个冷热联供和双重模式蓄补能复合更加有利。在该模式下,系统太阳能集热器面积与地下换热器长度比例关系对系统运行工况、设备能耗和能效比影响显著。
     以地能为主的热泵工程发展极为迅速,尽管地源热泵和相关地下蓄能技术得到发展,但对于大型孔群地下换热系统在跨时域、周期性动态热传输机理与控制的研究工作尚待进一步深入,它将是解决冷暖负荷失衡问题的有效途径之一。事实上,冷热负荷不平衡地区,大规模地源热泵工程的长期应用已经显露出地下能量衰减和运行效能下降的失效问题,成为可持续性应用的障碍和瓶颈。因此亟待认知地能利用热泵系统所面临的复杂科学和技术问题,为不同地域系统运行可靠性和系统长期运行效能评价分析提供参考依据和分析方法,利用预测分析帮助指导工程应用,保证地能利用技术的科技进步和健康发展。
Renewable energy is the inevitable choice for the future sustainable energydevelopment, and earth energy utilization as well as its underground shallow as good heatreservoir to provide application space for heat pump technology, have aroused greatattention in the world. Earth energy utilization is promising in fields of building HVAC(Heating, Ventilation and Air Conditioning) engineering, and melting snow and deicing inroad traffic. However, imbalance problem between cooling load and heating load in theHVAC system has long plagued heat pump engineering application of using earth energy insevere cold region. People have been seeking a solution for best efficiency.
     The fundamental problem for diversity and efficiency on energy mechanism of heatpump system, and the calculation model and analysis method for heat pump system areproposed in this paper, which provide an approach for engineering design and operationprediction by digital method, and for the thermodynamic analysis of performance of systemyear by year and prospective study to guide the engineering practice.
     Demonstration project and computational analysis indicated that ground source heatpump(GSHP) adopted the obvious gap in combined cooling load and heating load or singleof heating load in severe cold region, which caused underground temperature annualdeclines, and increased energy consumption of heat pump system and reduced coefficientof performance because of imbalance between cooling load and heating load. Toeliminate or weaken the single energy consumption of earth reservoir, steps and adjustmentoperation mechanism must be taken, by various energy mechanisms such as combinedcooling load and heating load, active energy storage, intermittent operation and energysupplement of earth reservoir, to realize efficient operation and effective balance forunderground energy, and further help utilization of GSHP technology in northern area.
     Supported by the National Natural Science Foundation of China (No.41072198),simulation and experimental research on ground source heat pump system were conducted,which provides an effective approach for GSHP engineering design and operation condition prediction, understanding application of borehole GSHP system and energy characteristicof underground heat transfer and storage process, by the predictive operation condition andperformance analysis in years, to explore the energy diversity and optimization operationmechanism of heat pump system by using earth energy. The research work mainly includesthe application of underground heat exchanger G-function and model analysis, theintegration of heat pump system and modules establishment, simulation analysis ofthermodynamic process and experimental verification, combined mechanism andperformance analysis, the role of energy storage, etc. Innovative research in thecharacteristic of time step provides more effective guarantee for calculation precision forlong-period for years, minutes and hours for short period, fixed time domain for changeperiod. It systematically explored the establishment of modules, module scarf and couplingcall based on Matlab/Simulink calculation control platform, established the basic analysismethod of heat pump system, and provided an important mean for forecast analysis. Theoperation mechanisms for single or combined cooling load and heating load, combinedload and energy storage hybrid mode, and the dynamic control method for undergroundenergy storage were proposed. The underground heat transfer control technology providesnew control concept for underground storage and underground heat transfer energy flow,further helps the breakthrough of efficient utilization technology for underground energyand establishes a certain basis in severe cold region.
     In the analysis of heat transfer process of underground heat exchanger, the basicmathematical model was established by using the G-function and governing equations ofborehole temperature, for predictive analysis long-period for years and detailed analysis ofminutes and hours for short period, so the characteristic study of calculation step as one ofthe top issues in numerical simulation calculation method. This study shows that time stepis a key factor in computational process, especially it is particularly important forcomputation time in long time operation condition, and appropriate time step should bechosen according to the operation period of simulation environment to deal with thetemperature of underground heat exchanger at the corresponding pulse load. In addition, the borehole temperature response characteristic to load for different borehole number wasfurther analyzed.
     The study of underground heat exchanger heat transfer mode, the influence law of theborehole diameter, shank spacing, and grout conductivities on thermal resistance ofborehole are discussed systematically. The influence character of the fluid temperature atthe exit of ground heat exchange, the circulation flow velocity in ground heat exchange,underground original temperature and borehole spacing on the fluid temperature in groundheat exchange, the design depth of borehole and the heat pump power consumption wereanalyzed to lay the foundation for the study of long-term operation condition and powerconsumption.
     In heat pump thermodynamic integration system model, heat pump module,instantaneous solar radiation module, solar collector module, storage water tank moduleand building load module were established separately for further verification and analysisof the model. It systematically explored the establishment of modules, module scarf andcoupling call based on Matlab/Simulink calculation control platform, established the basicanalysis method of heat pump system, and provided an important approach for the couplinganalysis of diversity and efficiency on energy mechanism of heat pump system by usingearth energy.
     Combining a project experiment, the model calculation and experiment for long-termheating system in winter for years were studied, to analyze the influence character of thefluid temperature at the inlet and exit of ground heat exchange, the energy consumption andcoefficient of performance of heat pump and system, primary energy ratio and heat pumpthermodynamic perfectibility. In experiment period, the change of the fluid temperature inground heat exchange was consistent with model calculation, and the result anastomosedpreferably for the energy consumption and coefficient of performance, so the computationmodel and analytical method had been verified. The experiment further demonstrated thatground source system had no store and complement energy in the heat-based north, whichlead to energy consumption of system increases, the underground temperature drops year by year, the coefficient of performance of heat pump and system reduces for long-timeoperation.
     For severe cold region and hot summer and cold winter region, forecast and analysisof the combined cooling load and heating load or single of efficiency on mechanism of heatpump system, proved the change in underground temperature, increased energyconsumption and significantly reduced coefficient of performance of heat pump and systemfor single load operation for years. One of the solutions is to combine cooling load withheating load, to relieve the underground temperature deviate from initial temperature byunderground energy supplement of cooling or heating load, and increase coefficient ofperformance of heat pump. The results showed that the underground temperature changed,energy consumption enlarged and the coefficient of performance of heat pump and systemreduced year by year, in which no obvious improvement even combine cooling and heatingload if there are great difference, so imbalance between cooling load and heating load playsa leading role.
     To eliminate or weaken heat pump system deterioration because of the imbalancebetween cooling load and heating load, the effect of energy storage was studied based onMatlab/Simlink platform, and the simulation analysis of operation condition of system byregulating continuing energy storage ratio, intermittent energy storage mode, cooling loadand heating load and energy storage hybrid mode for long period were applied to study thefluid temperature of ground heat exchanger, and the coefficient of performance and energyconsumption of heat pump.
     The operation condition and efficiency of consecutive energy storage heat pumpsystem during unheating periods were calculated in20years by adjusting the ratio ofenergy storage load to building heating load, and it is benefit for the long-term operation ifthe ratio between energy storage load to heating load is0.8~1.0. From intermittent periodand peak load in the intermittent energy storage mode of heat pump system, dailyintermittent storage mode and low peak intermittent storage mode can realize the effectiveoperation of system devices. By comparing different transitional season storage modes for cooling/heating united supply and energy storage hybrid mode, the results indicate theenergy-saving effect can be strengthened by double modes of pre-transitional season andpost-transitional season with the extension of operating time, and it is good forcooling/heating united supply and storage and complement energy double mode. In thismode, the ratio of solar collector area to the length of underground heat exchanger has adistinct impact on system operation condition, device energy consumption and efficiency.
     The heat pump system by using earth energy is increasing very rapidly. Despite thecertain development of ground source heat pump and related underground storagetechnology, some work still should be strengthened, such as the dynamic heat transfermechanism and control of span time domain and periodicity in large scale boreholeunderground heat exchange system, which is one of the major measures to tackle theunbalance between heating and cooling load. In fact, in unbalance load area, the longerapplication of the large scale GSHP engineering has caused underground energy decay andsystem efficiency decline, and become bottleneck and obstacle to the sustainableapplication, so complex science and technical question in large-scale heat pump system byusing earth energy need to be researched, to provide the reference and analysis method forimproving the operation reliability in different regions and the evaluation analysis oflong-term operation efficiency on system, which can be used to guide engineeringapplications, to ensure the progress of science and technology and healthy development inearth energy utilization technology.
引文
[1]彭源长.可再生能源发展十二五规划发布[N].中国电力报,2012-08-08(1).
    [2]王晓苏.2011可再生能源投资再创新高[N].中国能源报,2012-06-18(12).
    [3]李维明.落实《节能减排十二五规划》忌一刀切[N].中国经济导报,2012-09-01(C01).
    [4]高青.可再生能源利用与建筑节能融合技术[J].长春工业大学学报(自然科学版),Vol.28,增刊,2007:146~149.
    [5]高青.地下水源热利用可持续发展及其面临的问题[C].地温资源与地源热泵技术应用论文集(第四集),中国山东济南,2011.9.
    [6] Katarzyna Zwarycz. Snow Melting and Heating Systems Based on Geothermal Heat Pumps atGoleniow Airport Poland[R]. Geothermal Training Programmer Reports, The United NationsUniversity, Iceland,2002.
    [7] Q Gao, M Li, M Yu, J D. Spitler, Y.Y. Yan. Review of development from GSHP to UTES in Chinaand other countries[J]. Renewable and Sustainable Energy Reviews,2009,13(6-7):1383~1394.
    [8] Yuehong Bi, Tingwei Guo, Liang zhang, Lingen Chen. Solar and ground source heat-pumpsystem[J]. Applied Energy,2004,78:231~245.
    [9] GreenBiz Staff. Global100Eco-Tech Awards[C],Association for the World Exposition, Japan,June16, August2005.
    [10]马宏权,龙惟定.地埋管地源热泵系统的热平衡[J].暖通空调,2009,39(1):102~106.
    [11] Patrick J. Hughes. Geothermal (Ground-Source) Heat Pumps: Market Status, Barriers to Adoption,and Actions to Overcome Barriers[R]. Report ORNL/TM-2008/232.Oak Ridge National Laboratory,2008.12.
    [12] Anna Gabrielsson, Marti Lehtmets, Lovisa Moritz, Ulf Bergdahl. Heat storage in soft clay fieldtests with heating (70℃) and freezing of the soil[R].Report No53, Swedish Geotechnical Institute,1997.
    [13] Burkhard Sanner, Klaus Knoblich. New Iea-activity ECES Annex12-High TemperatureUnderground Thermal Energy Storage[C].Proceedings of The Second Stockton InternationalGeothermal Conference, Pomona, New Jersey, USA,1998.3.
    [14] J.Desmedt, H.Hoes, J.Van Bael. Status of underground thermal energy storage inBelgium[C]. Proceedings of the10th international Conference on Thermal EnergyStorage-Ecostock2006, Pomona, New Jersey, USA,2006.
    [15] Kirsti Midtt mme, Randi K. Ramstad.Status of underground thermal energy storage (UTES) inNorway[C].Proceedings of the10th international Conference on Thermal Energy Storage-Ecostock2006, Pomona, New Jersey, USA, June2006.
    [16] Marita Allan, Aristodimos Philippacopoulos. Performance Characteristics and Modelling ofCementitious Grouts for Geothermal Heat Pumps[C]. Proceedings World Geothermal Congress,Japan,2000.
    [17] Beier. R., M.D. Smith, J.D. Spitler. Reference data sets for vertical borehole ground heat exchangermodels and thermal response test analysis[J]. Geothermics,40(1):79~85.
    [18] S P Kavanaugh. Impact of Design Simplicity on the Econmics of Ground-Source Heat Pumps[J].ASHRAE Transactions, Vol.107, Pt.2, Atlanta,2001.
    [19] DoD Office. Ground-Source Heat Pumps at Department of Defense Facilities[C]. Report toCongress, Office of the Secretary of Defense,2007.
    [20] Lenarduzzi Frank J,Cragg Chris B.H.Radhakrishna H.S. Importance of grouting to enhance theperformance of earth energy systems[J]. ASHRAE Transactions,2000,106:424~434.
    [21] Marc A. Rosen,Hassan Hamzeh. Empirical Comparison of Temperature-Distribution Models forEnergy and Exergy Analyses of Stratified Thermal Energy Storages[J]. International Journal ofGreen Energy,3(3):291~307.
    [22] WeiYang, JinZhou, WeiXu, GuoqiangZhang. Current status of ground source heat pumps inChina[J]. Energy Policy,38(1):323~332.
    [23]高青,李明,于鸣,白金玉,方瑛间歇性地温恢复增强传热试验研究[C].中国工程热物理学会传热传质学术会议论文集,上海,2002:897-900.
    [24]王勇,刘宪英,付祥钊.地源热泵及地下蓄能系统的实验研究[J].暖通空调,2003,33(5):21~23.
    [25]于凤菊,丁良士.动态负荷分布对土壤源热泵系统的影响[C].全国暖通空调制冷2004年学术年会资料摘要集(2),兰州,2004.
    [26]高青,李明,乔广,于鸣,玄哲浩.间歇过程地温恢复特性及其规律模拟计算分析[J].热科学与技术,2004,3(3):224-228.
    [27]赵军,陈雁,李新国.基于跨季节地下蓄热系统的模拟对热储利用模式的优化[J].华北电力大学学报,2007(2):74~77.
    [28]韩敏霞.太阳能土壤跨季节蓄热地源热泵组合理论与实验研究[D].天津大学,2007.
    [29]崔俊奎,赵军,李新国等.跨季节蓄热地源热泵地下蓄热特性的理论研究[J].太阳能学报,2008(8):920~926.
    [30]余延顺,马最良,姚杨.土壤蓄冷与土壤耦合热泵集成系统中土壤蓄冷与释冷过程的特性研究[J].暖通空调,2004(5):1~6.
    [31]余延顺,马最良,姚杨.土壤蓄冷与土壤耦合热泵集成系统的模拟研究[J].暖通空调,2005(6):1~5.
    [32]张文雍,郑茂余,王潇等.严寒地区太阳能土壤源热泵季节性土壤蓄热[J].煤气与热力,2009(8):21~24.
    [33]张信树,刘泽华,陈北领等.某写字楼地源热泵冬季供暖性能测试及能分析[J].制冷空调与电力机械,2007,28(3):30~33.
    [34]江章宁,胡平放,雷飞等.地埋管地源热泵系统冬季运行测试研究[J].暖通空调,2009,39(3):115~118.
    [35]王华军,赵军,沈亮.地源热泵系统长期运行特性的实验研究[J].华北电力人学学报,2007,34(2):52~54.
    [36]赵军,王华军,宋著坤等.U型管埋地换热器长期性能的实验研究与灰色预测[[J].太阳能学报,2006,27(11):1137~1141.
    [37]曾宪斌,李娟.地源热泵的地域特性及热平衡问题[J].能源技术,2007,28(6):347~349.
    [38]韩宗伟,郑茂余.严寒地区太阳能季节性土壤蓄热热泵供暖系统的模拟分析[J].太阳能学报,2008,29(5):574~579.
    [39]张月红,徐国英.太阳能与空气复合源热泵热水系统多模式运行实验特性[J].化工学报,2010,61(2):484~490.
    [40]朱百发.基于热泵蓄补能复合系统能效特性分析[D].吉林大学,2007.6:42~61.
    [41]袁迪.混合式(地铁废热一土壤源)热泵系统性能研究[D].哈尔滨工业大学,2005:9~56.
    [42]杨卫波,施明恒.太阳能土壤源热泵系统联合供暖运行模式的探讨[J].暖通空调,2005,35(8):25~31.
    [43]杨卫波,施明恒,董华.太阳能土壤源热泵系统(SESHPS)交替运行性能的数值模拟[J].热科学与技术,2005,4(3):229~230.
    [44] Sven-Erik Lundin, Bengt Eriksson, Tgb Borrteknik, B Brinck.Drilling in Hard Rock and BoreholeHeat Exchangers for Seasonal Stores[C].9th International Conference on Thermal Energy Storage,Warsaw in Poland,2003.
    [45] T.schmidt,D.Mangold,H.Muller Steinhagen.Seasonal thermal energy storage in Germany[C].Solarworld Congress, Sweden,2003.
    [46] G.Erdmann1, J.Hinrichsen, H.Liebisch, J. R¨adler, T. Schrag.Renewable Heat Supply through theSeasonal Coordinated Combination of Solarthermal and Geothermal Systems[R].Research report,Institute for Energy Engineering, Technical University of Berlin, Berlin, Germany,2000.
    [47]高一平.利用太阳能的路面融雪系统[J].国外公路,1997(4):53~55.
    [48]高青,李明,闫燕.地下群井换热强化与运行模式影响规律[J].太阳能学报,2006(1):83~89.
    [49]江彦,高青,李明,崔淑琴.套管式地下换热器传热模型及其特性分析[J].吉林大学学报(工学版),2007(5):1034~1038.
    [50]高青,李明,江彦,马纯强,于鸣.高效能量存储热屏控制策略及其实验研究[J].暖通空调,2008(10):224~227.
    [51]江彦,高青,李明,马纯强.地下蓄能热扩散和传输的能流通量描述[J].吉林大学学报(工学版),2009(5):1142~1145.
    [52]刘莉莎,赵大军.长春地区太阳能辅助地源热泵供热的可行性研究[J].应用能源技术,2009(2):31~34.
    [53] M.Y.Zheng,D.M.Wang,Y.S.Zhi.The Study of Heating and Cooling Technique with Solar Energy inSevere Cold Area[C].Energy and the Environment-Proceedings of the International Conference onEnergy and the Environment,Shanghai,2003:186-191.
    [54]姜益强,齐琦,姚杨等.太阳能季节性相变蓄热热泵系统在哈尔滨应用的模拟研究[J].暖通空调.2007,37(3):15-20.
    [55]林媛.太阳能土壤源热泵蓄热过程中的数值模拟.合肥工业大学学报(自然科学版)[J].2005,28(6):650-654.
    [56]赵军,陈雁,李新国.基于跨季节地下蓄热系统的模拟对热储利用模式的优化[J].华北电力大学学报.2007,34(2):74-77.
    [57]杨卫波,施明恒,陈振乾.太阳能-U形埋管土壤蓄热特性数值模拟与实验验证.东南大学学报(自然科学版).2008,38(4):651-656.
    [58]王恩宇,齐承英,杨华等.太阳能跨季节储热建筑供热系统及土壤储热实验分析[C].中国制冷学会2007学术年会,2007.
    [59]刁乃仁,方肇洪.地埋管地源热泵技术[M].北京:高等教育出版社,2006.
    [60] L.R.Ingersoll, H.J.Plass. Theory of the Ground Pipe Heat Source for the Heat Pump[J].HeatingPiping and Air conditioning.1948.20(7):319~336.
    [61] R. W. Lewis, K. Morgan, W. G. Haba. Numerical Methods in Thermal Problem,[C], Proceedingsof The Second International Conference,Swansea,1979, Vol.2.
    [62] Hart.D.P, Couvillion.R. Earth Coupled Heat Transfer [M], Publication of the National Water WellAssociation.1986.
    [63]刁乃仁.地热换热器的传热问题研究及其工程应用[D].清华大学,2004.12.
    [64] Kavanaugh, S.P. Simulation and Experimental Verification of Vertical Ground-coupled Heat PumpSystems[D]. Oklahoma State University,1985.
    [65] V.C.Mei.New Approach for Analysis of Ground Coil Design for Applied Heat PumpSystems[J].ASHRAE Transactions.1985(2):1216~1224.
    [66] A.D.Kafadar, I.Fidldhouse, R.A.Budenholzer. Influence of Freezing of Heat Pump Ground CoilCapacity[C].Proceedings of Midwest Power Conference,1951:477~487.
    [67] Hellstrom.G. Ground Heat Storage:Thermal Analysis of Duct Storage Systems Theory[D].University of Lund,1991.
    [68] Gu.Y, O’Neal.D.L. Development of an Equivalent Diameter Expression for Vertical U-tubes Usedin Ground-coupled Heat Pumps[J].ASHRAE Trans,1998.104(2):347~355.
    [69]柳晓雷,王德林,方肇洪.垂直埋管地源热泵的圆柱面传热模型及简化计算[J],山东建筑工程学院学报,2001(1):47~51.
    [70]方肇洪,刁乃仁.地热换热器的传热分析[J],建筑热能通风空调,2004(1):11~20.
    [71]刁乃仁,李琴云,方肇洪.有渗流时地热换热器温度响应解析解[J],山东建筑工程学院学报,2003(3):1~5.
    [72]孔祥谦.有限元法在传热学中的应用[M],北京:科学出版社,1998.
    [73] Hellstrom,G. Duct Ground Heat Storage Model[M]. Manual for Computer Code. University ofLund, Department of Mathematical Physics,1989.
    [74] Hellstrom,G.. Thermal Analysis of Duct Storage Systems[M]. Part I Theory. Lund, Sweden,University of Lund, Department of Mathematical Physics,1991.
    [75] Thornton,J.W, T.P.Mcdowell, J.A.Shonder, P.J.Hughes, D.Pahud, G..Hellstrom. ResiderntialVertical Geothemal Heat Pump System Models: Calibration to Data[J]. ASHRAE Transactions103(2):660~674.
    [76] Muraya,N.K. Numerical Modeling of the Transient Thermal Interference of Vertical U-tube HeatExchangers[D]. Ph.D.Theses, Texas A&M Uneversity,College Station,TX.1995.
    [77] S.P.Rottmayer, W.A.Beckman, J.W.Mitchell. Simulation of a Single Vertical U-tube Ground HeatExchanger in an Infinite Medium[J].ASHRAE Transactions.1997,103(2):651~659.
    [78] Shonder J, Beck J. Determining Effective Soil Formation Properties from Field Data Using aParameter Estimation Technique[J], ASHRAE Trans.1999, Vol.105,No.1:458~466.
    [79] Yavuzturk. C, J. D. Spitler. A Short Time Step Response Factors Model for Vertical Ground LoopHeat Exchangers[J]. ASHRAE Transactions1999.105(2):475~485.
    [80] Yavuzturk. C, J. D. Spitler, S. J. Rees. A Transient two-dimensional Finite Volume Model for theSimulation of Vertical U-Tube Ground Heat Exchangers[J]. ASHRAE Transactions1999.105(2):465~474.
    [81]吕灿仁,马一太.运用热泵提高低温地热采暖系统能源利用率的分析[J].天津大学学报,1982(4):1~8.
    [82]高祖锟.用于供暖的土壤水热泵系统[J].暖通空调,1995(4):9~12.
    [83]李芃,于立强,张晶明.U型垂直埋管式土壤源热泵制冷性能的实验研究[J].建筑热能通风空调,2000(3):14~17.
    [84]张开黎.垂直埋管土壤源热泵(U-TUBE)的供热供冷研究[D].青岛建筑工程学院,2000.
    [85]刘宪英,丁勇,胡鸣明.浅埋竖管换热器地热源热泵夏季供冷试验研究[J].暖通空调,2000(8):1~4.
    [86]王勇,付祥钊.地源热泵的套管式地下换热器研究[J].重庆建筑大学学报,199(5):13~17.
    [87]魏唐棣,胡鸣明,丁勇等.地源热泵冬季供暖测试及传热模型[J].暖通空调,2000(1):12~14.
    [88]孙纯武,张素云,刘宪英.水平埋管换热器地热源热泵实验研究及传热模型[J].重庆建筑大学学报,2001(6):49~55.
    [89]李元旦,魏先勋.水平埋地管换热器夏季瞬态工况的实验与数值模拟[J].湖南大学学报(自然科学版),1999(4):58~63.
    [90]周亚素.土壤热源热泵动态特性与能耗分析研究[D],同济大学,2001.
    [91]黄俊惠,时晓燕,唐志伟.地源热泵U型管地下换热器的准三维模型[J].中国农业大学学报,2004(5):51~54.
    [92]高青,李明,闫燕.群井地下换热系统初温和构造因素影响传热的研究[J].热科学与技术,2005(4):34~40.
    [93]江彦,高青,李明等.套管式地下换热器传热模型及其传热分析[J].吉林大学学报,2007(5):1034~1038.
    [94]张欢.土壤蓄冷与耦合热泵地下埋管结构及运行模式优化[D].哈尔滨工业大学,2006.
    [95]杨卫波,施明恒.基于垂直U型埋管换热器的圆柱源理论及其应用研究[J].制冷学报,2006(5):51~57.
    [96]罗苏瑜.土壤蓄能与土壤源热泵集成系统地埋管换热特性研究[D].中南大学,2007.
    [97]李恺渊.基于管群换热器温度场分析的土壤源热泵运行特性研究[D].河北工程大学,2007.
    [98] Xiaowei Xu. Simulation and optimal control of hybrid ground source heat pump systems[D].Oklahoma State University,2007.
    [99]高青,于鸣,李明,刘研,江彦.地下岩土换热结构热应变研究探讨[C].中国高校工程热物理学会第十六届全国学术会议论文集,长沙,2010.
    [100]Esilson. Thermal Analysis of Heat Extraction Boreholes[D]. University of Lund, Department ofMathematical Physics, Lund.
    [101]中华人民共和国建设部.地源热泵系统工程技术规范GB503662005[M].北京,中国出版社,2005.
    [102]张志涌.精通Matlab6.5[M].北京:北京航空航天大学出版社,2003.
    [103]陈胜朋,沈意成,陈振乾,张辉.基于耦合法的地埋管换热器设计软件的研发[J].暖通空调,2011(3):128~132.
    [104]Spitler, J.D.GLHEPRO--A Design Tool For Commercial Building Ground Loop HeatExchangers[C].Proceedings of the Fourth International Heat Pumps in Cold Climates Conference,Aylmer, Québec. August17-18,2000.
    [105]罗运俊.太阳能利用技术[M].北京:化学工业出版社,2005.
    [106]王荣光.可再生能源利用与建筑节能[M].北京:机械工业出版社,2004.
    [107]中国气象局气象信息中心.中国建筑热环境分析专用气象数据集[M].北京:中国建筑工业出版社,2005.4.
    [108]袁家普.太阳能热水系统手册[M].北京:化学工业出版社,2009.1.
    [109]王如竹.太阳能制冷[M].北京:化学工业出版社,2007.1.
    [110]刘鉴民.太阳能利用:原理、技术、工程[M].北京:电子工业出版社,2010.6.
    [111]岑幻霞.太阳能热利用[M].北京:清华大学出版社.1997.
    [112]燕达,谢晓娜,宋芳婷,江亿.建筑环境设计模拟分析软件DeST[J].暖通空调,2004,34(7):48~55.
    [113]A. Michopoulos, N. Kyriakis. Predicting the fluid temperature at the exit of the vertical groundheat exchangers [J]. Applied Energy,2009,86:2065~2070.
    [114]凌云,程惠尔,李明辉.燃气发动机驱动热泵一次能源利用系数的计算和分析[J].暖通空调,2002,32(6):16~19.
    [115]马一太,刘春涛,袁秋霞等.用热力学完善度分析和评价制冷热泵装置的能效水平[C].2010年国际制冷技术交流会会议,珠海,2010.8.
    [116]马一太,凌泓.制冷与热泵产品热力学完善度的原理与实例[J].流体机械,2011,39(3):71~75.
    [117]刘研.道路固体结构集热蓄能过程分析及其传热研究[D].吉林大学,2010.12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700