用户名: 密码: 验证码:
重力热管在太阳能光电光热利用中的实验和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国,目前建筑能耗约占全社会总能耗的1/3左右,其中占比最大的建筑能耗是采暖和制冷。与气候条件相近的发达国家相比,我国建筑每平方米采暖能耗约是发达国家的3倍。随着人们物质生活水平的提高,对冬季采暖和夏季制冷的需求会逐渐提高,给我国建筑节能提出了巨大挑战。
     随着常规能源的日益枯竭和环境问题的日益严峻,太阳能因其清洁、绿色、可再生的特点,引起人们的关注。但是太阳能存在间歇性及能流密度低的特点,规模使用需要很大的面积。在城市,太阳能与建筑具有非常好的结合性,建筑可以为太阳能的应用提供载体,而太阳能可以大大减小建筑的能耗。光伏发电技术和太阳能光热技术作为太阳能的两种主要利用方式,近年来得到了迅速的发展。太阳能光热技术是目前最成熟、普及率最高的太阳能技术,目前最常见的太阳能光热利用方式为太阳能热水、太阳能空气采暖以及太阳能热泵。太阳能光伏光热综合利用(PV/T)技术将太阳能光伏发电技术和太阳能光热技术有机结合,一方面系统可以同时得到电能和热能,提高了太阳能的综合利用率;另一方面,冷却流体可以带走光伏电池的热量,降低电池工作温度,提高电池的光电效率。
     重力热管是一种具有良好传热性能的元件,依靠自身内部工作液体的相变实现传热。重力热管与普通的太阳能平板集热器或PV/T集热器具有很好的结合性,可以解决普通水冷系统冬季结冰的问题,同时通过热管的间接传热避免了集热器吸热板芯的腐蚀,提高了集热器的寿命;另外热管具有非常好的等温性,与PV/T结合时可以降低光伏电池间的温度差异,提高其光电转化效率。热管与太阳能集热器结合方式主要有两种,一种是将普通的整体式重力热管(简称整体热管)与太阳能集热器的结合;另外一种是重力环形热管(简称环形热管)的改造,将整个集热器作为环形热管的蒸发段,将水箱里面的盘管作为冷凝段。环形热管的蒸发段和冷凝段分离的特性使其与建筑具有非常好的结合性;同时环形热管和热泵也具有非常好的结合性,二者可以采用相同的循环工质,可以采用相同的集热器-蒸发器,可以大大简化系统的结构。
     本文将整体热管和环形热管与普通的太阳能集热器和PV/T集热器结合,提出了整体热管式PV/T系统、环形热管式太阳能光热系统、环形热管式PV/T系统;同时将环形热管与光伏-太阳能热泵系统结合,提出了光伏-太阳能环形热管/热泵复合系统(PV-SALHP/HP)。环形热管可以减小热泵系统的能耗,热泵可以弥补太阳能间歇性的特点,通过对热管运行模式和热泵运行模式的切换可以提高设备利用率和太阳能利用率。
     本文的研究工作主要包括以下几个方面:
     (1)设计和搭建了整体热管式PV/T系统,并对系统在有、无玻璃盖板下的综合性能进行了比较。结果显示,有玻璃盖板时系统日平均光热效率为41.30%,日平均光电效率为9.42%,日平均(?)效率为6.87%。无盖板时系统的日平均光热效率为37.16%,日平均光电效率11.51%,日平均(?)效率为8.01%。同时建立了整体热管式PV/T系统的动态数学模型,并与实验结果进行了对比,结果表明二者具有很好的一致性。
     (2)设计和搭建了环形热管式PV/T系统和普通水冷型PV/T系统的对比实验台,并对二者的综合性能进行了比较分析。结果表明,环形热管式PV/T系统具有较低的光热效率,较高的光电效率,但是二者具有相近的炯效率。
     (3)设计和搭建了环形热管式太阳能光热系统,对不同充注量下系统的热性能进行了长期的室外测试,并通过三次线性插值的方式求解出了系统的最佳充注量。结果显示,不同充注量下,集热器和系统的热性能拟合都呈现相同的趋势,为先增大后减小,而热损都是逐渐减小;系统最佳的体积充注量为36.6%。
     (4)设计和搭建了动力环形热管式太阳能光热系统,并对50%体积充注量下系统的热性能进行了实验研究。结果表明拟合后的集热器和系统的热性能与普通的水冷型光热系统性能接近,拟合系统日平均热效率为51.4%。
     (5)建立了直膨式光伏-太阳能热泵系统的动态数学模型,并与实验结果进行了验证。结果表明,对压缩机功率及水箱温度的模拟具有较好的一致性;由于压缩机模型中未考虑两相的影响,光电效率只考虑了温度对效率的影响,模拟的压缩机进口压力和光电效率与实验结果具有较大的误差。
     (6)设计和搭建了光伏-太阳能环形热管/热泵复合系统(PV-SALHP/HP),并对热管单独运行模式下和热泵运行模式下系统的性能进行了实验研究。研究结果表明,热管单独运行模式下,系统的日平均热效率为43.6%,日平均光电效率为11.3%;热泵单独运行模型,系统的日平均COP为3.66,日平均光电效率为12.1%,日平均光热效率可达57.5%。
Building energy consumption, of which space heating and space refrigerating account for the largest proportion, is now occupying for about1/3of the social total energy consumption in China. Space heating energy consumption per square meters of China is3times of that of the developed countries with similar climate condition. Demand of winter heating and summer refrigerating will improve gradually with the development of people's living standard, which proposes a big challenge for China's building energy saving.
     With the increasingly exhausted of conventional energy resources and the increasingly serious of the environmental problems, solar energy is now attracting attention for the characteristics of clean, environmental, and renewable. However, the application of solar energy needs large scale for its intermittency and low energy density. Solar energy can be well integrated with buildings in cities, which are the carrier for the solar energy application, and solar energy can significantly reduce building energy consumption. Photovoltaic technology and photo-thermal technology, which are the main application of solar energy, are rapidly developed in recent years. Photo-thermal technology is the most mature and the highest penetration of solar application, solar water heating, solar air heating, and the solar-assisted heat pump are the most common application mode. The hybrid photovoltaic/thermal (PV/T) technology integrates the PV and the photo-thermal together, and it can simultaneously generate electrical and thermal energy, increasing the comprehensive utilization efficiency of solar energy. Besides, the cooling liquid can take off PV cells heat energy; reduce the PV cells working temperature, increasing the PV cells photoelectric efficiency.
     Gravity assisted heat pipe, which can heat transfer depend on the phase change of its working fluid, has excellent heat transfer performance. Gravity assisted heat pipe can be well integrated with the common solar collector or the PV/T collector, and can solve the freezing problem existes in the common water based solar collector. At the same time, the indirect heat transfer through heat pipe avoids the corrosion of the absorb plate, and increases the collector's service life. There are two combination modes; one is directly weld the heat pipe's evaporator section with the absorb plate, while the condenser section insert to the header; the other is the remolding of the loop heat pipe, wich mean to make the whole solar collector as the loop heat pipe's evaporator section and the coil pipe in the water tank as the condenser section, then connecte the evaporator section and the condenser section with copper pipe. Loop heat pipe can realize long distance heat transfer, can be well integrated with building; moreover, the loop heat pipe can also be well integrated with heat pump, they can employing the same working fluid, the same collector-evaporator, which can simplify the system structure remarkablely.
     Gravity assisted heat pipe and the loop heat pipe were integrated with the normal solar collector and the PV/T collector in this paper, proposed the gravity assisted heat pipe type PV/T system, loop heat pipe type water heating system, loop heat pipe type PV/T system. Meanwhile, integrating loop heat pipe with photovoltaic solar-assisted heat pump, proposed photovoltaic solar assisted loop heat pipe/heat pump system, the loop heat pipe can reduce the heat pump system's energy consumption, the heat pump can overcome solar intermittency, through the switch of heat pipe working mode and heat pump working mode can improve the rate of equipment utilization and the rate of solar energy utilization.
     The main works of this paper are summarized as follows:
     (1) A gravity assisted heat pipe type PV/T system was designed and constructed, and system performance with and without glass cover were compared. The results show that system with glass cover had a higher average day photo-thermal efficiency, which was41.30%compared to37.16%, a lower average day photovoltaic efficiency, which was9.42%compared to11.51%, a lower average day exergy efficiency, which was6.87%compared to8.01%. Besides, the system's dynamic model, and compared was constructed and compared with the experimental data, the results presented good agreement.
     (2) A comparison test platform between the loop heat pipe type PV/T system and the common water based PV/T system was designed and constructed, and the systems performance was compared. The results show that the loop heat pipe type PV/T system had a lower photo-thermal efficiency, but higher photovoltaic efficiency. However, the two system had almost the same exergy efficiency.
     (3) A loop heat pipe type solar water heating system was designed and constructed, and long term outdoor tests of the system performance under different filling ratio were carried out, and the system's optimum filling ratio was proposed based on the cubic spline interpolation. The results show that the LHP collector and the system's thermal efficiency presented the same fitting trend, which were increased first and then decreased; while the heat loss coefficient was always decreased. The system's optimum filling ratio was36.6%of volume.
     (4) A forced loop heat pipe type water heating system was designed and constructed, and system performance under filling ratio of50%volume was experimental studied. The results show that forced LHP collector and the system's thermal efficiency was similar with the common water based system, and the fitting day average photo-thermal efficiency was51.4%.
     (5) A dynamic model of PV-SAHP system was proposed, and compared with the test data. The results show that the model had a good agreement of compressor power and water temperature; Because of no consideration of the influence of two-phase, and only consideration of the influence of PV cells temperature, the simulation result of compressor inlet pressure and photovoltaic efficiency had big error with test data.
     (6) A PV-SALHP/HP was designed and constructed, and system performance of loop heat pipe working mode and the heat pump working mode was experimental studied. The results show that under loop heat pipe working mode, the system's day average photo-thermal efficiency was43.6%, and the day average photovoltaic efficiency was11.3%; under heat pump working mode, the system's day average COP was3.66, day average photovoltaic efficiency was12.1%, and the day average photo-thermal efficiency can reach57.5%.
引文
1.陈滨,陈星,丁颖慧,陈会娟.2003.冬季特朗贝墙内置卷帘对墙体热性能的影响。太阳能学报,27(6),564-570
    2.崔民选.2010.中国能源发展报告2010[M].北京:社会科学文献出版社.
    3.崔民选.2012.中国能源发展报告2012[M].北京:社会科学文献出版社.
    4.崔玉清,季杰,何伟,裴刚.2011.太阳能炕和Trombe墙相结合的新型太阳能采暖系统的数值研究[J].太阳能学报,32(1):66-71.
    5.发展改革委.http://www.gov.cn/zwgk/2007-12/26/content_844159.httn.
    6.冯跺生,张淼,赵慧,林珊.2009.太阳能发电技术与应用[M].北京:人民邮电出版社
    7.何伟,季杰,张爱凤,裴刚,董军,程洪波.2003.带改进型Trombe墙体的热箱热性能的实验测定和分析。中国科学技术大学学报,33(5),567-572
    8.呼宝民,李振国.2007.中国能源-可持续战略[M].外文出版社
    9.蒋爱国,季杰,裴刚等.2011.3种工况下多功能太阳能热泵的热泵制热水性能[J].中国科学技术大学学报,41:890-894
    10.焦冬生,叶宏,葛新石,庄双勇,何立群.2004.带透明蜂窝盖板和辅助反射面的整体式太阳热水器,太阳能学报,25(3),273-277
    11.旷玉辉,王如竹,许煜雄.2004.直膨式太阳能热泵供热水系统的性能研究.工程热物理学报,25(3):737-740
    12.旷玉辉,王如竹.2005.直膨式太阳能热泵热水器的试验研究.工程热物理学报,26(3):379-381
    13.李业发.2002.一种自循环-闷晒混合式新型太阳能热水器,新能源,22(9),9-11
    14.马同泽,侯增祺,吴文銧.1983.热管[M].北京:科学出版社.
    15.裴刚,周天泰,季杰,何伟,何苗苗.2009.两种新型太阳能通风窗在香港地区的实验研究[J].太阳能学报,30(3):282-286
    16.裴刚,季杰,蒋爱国,周天泰,何伟.2009.光伏双层窗的综合性能研究[J].太阳能学报,30(4):441-444
    17.邱国佺,刘亚力,程晓舫,新型整体式太阳能热水器的优化设计和实验研究,节能,2003,7,7-12
    18.阙光辉.2007.中国能源:可持续战略[M].北京:科学出版社
    19.王仲颖,任东明,高虎等.2011.中国可再生能源产业发展报告2011[M].北京;化学工 业出版社
    20.阳季春,季杰,裴刚等.2008.间接膨胀式太阳能多功能热泵单独制热水性能实验研究[J].太阳能学报,29.678-683
    21.闫长乐,张永泽等.2007.中国能源发展报告2007[M].北京:中国水利水电出版社
    22.姚行健,孙利生,张昌.1996.空气调节用制冷技术[M].第1版.北京:中国建筑工业出版社.
    23.余延顺,廉乐明.2003.寒冷地区太阳能—土壤源热泵系统运行方式的探讨[J].太阳能学报,24(1):111-115.
    24.张苏苏,杨卫波,刘义.太阳能烟囱+Trombe墙复合结构的性能研究[J].制冷与空调,26(2):112-116.
    25.张勇,自然循环平板式太阳能热水系统的设计计算,能源工程,2001,5,5-8.
    26.张跃,高文峰,刘群生,自然循环太阳能热水系统热虹吸压力的计算、分析及讨论,新能源,2000,22(12),65-67.
    27.赵春江,王恒龙,新型平板式集热器的设计和性能,上海交通大学学报,2004,38(10),1656-1659.
    28.赵军,刘立平,李丽新等.2000.R134a应用于直接膨胀式太阳能热泵系统[J].天津大学学报,33(3):301-305.
    29.中国市场调查研究中心.2006.2006年中国太阳能行业现状分析与发展研究报告.
    30. A. Balzar, P. Stumpf, S. Eckhoff, HAckermann, M. Grupp.1996. A solar cooker using vacuum-tube collectors with integrated heat pipes[J]. Solar Energy,58(1-3):63-68.
    31. Bergene T, Lovvik OM.1995. Model calculations on a flat-plate solar heat collector with integrated solar cells[J]. Solar Energy,55:453-462.
    32. Bin Du, Eric Hu, Mohan Kolhe.2013. An experimental platform for heat pipe solar collector testing[J]. Renewable and Sustainable Energy Reviews,17:119-125.
    33. Bjornar Sandnes, John Rekstad. (2002). A photovoltaic/thermal (PWT) collector with a polymer absorber plate. Experimental study and analytical model. Solar Energy 72(1):63-73.
    34. Bliss R.W.1959. The derivations of several plate efficiency factors useful in the design of flat plate solar heat collectors. Solar Energy,3(4):55-64.
    35. Chow TT.2003. Performance analysis of photovoltaic-thermal collector by explicit dynamic model[J]. Solar Energy,75:143-152.
    56. Chow TT, Pei G, Fong KF, et al.2009. Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover[J]. Applied Energy,86:310-316.
    17. Daniele Fiaschi, Giampaolo Manfrida.2013. Model to predict design parameters and performance curves of vacuum glass heat pipe solar collectors[J]. Energy, on line,dio:10.1016/j.energy.2012.12.0.28.
    38. Dittus FW, Boelter LMK.1930. Heat transfer in automobile radiators of the tubular type[M]. University of California Publications on Engineering,2:443.
    39. D.T. Reindl, W.A. Beckman, J.A. Duffie.(1990).Evaluation of hourly tilted surface radiation models.Solar Energy 45(1):9-17.
    40. Duffie JA, Beckman WA.1991. Solar Engineering of Thermal Processes[M]. Second ed., John Wiley & Sons, New York.
    41. E.Azad.2008. Theoretical and experimental investigation of heat pipe solar collector[J]. Experimental Thermal and Fluid Science,32(8):1666-1672.
    42. F.Mahdjuri.1979. Evacuated heat pipe solar collector[J]. Energy Conversion,19(2):85-90.
    43. Freeman TL, Mitchell JW, Audit TE.1979. Performance of Combined Solar-Heat Pump Systems[J]. Solar Energy,22:125-135.
    44. Fujisawa T, Tani T.1997. Annual exergy evaluation on photovoltaic-thermal hybrid collector[J]. Solar Energy Materials and Solar Cells,47:135-148.
    45. Garg HP, Adhikari RS.1997. Conventional hybrid photovoltaic/thermal (PV/T) air heating collectors:Steady-state simulation [J]. Renewable Energy,11:363-385.
    46. Garg HP, Adhikari RS.1998. Transient simulation of conventional hybrid photovoltaic/thermal (PV/T) air heating collectors [J]. International Journal of Energy Research,22:547-562.
    47. GB/T 4271-2007, 太阳能集热器热性能测试方法
    48. Hammad M.1995. Experimental-Study of the Performance of a Solar Collector Cooled by Heat Pipes[J]. Energy Conversion and Management,36:197-203.
    49. Hawlader MNA, Jahangeer KA.2006. Solar heat pump drying and water heating in the tropics[J]. Solar Energy,80:492-499.
    50. H.A.Zondag, D.W.de Vries, W.G.V, et al.2002. The thermal and electrical yield of a PV-thermal collector. Solar Energy,72:113-128.
    51. Hepbasli A.(2008). A key review on exergetic analysis and assessment of renewable energy resource for a sustainable future[J]. Renew Sust Energy Rev 12:593-661.
    52. H.D. Fu, G. Pei, J. Ji, H. Long, T. Zhang, T.T. Chow. Experimental study of a photovoltaic solar assisted heat-pump/heat-pipe system. Applied thermal engineering,40 (2012) 343-350.
    53. He W, Zhang YX, Sun W, et al.2011. Experimental and numerical investigation on the performance of amorphous silicon photovoltaics window in East China[J]. Building and Environment,46:363-369.
    54. H.M.S.Hussein, Mohamad MA, El-Asfouri AS.1999. Optimization of a wickless heat pipe flat plate solar collector[J]. Energy Conversion and Management,40:1949-1961.
    55. H.M.S.Hussein.2007.Theoretical and experimental investigation of wickless heat pipes flat plate solar collector with cross flow heat exchanger[J].Energy Conversion and Management, 48(4):1266-1272.
    56. Hottel H.C, Woertz B.B.1942.The performance of flat plate solar collector. Trans, of ASME,64:91-94.
    57. Hottel H.C, Whillier A.1955. Evaluation of flat plate collector performance. Trans, of the Conf. On the use of solar energy,2 Part 1A, Univ. of Arizona Press,74-104.
    58. Hollands KGT, Unny TE, Raithby GD, et al.1976. Free convection heat transfer across inclined air layers. Transactions of the American Society of Mechanical Engineers, Journal of Heat Transfer,98:189-193.
    59. H.P.Garg,R.K.Agarwal.(1995). Some aspects of a PV/T collector/forced circulation flat plate solar water heater with solar cells[J], Energy Convers.Mgmt 36(2):87-99.
    60. Huang B J,T.H.Lin,W.C.Huang,F,S,Sun.(2001).Performance evaluation of solar photovoltaic/thermal systems.Solar Energy70(5):443-448.
    61. Incropera, F.P.,DeWitt, D.P. Bergman, T.L., Lavine A.S.,2007. Fundamentals of heat and mass transfer,6 ed. John Wiley&Sons,New York.
    62. Ito S, Miura N, Wang K.1999. Performance of a heat pump using direct expansion solar collectors [J]. Solar Energy,65:189-196.
    63. Jabardo JMS, Mamani WG,Ianella MR.2002. Modeling and experimental evaluation of an automotive air conditioning system with a variable capacity compressor[J]. International Journal of Refrigeration-Revue Internationale Du Froid,25:1157-1172.
    64. Jeter S.M.(1981). Maximum conversion efficiency for the utilization of direct solar radiation [J]. Solar Energy 26:231-236.
    65. Ji J, Han J, Chow TT, et al.2006. Effect of flow channel dimensions on the performance of a box-frame photovoltaic/thermal collector[J]. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy,220:681-688.
    66. Ji J, He HF, Chow T, et al.2009. Distributed dynamic modeling and experimental study of PV evaporator in a PV/T solar-assisted heat pump [J]. International Journal of Heat and Mass Transfer,52:1365-1373.
    67. Ji J, He HF, Pei G, et al.2008. Distributed dynamic modelling with experimental validation on a photovoltaic solar-assisted heat pump[J]. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy,222:443-454.
    68. Ji J, Liu KL, Chow TT, et al.2007. Thermal analysis ot PV/T evaporator or a sotar-assistea heat pump[J]. International Journal of Energy Research,31:525-545.
    69. Ji J, Lu JP, Chow TT, et al.2007. A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation[J]. Applied Energy,84:222-237.
    70. Ji J, Pei G, Chow TT, et al.2005. Performance of multi-functional domestic heat-pump system[J]. Applied Energy,80:307-326.
    71. Ji J, Pei G, Chow TT, et al.2008. Experimental study of photovoltaic solar assisted heat pump system[J]. Solar Energy,82:43-52.
    72. Ji J, Yi H, Pei G, et al.2007a. Study of PV-Trombe wall assisted with DC fan[J]. Building and Environment,42:3529-3539.
    73. Ji J, Yi H, Pei G, et al.2007b. Study of PV-Trombe wall installed in a fenestrated room with heat storage[J]. Applied Thermal Engineering,27:1507-1515.
    74. Kalogirou SA, Tripanagnostopoulos Y.2006. Hybrid PV/T solar systems for domestic hot water and electricity production[J]. Energy Conversion and Management,47:3368-3382.
    75. Karagiorgas M, Galatis K, Tsagouri M, et al.2010. Solar assisted heat pump on air collectors: A simulation tool[J]. Solar Energy,84:66-78.
    76. Kaygusuz K, Ayhan T.1999. Experimental and theoretical investigation of combined solar heat pump system for residential heating[J]. Energy Conversion and Management,40: 1377-1396.
    77. Kern ECJ, Russell MC.1978. Combined photovoltaic and thermal hybrid collector systems[C]. In Proc IEEE photovoltaic specialists conference, Washington, DC, USA
    78. K. Nagano, T. Mochida, K. Shimakura, K. Murashita and S. Takeda. Development of thermal-photovoltaic hybrid exterior wallboards incorporating PV cells in and their winter performances. Solar Energy Materials and Solar Cells,2003,77(3),265-282.
    79. Liu KL, Ji J, Chow TT, et al.2009. Performance study of a photovoltaic solar assisted heat pump with variable-frequency compressor-A case study in Tibet[J]. Renewable Energy,34: 2680-2687.
    80. L.M.Ayompe, A.Duffy, S.J.McCormack, M.Conlon.2011. Validated TRNSYS model for forced circulation solar water heating systems with flat plate and heat pipe evacuated tube collectors[J]. Applied Thermal Engineering,31(8-9):1536-1542
    81. Macarthur JW, Palm WJ, Lessmann RC.1978. Performance Analysis and Cost Optimization of a Solar-Assisted Heat Pump System[J]. Solar Energy,21:1-9.
    82. Maria J.Carvalho, Manuel Collares-Pereira and Joao F. Mendes.(1994).Optical and thermal testing of convection reduction mechanisms in a new 1.2X CPC solar collector. SPIE 2255:582-594
    83. McAdams,W.H.,1954. Heat Transmission,3rd ed, McGraw-Hill,New York.
    84. Miiller-Steinhagen H, Heck K.1986. A simple friction pressure drop correlation for two-phase flow in pipes[J]. Chemical Engineering Progress,20:297-308.
    85. Pei Gang, Fu Huide, Zhang Tao, Ji Jie.2011. A numerical and experimental study on a heat pipe PV/T system[J]. Solar Energy,85:911-921.
    86. Pei Gang, Fu Huide, Ji Jie, Chow Tin-tai, Zhang Tao.2012. Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production[J]. Energy Conversion and Management,56:8-21.
    87. Pei Gang, Fu Huide, Zhu Huijuan, Ji Jie.2012. Performance Study and parametric analysis of a novel heat pipe PV/T system[J]. Energy,37:384-395.
    88. Pei G, Ji J, Chow TT, et al.2008. Performance of the hotovoltaic solar-assisted heat pump system with and without glass cover in winter:a comparative analysis[J]. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy,222:179-187.
    89. Raghuraman P.1981. Analytical Predictions of Liquid and Air Photo-Voltaic-Thermal, Flat-Plate Collector Performance[J]. Journal of Solar Energy Engineering-Transactions of the Asme,103:291-298.
    90. Saitoh H, Hamada Y, Kubota H, et al.2003. Field experiments and analyses on a hybrid solar collector[J]. Applied Thermal Engineering,23:2089-2105.
    91. Shah MM.1979. A general correlation for heat transfer during film condensation inside pipes[J]. International Journal of Heat and Mass Transfer,22:547-556.
    92. Sopian K, Yigit KS, Liu HT, et al.1996. Performance analysis of photovoltaic thermal air heaters[J]. Energy Conversion and Management,37:1657-1670.
    93. Sporn P, Ambrose ER.1955. The heat pump and solar energy[J]. In:Proceedings of the world symposium on applied solar energy, Phoenix, AZ.159-70.
    94. Sun W, Ji J, Luo CL, et al.2011. Performance of PV-Trombe wall in winter correlated with south facade design[J]. Applied Energy,88:224-231.
    95. Tripanagnostopoulos Y, Nousia T, Souliotis M, et al.2002. Hybrid photovoltaic/thermal solar systems[J]. Solar Energy,72:217-234.
    96. Wang H, Touber S.1991. Distributed and Non-Steady-State Modeling of an Air Cooler[J]. International Journal of Refrigeration-Revue Internationale Du Froid,14:98-111.
    97. While DD.1935. The measurement of expansion valve capacity[J]. Refrigeration Engineering,8:108-111.
    98. W. Smolec. A. Thomas. Some aspects of trombe wall heat transfer models. Energy Conversion and Management,1991,32(3),269-277
    99. W. Smolec and A. Thomas. Theoretical and experimental investigations of heat transfer in a Trombe wall. Energy Conversion and Management,1993,34(5),385-400.
    100. Wu Wen, Zheng Zhen-hong, Chen Hong-liang.(1987). Theoretical and experimental study for FPV-CPC medium-temperature solar collector.Acta energiae solaris sinica 8(3):209-219
    101. Xu GY, Zhang XS, Deng SM.2011. Experimental study on the operating characteristics of a novel low-concentrating solar photovoltaic/thermal integrated heat pump water heating system[J]. Applied Thermal Engineering,31:3689-3695.
    102. Y.Y.Hsieh, T.F.Lin.2002. Saturated flow boiling heat transfer and pressure drop of refrigenant R-410A in a vertical plate heat exchanger. International Journal of Heat and Mass Transfer,45(5):1033-1044.
    103. Zakharchenko R, Licea-Jimenez L, Perez-Garcia SA, et al.2004. Photovoltaic solar panel for a hybrid PV/thermal system[J]. Solar Energy Materials and Solar Cells,82:253-261.
    104. Zondag HA, van Helden WGJ, Bakker M, et al.2005. PVT roadmap:a European guide for the development and market introduction of PVT technology. In the 6th Framework Programme,11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700