用户名: 密码: 验证码:
太阳能空气集热及双效集热模块的实验和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源、环境问题日益严峻,可再生能源的利用、研究和发展迫在眉睫。太阳能依靠其广泛、清洁以及利用简便的特点备受瞩目,太阳能与建筑一体化技术合理地将建筑的用能需求、结构特点与太阳能利用相结合,克服了太阳能能流密度低、分散性强的不利条件,是太阳能利用的重要途径。太阳能与建筑一体化技术中,建筑采暖系统和太阳能热水系统是应用较为普遍的方式。
     主动式太阳能空气集热系统可以应用于北向建筑房间的采暖,空间大、纵深长的工业建筑采暖、通风,以及拓展应用于工业、农业产品的干燥等,应用前景广阔。由于空气的密度、热容和导热系数较小,空气集热器的光热转换效率偏低。本文提出一种镀有选择性吸收涂层、带平行翅片结构的双流道式空气集热器,利用选择性吸收涂层减少吸热板的辐射热损,翅片和双流道换热结构可以增大空气与吸热板的换热面积。搭建了空气集热器的实验测试平台,并对单块集热器以及两块集热器串联工况的空气集热性能分别进行了实验研究。结果表明,这种新型结构集热器热效率高于传统的空气集热器;串联之后效率有所降低,但获得了更高的出口温度,在环境温度为0℃左右的寒冷冬季,可获得超过70℃的热空气,对建筑采暖以及工农业的应用具有非常重要的意义。
     本文建立了双流道式空气集热器的理论模型,对空气集热器热性能进行了数值模拟计算,并与实验测试数据进行了对比分析,结果显示数值模拟结果与实验结果具有较高的吻合度。利用验证后的理论模型研究了吸热板表面吸收涂层的特性、背板保温层厚度、上下流道高度比例以及翅片结构对空气集热器性能的影响。建立了上流道式、下流道式空气集热器的理论模型,并结合己建立的双流道式空气集热器理论模型,对三种不同流道结构的空气集热器进行了热效率分析和(?)分析,基于热力学第一定律和第二定律对三种流道结构条件下空气集热器的空气流道高度进行了研究和优化。
     在大型建筑采暖或工农业应用中,由于空气集热系统通常为大面积联用,单一的空气集热功能导致系统全年利用率不高。基于此问题,结合空气集热和水集热的换热特点,本文研制出一种基于主动式空气集热的双效集热模块,该模块可以实现集热空气和集热水功能。模块组成的集热系统可在冬季为工业厂房、北向建筑等提供热空气采暖,其他季节提供工业过程所需要的热水,大大提升了系统的经济性和太阳能利用率。本文分别搭建了模块主动式空气集热和自然循环式水集热的实验测试系统和理论模型并进行了实验和理论研究。实验结果显示,模块在两种集热模式下均具有较高热效率。利用经过实验验证的理论模型在考虑模块两种集热模式的情况下对双效集热模块的内部结构进行了分析和优化,并对空气-水复合集热性能进行了研究,结果显示模块在复合集热模式下全天平均集热效率比单独集热空气或单独集热水更高。
     与我国北方住宅建筑结合的太阳能热水系统在冬季存在防冻问题,而用于建筑采暖的太阳能被动采暖技术,如Trombe墙、改进后的利用金属薄板作为吸热板的Barra-Costantini墙等在非采暖季存在闲置现象,炎热的夏季甚至会造成建筑过热。本文针对此问题,提出一种基于被动采暖功能的被动式双效集热模块。采暖季利用被动采暖功能为建筑供热,非采暖季运行集热水功能提供生活热水,提高了系统的全年利用率及经济性。由于太阳能被动采暖建筑室内温度昼夜波动较大,本文创新性地提出将被动式双效集热模块与炕建筑结合,建立了模块与炕建筑结合的实验测试平台和理论模型,并对模块的被动采暖模式进行了实验和理论研究。实验研究结果显示,安装集热模块的炕房间在被动采暖作用下,白天室内平均温度最高可超过14℃,炕的蓄热特性较好的起到了减小室内温度波动的作用,在仅运行被动采暖条件下室内夜间最低温度高于6℃;在控制房间温度不低于18℃的工况下,测试房在模块被动采暖作用下与对比房相比24小时可以节省耗电量3.5kh。利用经实验验证的理论模型对集热模块的被动采暖性能进行了理论研究,并对模块流道高度进行了优化,结果显示模块流道高度应不小于4cm。
     最后,结合被动式双效集热模块的特点,建立了带窗的实际建筑与模块相结合系统的理论模型,对模块在不同季节运行不同集热模式的性能以及对建筑的影响进行了理论研究。结果显示,在太阳辐照较好的冬季,白天可以使室内温度近7个小时维持在18℃以上:在冬季阴天条件下以及夏季运行集热水模式亦有效降低建筑负荷。
As energy and environment problems get harsher and harsher, research for the utilization of renewable resource and its development has reached the stage of great urgency. Due to its large-scale distribution, cleanliness and simple applicability, solar energy has attracted recognition to a large extent. By mechanically combining the energy-consuming demand as well as the structural property of buildings with the utilization of solar energy, the integrated technique of solar energy and buildings has overcome such defects as low energy flux density and strong dispersion and has become one of the important ways for the utilization of solar energy. Concerning to the integrated technique of solar energy and buildings, water heating system of solar energy and the heating system of buildings are common ways of the application of solar energy.
     Active solar air heating system can be applied to space heating of north-oriented buildings, to the ventilation and heating of industrial buildings of large space and depth, and furthermore to the drying of industrial and agricultural products. Since density, specific heat and thermal conductivity of air are relatively small, the photo-thermo transformation efficiency of solar air heater is quite low. In our literature, a double channel solar air heater plated with selective coating material and equipped with parallel fin structure has been introduced. By using selective absorbing coat to repel the radiation loss, while at the same time enhancing the heat exchanging area between air and heat absorber given to fin and dual-channel structure, the heating performance of air has been dramatically improved. We have rigged up an experimental testing platform for air heating and have undertaken experimental research for air heating property of both a single collector and two collectors in series, respectively. The results show that performance of the collector is higher than traditional solar air heater. By arranging two collectors in series, photo-thermo transformation efficiency will slightly drops, resulting in a higher outlet temperature of air. In harsh winter when ambient temperature is approximately0℃, air temperature could reach beyond70℃, which has important sense in terms of space heating and a number of industrial and agricultural applications.
     A theoretical model for the dual channel solar air heater has been set up. We have carried out a numerical calculation for the thermal property of solar air heater. By comparison and analysis with experimental result, it was shown that the numerical calculation result fits well with that of experiment. With validated theoretical model, we have carried out research into the impact of such elements as the property of absorbing coat on the surface of absorber, the thickness of the insulation layer of backboard and the ratio of the depth of top channel to that of the bottom channel on the performance of solar air collector. Furthermore, we have established the theoretical model for both top channel solar air heater and bottom channel solar air heater. Besides, at one hand, we have taken analysis into the thermo-efficiency and exergy for solar air heaters with three different channel structures, respectively, and at the other hand, we have launched analysis and optimization for air channel depth with three different structures, respectively, based on first thermodynamics law as well as second thermodynamics law.
     In industrial applications, due to large-scale application of adjoined solar air heating systems, the annual utilization efficiency is relatively small as a result of the mono-function of solar air heater. To resolve this problem, our literature has proposed a dual-function solar collector (DFSC) based on active heating. DFSC could realize air heating and water heating. Heating system fabricated with this kind of module could provide hot air for industrial complex and north-oriented buildings in winter, while supplying hot water requested by industrial process in other seasons, resulted in the prominent raise of both the economy of the system as well as the utilization efficiency of solar energy. The experimental testing platform for air heating and natural-cycled water heating has been rigged up, and theoretical models for both of these two states have been presented. Test results show that DFSC get high performance in both work modes. Analysis and optimization over the inner structure of DFSC for both of the heating modes have been executed, with the help of theoretical model validated by experiments. Furthermore, we have researched the heating property of the compound of air and water and have found that DFSC under compound heating mode could obtain a higher daily heating efficiency than that of mere air heating or mere water heating.
     Solar water heating system will encounter antifreeze problems in winter. However, such passive heating technique of solar energy for space heating as Trombe wall, or improved Barral-Costantini wall using metal plate for heat absorbing will stay idle for seasons without necessity of heating, what's more, buildings will be likely to become overheat during the hottest period of summer. In order to have this problem solved, our literature has presented a passive dual function solar collector (P-DFSC) based on passive heating, which could be used for space heating in winter in passive heating mode and water heating for the rest seasons in water heating mode. As a consequence, the annual utilization efficiency and the economy of the system have been magnificently promoted. Relative researches have revealed that, the variation of interior temperatures of buildings equipped with P-DFSC system between daytime and nighttime is quite large. Given to this weakness, our literature innovatively proposed to combine passive heating function of P-DFSC with Kang. Both experimental and theoretical research have been undertaken for the passive heating condition of P-DFSC. Subsequently we have carried out both experimental and theoretical research for the passive heating mode of P-DFSC. Experimental result shows that, subject to passive heating, internal temperature of houses equipped with P-DFSC could reach more than14℃in daytime and more than6℃in night when only the passive heating mode is running. The heat storing property of Kang has made it that the variation of room temperature between daytime and nighttime is slighter. When room temperature is controlled to no less than18℃, P-DFSC room could save electricity amount to approximately3.5kWh in a whole day, in comparison with the reference room. With experiment-validated theoretical model, we have undertaken theoretical research into the performance of passive heating mode of P-DFSC and optimized the depth of air channel. Depth of air channel should be no less than4cm.
     Finally, with the characteristic of P-DFSC, a theoretical model for window-equipped real building integrated with P-DFSC system has been set up. Besides, theoretical research for the performance of P-DFSC running in different modes in corresponding seasons has been undertaken as well as its impact over buildings. Corresponding result shows that, passive heating mode of P-DFSC could keep the temperature of the room beyond18℃for almost7hours in sunny days of winter. Water heating mode of P-DFSC could decrease thermo-load of the building in overcast days of winter and in summer when only water heating mode is running.
引文
1. 崔民选.2010.中国能源发展报告.2010[M].北京:社会科学文献出版社.
    2. 中华人民共和国国务院.2011.中华人民共和国国民经济和社会发展第十二个五年规划纲要.
    3. 中华人民共和国国务院.2006.国家中长期科学和技术发展规划纲要(2006-2020年)
    4. 罗运俊,何梓年,王长贵.2008.太阳能利用技术[M].北京:化工工业出版社.
    5. 国家能源局.2012.太阳能发电发展“十二五”规划.
    6. Luther J., Luque A., Butt A. W., et al.2005. Concentration photovoltaics for highest effeiciencies and cost reduction[C].25th European photovoltaic solar energy conference, Barcelona,France.
    7. 田玮,王一平,韩立君等.2005.聚光光伏系统的技术进展[J].太阳能学报,26(4):597-604.
    8. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, N. H. Karam.2007.40% efficient metamorphic GalnP/GalnAs/Ge multijunction solar cells Applied Physics Letters,90:183516.
    9. R. McConnell and M. Symko-Davies.2005. DOE High Performance Concentrator PV Project[C]. International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, Arizona.
    10.于璇.2009.太阳能热水器行业的机遇与挑战[J].电器,9:22-35.
    11. Vannoni C, Battisti R, Drigo S.2008. Potential for solar heat in industrial processes[J]. IEA SHC Task,33:174.
    12. Kalogirou S.2003. The potential of solar industrial process heat applications[J], Applie Energy,76(4)337-61.
    13. Martin J. Atkins, Michael R.W. Walmsley, Andrew S. Morrison.2010. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes [J], Energy,35:1867-1873.
    14.子逸.2010.凯达印染开启绿色能源大幕[J].中国纺织,4:141.
    15. E.C. Jr. Kern, M.C. Russell.1978. Combined photovoltaic and thermal hybrid collector system[C].In Proceedings of thel3th IEEE Photovoltaic Specialists, Washington DC, USA, 1153-1157.
    16. Bergene T, L(?)vvik O M.1995. Model calculations on a flat-plate solar heat collector with integrated solar cells[J]. Solar energy,55(6):453-462.
    17. Rockendorf G., Sillman R., Podlowski L., Litzenburger B.1999. PV-hybrid and thermo-electric-collectors [C]. Proceedings of ISES 1999 Solar World Congress, Jerusalem, Israel.
    18. V.V. Tyagia, S.C. Kaushika, S.K. Tyagi.2012. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology[J]. Renewable and Sustainable Energy Reviews, 16(3):1383-1398.
    19. Coventry J S.2005. Performance of a concentrating photovoltaic/thermal solar collector[J]. Solar Energy,78(2):211-222.
    20.王崇杰,薛一冰.2007.太阳能建筑设计[M].中国建筑工业出版社.
    21.敖三妹.2005.太阳能与建筑一体化结合技术进展[J].南京工业大学学报:自然科学版,27(006):101-106.
    22.程襄武,谢建.2003.太阳热水器与建筑结合的技术经济分析[J].云南师范大学学报,23(6):30-35.
    23.王铭.2008.太阳能热水系统与建筑一体化[J].安徽建筑,15(2):32-34.
    24.何梓年.2004.提高平板型太阳热水器产品性能扩大平板型太阳热水器市场份额[J].可再生能源,1:6-8.
    25.李勇,胡明辅,赵宏伟,等.2007.平板型与真空管型太阳能热水器发展状况分析[J].应用能源技术,11:36-39.
    26. Alvarez A, Cabeza O, Muniz M C, et al.2010. Experimental and numerical investigation of a flat-plate solar collector[J]. Energy,35(9):3707-3716.
    27. Garg H P.1982. Treatise on solar energy[M]. Chichester:Wiley.
    28.葛新石.1988.太阳能工程:原理和应用[M].学术期刊出版社.
    29. Lima J B A, Prado R T A, Montoro Taborianski V.2006. Optimization of tank and flat-plate collector of solar water heating system for single-family households to assure economic efficiency through the TRNSYS program[J]. Renewable energy,31(10):1581-1595.
    30. H.M. Yeh, C.D. Ho, C.W.2003. Yeh. Effect of aspect ratio on the collector efficiency of sheet-and-tube solar water heaters with the consideration of hydraulic dissipated energy [J]. Renewable Energy,28:1575-1586.
    31. Lu S M, Li Y, Tang J C.2003. Optimum design of natural-circulation solar-water-heater by the Taguchi method[J]. Energy,28(7):741-750.
    32.徐刚,熊斌,孙耀明等.2012-10-3.一种太阳能中高温选择性吸收涂层.中国,201210185135.0[P].
    33.孙志国.2006.平板型太阳热水器夜间温降的理论和实验研究[D]:硕士.昆明:云南师范大学.
    34. Du B, Hu E, Kolhe M.2013. An experimental platform for heat pipe solar collector testing[J]. Renewable and Sustainable Energy Reviews,17:119-125.
    35. Ayompe L M, Duffy A.2013. Thermal performance analysis of a solar water heating system with heat pipe evacuated tube collector using data from a field trial[J]. Solar Energy,90: 17-28.
    36.陆维德,李军,吴京生.1986.直接受益式被动太阳房的热工设计研究[J].太阳能学报,7(3):295-302.
    37.郑瑞澄,郭晓光.1989.直接受益集热窗热特性分析[J].太阳能学报,10(2):157-166.
    38.李元哲,狄洪发,吴雁宁.1989.被动式太阳房设计三要素的最优化配比[J].太阳能学报,10(3):312-315.
    39.李恩,刘加平,杨柳.2012.拉萨市直接受益式太阳房居住建筑被动式设计优化研究[J].工业建筑,42(002):27-32.
    40.刘加平,杨柳.1999.零辅助能耗窑居太阳房热工设计[J].太阳能学报,20(3):302-310.
    41.刘艳峰,刘加平,杨柳,李静.2008.拉萨地区被动太阳能传统民居测试研究[J].太阳能学报,29(4):391-394.
    42.芦潮,唐汝宁.2005.高寒地区附加阳光间式太阳房的节能分析[J].节能,276(7):28-30.
    43.王登甲,刘艳峰,高珍,刘加平.2012.阳光间对住宅建筑热性能的影响[J].中南大学学报,43:193-197.
    44. Arvind Chel, J.K. Nayak, Geetanjali Kaushik.2008. Energy conservation in honey storage building using Trombe wall [J]. Energy and Buildings.40:1643-1650.
    45. B. Chen, H.J. Chen, S.R. Meng, et al.2006. The effect of Trombe wall on indoor humid climate in Dalian, China [J].Renewable Energy.31:333-343.
    46. Samar Jaber, Salman Ajib.2011. Optimum design of Trombe wall system in Mediterranean region [J]. Solar Energy,85:1891-1898.
    47.孙鹏,陈滨,刘毓伟.2005.新建被动式太阳房冬季热性能的实验研究[J].建筑热能通风空调,24(1):22-27.
    48.季杰,罗成龙,孙炜,何伟,裴刚,韩崇巍.2011.一种新型的与建筑一体化太阳能双效集热器系统的实验研究[J].太阳能学报,32(2):149-153.
    49. Wei Chen, Wei Liu.2004. Numerical and experimental analysis of convection heat transfer in passive solar heating room with greenhouse and heat storage[J]. Solar Energy,76:623-633.
    50. Tyagi V V, Buddhi D.2007. PCM thermal storage in buildings:A state of art[J]. Renewable and Sustainable Energy Reviews,11(6):1146-1166.
    51. Wang X, Zhang Y P, Xiao W, et al.2009. Review on thermal performance of phase change energy storage building envelope[J]. Chinese science bulletin,54(6):920-928.
    52. Hunn B D.1977. A hybrid passive/active solar house[C]. International Solar Energy Society, Annual Meeting.1:11-16.
    53. Guohui Gan.1998. A parametric study of Trombe walls for passive cooling of buildings[J]. Energy and Buildings,27:37-43.
    54. K. Imessad, N. Ait Messaoudene, M. Belhamel.2004. Performances of the Barra-Costantini passive heating system under Algerian climate[J]. Renewable Energy,29:357-367.
    55. L. Zalewski, M. Chantant, S. Lassue, et al.1997. Experimental thermal study of a solar wall of composite type[J]. Energy and Buildings,25(1):7-18.
    56. L. Zalewski, S. Lassue, B. Duthoit, et al.2002. Study of solar walls-validating a simulation model[J]. Building and Environment,37(1):109-121.
    57. Wei Sun, Jie Ji, Chenglong Luo, et al. Performance of PV-Trombe wall in winter correlated with south facade design. Applied Energy,2011,88(1):224-23.
    58. Ji Jie, Yi Hua, He Wei, et al. Modeling of a novel Trombe wall with PV cells. Building and Environment,2007,42(3):1544-1552.
    59. Ji Jie, Yi Hua, Pei Gang, et al.2007. Study of PV-Trombe wall assisted with DC-fan. Building and Environment,42(10):3529-3539.
    60. Ji Jie, Yi Hua, Pei Gang, et al.2007. Study of PV-Trombe wall installed in a fenestrated room with heat storage [J]. Applied Thermal Engineering,27(8-9):1507-1515.
    61.刘瑾,高雪飞,李德英.2008.一种主动式太阳能供暖系统的经济分析[J].建筑节能,36(8)53-55.
    62. Transpired solar collectors, National Renewable Energy Laboratory, a DOE national laboratory, DOE/GO-10098-466 September 1998, revised August 2000
    63. Gunnewiek L H, Brundrett E, Hollands K G T.1996. Flow distribution in unglazed transpired plate solar air heaters of large area[J]. Solar Energy,58(4):227-237.
    64. Melikyan Z, Egnatosyan S.2011. Solar Ventilation:Analysis and Developments[J]. Energy Engineering,108(1):6-25.
    65. Zomorodian A, Barati M.2010. Efficient solar air heater with perforated absorber for crop drying[J]. Journal of Agricultural Science and Technology,12:569-577.
    66. Van Decker G W E, Hollands K G T, Brunger A P.2001. Heat-exchange relations for unglazed Transpired solar collectors with circular holes on a square or triangular pitch[J]. Solar Energy,71(1):33-45.
    67. Arulanandam S J, Hollands K G, Brundrett E.1999. A CFD heat transfer analysis of the transpired solar collector under no-wind conditions[J]. Solar Energy,67(1):93-100.
    68. A. Kolb, E.R.F. Winter, R. Viskanta.1999. Experimental studies on a solar air collector with metal matrix absorber [J]. Solar Energy,65(2):91-98.
    69. El-khawajah, M.F., Aldabbagh, L.B.Y., Egelioglu, F.2011. The effect of using transverse fins on a double pass flow solar air heater using wire mesh as an absorber[J]. Solar Energy, 85:1479-1487.
    70.叶宏,葛新石,庄双勇,等.2003.带透明蜂窝的太阳空气加热器的实验研究(I)[J].太阳能学报,24:27-31.
    71.张欢,高煜,由世俊,等.2012.一种新型渗透式太阳能空气集热器的热性能研究[J].天津大学学报,7:005.
    72. Pottler K, Sippel C M, Beck A, et al.1999. Optimized finned absorber geometries for solar air heating collectors[J]. Solar Energy,67(1):35-52.
    73. Yeh H M, Ho C D, Hou J Z.2002. Collector efficiency of double-flow solar air heaters with fins attached[J]. Energy,27(8):715-727.
    74. Ho C D, Chang H, Wang R C, et al.2012. Performance improvement of a double-pass solar air heater with fins and baffles under recycling operation[J]. Applied Energy,100:155-163.
    75. Ho C D, Yeh H M, Cheng T W, et al.2009. The influences of recycle on performance of baffled double-pass flat-plate solar air heaters with internal fins attached[J]. Applied Energy, 86(9):1470-1478.
    76. Sun W, Ji J, He W.2010. Influence of channel depth on the performance of solar air heaters[J]. Energy,35(10):4201-4207.
    77. Bhushan B, Singh R.2010. A review on methodology of artificial roughness used in duct of solar air heaters[J]. Energy,35(1):202-212.
    78. Aloyem Kaze Claude V, Tchinda Rene.2010. On the Comparison of some Selected Artificial Roughness Geometries used in Solar Air Collectors:Energy and Exergy Analysis[J]. European Journal of Scientific Research,45(2):232-248.
    79. Mridul Sharma, Varun.2010. Performance estimation of artificially roughened solar air heater duct provided with continuous ribs[J], International journal of energy and environment, 1(5):897-910.
    80. Yakubu G S.1996. The reality of living in passive solar homes:a user-experience study[J]. Renewable energy,8(1):177-181.
    81.王小林,陈滨.2009.被动式太阳能建筑夏季降温实验研究[J].建筑热能通风空调,28(2):1-4.
    82. Rockendorf G, Janssen S, Felten H.1996. Transparently insulated hybrid wall[J]. Solar energy,58(1):33-38.
    83. Matuska T, Sourek B.2006, Facade solar collectors[J]. Solar Energy,80(11):1443-1452.
    84. Jie Ji, Chenglong Luo, Tin-Tai Chow, et al.2011. Thermal characteristics of a building-integrated dual-function solar collector in water heating mode with natural circulation[J]. Energy,36:566-574.
    85. Jie Ji, ChengLong Luo, Wei Sun, et al.2010. A numerical and experimental study of a dual-function solar collector integrated with building in passive space heating mode[J]. Chinese Science Bulletin.55(15):1568-1573.
    86. Jie Ji, ChengLong Luo, Wei Sun, et al.2010. Effect of a dual-function solar collector integrated with building on the cooling load of building in summer[J]. Chinese Science Bulletin,55(31):3626-3632.
    87.赵东亮,代彦军,李勇.2011.空气-水复合平板型太阳能集热器[J].可再生能源,29(3):108-111.
    88. Esen H.2008. Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates[J]. Building and Environment,43(6): 1046-1054.
    89. Duffle J A, Beckman W A.1980. Solar engineering of thermal processes[J]. NASA STI/Recon Technical Report A,81:16591.
    90. Swinbank W C.1963. Long-wave radiation from clear skies[J]. Quarterly Journal of the Royal Meteorological Society,89(381):339-348.
    91. Shah RK.1978. A Correlation for Laminar Hydrodynamic Entry Length Solutions for Circular and Noncircular Ducts[J]. J Fluid Eng,100:177-179.
    92. Jones Jr D C.1976. An improvement in the calculation of turbulent friction in rectangular ducts[J]. ASME Transactions Journal of Fluids Engineering,98:173-180.
    93. Heaton H S, Reynolds W C, Kays W M.1964. Heat transfer in annular passages. Simultaneous development of velocity and temperature fields in laminar flow[J]. International Journal of Heat and Mass Transfer,7(7):763-781.
    94. Mills A F.1962. Experimental investigation of turbulent heat transfer in the entrance region of a circular conduit[J]. Journal of Mechanical Engineering Science,4(1):63-77.
    95. Hegazy A A.1999. Optimum channel geometry for solar air heaters of conventional design and constant flow operation[J]. Energy conversion and management,40(7):757-774.
    96. Hollands K G T, Unny T E, Raithby G D, et al.1976. Free convective heat transfer across inclined air layers[J]. J. Heat Transfer;(United States),98(2):189-193.
    97. Huang B J, Du S C.1991. A performance test method of solar thermosyphon systems[J]. Journal of Solar Energy Engineering;(United States),113(3):172-179.
    98. Bejan, A.2004. Convection heat transfer[M], third ed. John Wiley &Sons, New Jersey.
    99. Bergman T L, Incropera F P, Lavine A S, et al.2011. Fundamentals of heat and mass transfer[M]. John Wiley & Sons.
    100.陈则韶,葛新石.1985.确定对流热损小的平板集热器空气夹层最佳间距的理论和实验研究[J].太阳能学报,6(3):287-296.
    101.罗成龙.2010.与建筑一体化太阳能双效集热器系统的实验和理论研究[D].中国科学技术大学.
    102. Spiga M, Morino G L. A symmetric solution for velocity profile in laminar flow through rectangular ducts[J]. International communications in heat and mass transfer,1994,21(4): 469-475.
    103. Shen J, Lassue S, Zalewski L, et al.2007. Numerical study on thermal behavior of classical or composite Trombe solar walls[J]. Energy and Buildings,39(8):962-974.
    104. Beausoleil-Morrison I.2000. The adaptive coupling of heat and air flow modelling within dynamic whole-building simulation[M]. Glasgow:University of Strathclyde.
    105. ASHRAE Handbook fundamentas[M]. Atlanta,USA:ASHRAE,1993.
    106.Rockendorf G, Janssen S, Felten H.1996. Transparently insulated hybrid wall[J]. Solar Energy,58:33-38.
    107. Chow T T, He W, Ji J.2007. An experimental study of facade-integrated photovoltaic/water-heating system[J]. Applied Thermal Engineering,27(1):37-45.
    108. Ji J, Luo C, Chow T T, et al.2011. Thermal characteristics of a building-integrated dual-function solar collector in water heating mode with natural circulation[J]. Energy, 36(1):566-574.
    109.中国国家标准化管理委员会.2003.采暖通风与空气调节设计规范(GB50019-2003).
    110. Clarke J.2012. Energy simulation in building design[M]. Routledge.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700