用户名: 密码: 验证码:
太阳能与燃煤机组互补电站热力特性与集成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能作为一种可以规模化利用的新能源类型已经得到了广泛应用,太阳能热发电作为太阳能典型热利用方式,为了避免太阳辐射波动性带来的投资增加等一定程度制约了太阳能热发电的规模化发展。槽式太阳能集热技术是一种在国外有数十年运行业绩的技术成熟的热发电类型。燃煤电站温度范围广、负荷稳定可控,其不同温度热需求与槽式太阳能集热系统温度等级相匹配。因此,通过将槽式太阳能集热系统输出热量与燃煤机组热力系统互补集成,以油水换热器为热交换枢纽将太阳能热量输入燃煤机组热力系统取代部分燃煤热量,集成为太阳能光煤互补电站,实现了利用太阳能能源的同时降低部分燃煤消耗。光煤互补电站是集成太阳能集热系统和燃煤电站的复合能量系统,对互补发电系统的研究须着眼于太阳能集热系统与燃煤电站热力系统以及两系统间的耦合关系与对应的特性状况。
     本课题以研究太阳能光煤互补电站系统特力特性为目的,探索光煤互补电站中槽式太阳能集热系统运行特性与光煤互补电站热力特性与运行模式,并将研究结论应用于工程实践,建成我国首个商业化光煤互补示范电站。主要研究内容和结论包括:
     首先,以太阳能与燃煤电站热力系统不同能量需求特性为基础,探索槽式太阳能集热系统与燃煤电站热力系统的互补机理,研究太阳能和燃煤电站热力系统的互补集成原则。建立互补发电系统热力模型并进行基本的热力系统分析,结果表明太阳能可以与燃煤电站实现较好的热匹配,当太阳能集热场可以提供足够热量时,取代高加抽汽可以直接提升系统经济性,但同时也要求太阳能集热系统有较高的集热温度。
     其次,在分析示范电站站址太阳能资源特性的基础上,理论分析示范电站中槽式集热系统在基准工况、阵列间距变化、轴向安装角度变化、集热管失去真空等条件下的系统集热特性。以及集热系统随环境条件变化的影响机理及特性,得到示范系统随环境风速、环境温度变化导致的集热效率变化的定量影响程度。然后,通过分析示范电站资源辐射条件下,三种典型的太阳能发电系统的发电特性,研究太阳能发电不同技术路线的发电能力与系统集热特性等环境适应性。研究结论将应用于示范电站中槽式太阳能系统设计、集成等环节。
     再次,介绍了我国首个严格按照国际现有槽式太阳能光热电站行业标准与体系建设的光煤互补示范电站,并将研究成果应用于示范电站设计等环节。主要包含项目站址、布局规划、装机方案、关键设备参数指标等项目基本情况。最后,基于已经建成的光煤互补示范电站,通过实际测试数据分析系统能量损失分布以及参数对运行稳定性的影响机理,分析并验证槽式集热系统及示范电站热力性能。
     然后,基于热经济学基本原理,充分考虑互补电站中各股能量流的经济成本以及各子系统的非能量费用,建立了光煤互补示范电站中太阳能所占份额和各股焓流能量费用分析模型,研究示范电站的太阳能份额比例特性。同时,以假设配建储热系统的光煤互补示范电站为研究对象,研究配建储能系统的示范电站在站址地典型气象条件与负荷工况下,集热场与储能部分的运行模式,并定量分析系统流量调节系统的流量分配特性。
     最后,研究三种典型太阳能热发电系统在在示范电站站址条件下,相同装机容量、集热面积时的发电量与供电量特性。考虑总投资、运维管理费用、燃料费用、贷款利率等条件,应用经济性评价方法分析对应技术路线的经济特性。从系统投资角度,通过详细产业调研,分析我国目前光煤互补电站相关产业配套来源,与对应的投资成本分布。并对光热产业开展风险研究,主要包括:材料、燃料价格变化风险、市场变化风险、技术风险以及风险评估及防范措施等进行了评估,提出了光热发电产业及光煤互补电站产业发展政策建议。
     本文创新点在于通过研究太阳能光煤互补电站集成机理与热力特性,以及特定气象条件下互补电站中槽式太阳能集热系统在基准工况、阵列间距、安装角度等环境参数变化条件下的对系统特力特性的影响机理与定量研究。解决了槽式太阳能集热系统设计优化问题,并将研究成果应用于我国首个光煤互补示范电站,实现了集热系统稳定运行,也是我国首个实现集热场出口温度稳定并达到393℃连续运行的槽式太阳能集热系统。由于在理论研究与示范项目的突出进展,正作为主编单位主编我国槽式太阳能领域首个国家级设计标准《槽式太阳能光热发电站设计规范》。
As a type of new energy which can be utilized in large-scale, the solar energy has got rapid development. Solar thermal power generation is a typical way to use solar energy. In some extent, the increased investment to avoid solar radiation volatility is an obstacle to the development of large-scale solar thermal power generation. Solar trough collector technology is a kind of mature thermal power generation which has been operated foreign in several decades. Coal-fired power plant has wide temperature range, stable and controllable loads, its different temperatures requirement match well with the temperature provided by solar trough thermal collector system. Thus, the solar-aided coal fired power generation through utilizing the solar energy to replace some extraction of turbine can integrate the solar trough collector system with coal-fired thermal system. It not only can use the solar energy, but also can decrease the coal consumption. Solar/thermal hybrid system is a complex energy system. The research of this complement system should focus on the coupling relationship and corresponding status characteristics between solar collector systems and coal-fired power plant thermal system.
     The aim of this thesis is to study the thermal characteristics of solar-aided coal fired power generation, besides, explore the operation properties of solar trough collector system and thermal characteristics and operation mode in complement generation. The main contents and conclusions include:
     Firstly, exploring the complementary mechanism and principal of solar trough collector systems and coal-fired power system based on the different energy demand characteristics of the two systems. Building the thermodynamic model of solar/thermal hybrid system and doing basic thermodynamic analysis, the results indicate solar energy can achieve better matching with coal-fired power plants. When the solar collector field can provide enough heat and it has higher collector temperatures, replacing high pressure extraction can improve the economy directly.
     Secondly, based on the solar resource characteristics of the demonstration plant station site, thermal collector characteristics of solar trough collector system at design conditions, changes in the array pitch and varies of axial mounting angle, loses vacuum of the tube collectors and other conditions have been analyzed. What's more, the changes in wind speed, ambient temperature and other factors on quantitative collector system efficiency have also been investigated. Then, the solar power capacity of different technical route and system collector characteristics have been studied through analyzing the generation characteristics of three typical solar power systems under the irradiation conditions in demonstration plant
     Thirdly, introducing the basic information including station site, layout planning, installed programs, key device parameters indicators of the first complementary demonstration generation of China which is on the basis of existing international standards of solar trough thermal power plant. This demonstration projects not only can provide technical support for the development of large-scale solar-aided coal fired power generation and verify the matures and reliability of domestic solar thermal power technology, but also can get first-hand construction, operation and management experience which can laid a solid technical foundation for the implementation of the follow-up commercial plant. Finally, based on the built solar-aided coal fired power generation, the impact mechanism on the stability of operation caused by some critical parameters can be understand through the actual test data analysis system.
     Furthermore, the analysis model of solar share and each share enthalpy flow of energy cost in solar/thermal hybrid system have been built. Based on the basic principles of thermoeconomics, this model has considered the economic costs of each energy flow as well as non-energy costs of each subsystem. It can be used to analyze and validate the thermal performance of demonstration power plant. Meanwhile, taking the solar-aided coal fired power generation with thermal storage system assuming as the research object, the operation mode as well as the flow distribution characteristics of demonstration plant with thermal storage system in typical weather conditions and load conditions.
     Finally, the power generation and power supply characteristics of three typical solar thermal power generation systems in the same installed capacity and collector area has been studied. Taking the total investment, operation and maintenance costs, fuel costs, interest rates into consideration, the economic characteristics of the corresponding technical route has been analyzed through the unit generation cost method and the internal return rate method. From the investment perspective, analyzing China's current solar/coal hybrid system industries and the corresponding distribution of investment costs through detailed industry research. Besides, the assess of solar thermal industry including materials, fuel price change risks, changes in the market risk, technology risk, risk assessment and preventive measures has been conducted. The policy recommendations about the development of solar-aided coal fired power generation has been proposed.
     By studying the integrated mechanism and thermodynamic properties of solar aided coal-fired power plant, the system thermodynamic properties mechanisms of were studied in the changes of trough solar collector system baseline conditions, the array spacing, and the mounting angle and so on. It can solve the problem of trough solar collector system design optimization. The research results have been used in the first solar aided coal-fired power plant in China and the stable operation of the collector system has been achieved. It is the first one whose outlet temperature is stable and can reach to the393℃. Due to highlight progress in theoretical research and demonstration projects, the author's company is chosen as editor-in-chief to write the first national design standards in trough solar field, that is, trough solar thermal power plant design specifications.
引文
[1]IEA. Annual Energy Outlook 2003. DOE/IEA-0383, January 2003.
    [2]Romeo, LM, Abanades, JC.,. Escosa, JM., Pano, J., Gimenez, A. Sanchez-Biezma, A. and Ballesteros JC.Oxyfuel carbonation/calcination cycle for low cost CO2 capture in existing power plants[J]. Energy Conversion and Management,2008,49:2809-2814.
    [3]Thitakamol, B., Veawab, A., Aroonwilas, A. Environmental impacts of absorption-based CO2 capture unit for post-combustion treatment of flue gas from coal-fired power plant[J]. International Jounrnal of Greenhouse Gas Control.2007,1:318-342.
    [4]刘振亚,中国电力与能源[M],中国电力出版社,2012:18-26
    [5]徐钢,田龙虎,刘彤,黄其励.中国电力工业CO2减排战略分析[J].中国电机工程学报,2011,31(17):1-8.
    [6]中华人民共和国国土:资源部.《中国能源发展报告2013》[EB/OL],[2013-7-29].http://www.mlr.gov.cn/xwdt/jrxw/201307/t20130729_1246434.htm
    [7]国家能源局,国家能源局关于印发2014年能源工作指导意见的通知[EB/OL], [2014-1-20]. http://zfxxgk.nea.gov.cn/auto82/201401/t20140124_1756.htm
    [8]中华商务网.太阳能光伏发电[EB/OL].http://knology.chinaccm.com/phrase-2006072512353300447.html.
    [9]D. Mills, G. L. Morrison, and P. le Lievre. Design of a 240 MWe Solar Thermal Power Plant[C]. Proc. Eurosun Conference. Freiburg,2004.
    [10]Pilkington. Status Report on Solar Trough Power Plants[J], Pilkington Solar International GmbH.1996.1.
    [11]Zarza E, Hennecke K. Direct steam generation in parabolic troughs (diss). In: Proceedings of the 10th Solar PACES International Symposium on Solar Thermal Concentrating Technologies[C], Australia,2000:65-71.
    [12]Almanza R, Jimenez G, Lentz A, Valdes A, Soria A..DSG under two-phase and stratified flow in a steel receiver of a parabolic trough collector[J]. Sol Energy Eng ASME.2002,124:140-144.
    [13]Price H, Lupfert E, Kearney D, Zarza E, et al. Advances in parabolic trough solar power technology[J]. Sol Energy Eng ASME.2002,124:109-125.
    [14]朱柯丁,宋艺航,谭忠富,张会娟.中国风电并网现状及风电节能减排效益分析[J].中国电力,2011,44(5):67-70.
    [15]郑克棪 潘小平.中国地热发电开发现状与前景[J].2009,2:45-48.
    [16]翟融融.二氧化碳减排机理及其与火电厂耦合特性研究[D].北京:华北电力大学,2010.
    [17]黄素逸,黄树红.太阳能热发电原理及技术[M].中国电力出版社,2013:1-15.
    [18]D. Mills, Advances in solar thermal electricity technology[J], Solar Energy, 2004,76:19-31.
    [19]A. Fernandez-Garcia, E. Zarza, L. Valenzuela, M. Perez. Parabolic-trough solar collectors and their applications [J]. Renewable and Sustainable Energy, 2010,14(7):1695-1721.
    [20]黄湘.国际太阳能资源及太阳能热发电趋势[J].华电技术.2009,31(12):1-7.
    [21]Xiudong Wei, Zhenwu Lu, Weixing Yu, Hongxin Zhang, Zhifeng Wang. Tracking and ray tracing equations for the target-aligned heliostat for solar tower power plants[J]. Renewable Energy,2011,36(10):2687-2693.
    [22]James Spelling, Daniel Favrat, Andrew Martin, GermainAugsburger. Thermoeconomic optimization of a combined-cycle solar tower power plant[J]. Energy,2012,41(1):113-120.
    [23]中国新能源网.西班牙成为世界最大太阳能光热发电生产国[EB/OL].[2012-7-26]. http://www.newenergy.org.cn/Html/0107/7261034341.Html
    [24]熊亚选,Modibo Kane Traore,吴玉庭,马重芳,张业强.槽式太阳能聚光集热技术[J].太阳能.2009,(6):22-26.
    [25]宿建峰.塔式太阳能热发电系统集成及性能优化[D].北京:中国科学院工程热物理研究所,2008.
    [26]刘巍,王宗超.碟式太阳能热发电系统[J].重庆工学院学报(自然科学版).2009,23(10):99-103.
    [27]许辉;张红;白撞;丁莉;庄骏.碟式太阳能热发电技术综述(一)[J],热力发电.2009,38(5):5-10.
    [28]张传强洪慧金红光.聚光式太阳能热发电技术发展状况[J].热力发电,2010,12:5-9.
    [29]Gabriel Morin JurgenDersch, Werner Platzer, Markus Eck, Andreas Haberle. Comparison of Linear Fresnel and Parabolic Trough Collector power plants[J]. Solar Energy,2012,86:1-12.
    [30]CSPPLAZA光热发电网.菲涅尔太阳能光热发电技术之前景[EB/OL].[2013-4-3]. http://www.cspplaza.com/article-682-1.html
    [31]Roberto Grena, PietroTarquini. Solar linear Fresnel collector using molten nitrates as heat transfer fluid[J]. Energy.2011,36:1048-1056.
    [32]J.D. Nixon, P.A. Davies. Cost-exergyoptimisation of linear Fresnel reflectors [J]. Solar Energy.2012,86:147-156.
    [33]CSPPLAZA光热发电网.全球光热发电装机2013年底增至3320MW[EB/OL].[2014-1-8]. http://www.cspplaza.com/article-2858-1.html
    [34]A. Fernandez-Garcia, E. Zarza, L. Valenzuela, M. Perez. Parabolic-trough solar collectors and their applications[J]. Renewable and Sustainable Energy Reviews. 2011,14(7):1695-1721.
    [35]肖杰,何雅玲,程泽东,等.槽式太阳能集热器集热性能分析[J].工程热物理学报,2009(5):729-733.
    [36]曲航,赵军,于晓.抛物槽式太阳能热发电系统的模拟分析[J].中国电机工程学报,2008,28(11):87-93.
    [37]Price H. A parabolic trough solar power plant simulation model[C]//ASME 2003 International Solar Energy Conference. American Society of Mechanical Engineers,2003:665-673.
    [38]Herrmann U, Kearney D W. Survey of thermal energy storage for parabolic trough power plants[J]. Journal of Solar Energy Engineering,2002,124(2): 145-152.
    [39]Garcia-Rodriguez L, Palmero-Marrero A I, Gomez-Camacho C. Thermoeconomic optimization of the SOL-14 plant (Plataforma Solar de Almeria, Spain)[J]. Desalination,2001,136(1):219-223.
    [40]S. D. Odeh, G. L. Morrison, M. Behnia. Modelling of parabolic trough direct steam generation solar collectors[J]. Solar Energy.1998,62(6):395-406.
    [41]Eduardo Zarza, Loreto Valenzuela, et al. Direct steam generation in parabolic troughs:Final results and conclusions of the DISS project[J]. Energy. 2004,29(5-6):635-644.
    [42]Lippke, F. Direct steam generation in the parabolic trough solar power plants-numerical investigation of the transient and the control of a once-through system[J]. Journal.of Solar Energy Engineering.1996,118:9-14.
    [43]Price, H.. A Parabolic Trough Solar Power Plant Simulation Model [R]. Report No. NREL//CP-550-33209, NREL, Colorado, USA.2003.
    [44]Heinzel V., Kungle H. and Simon M. Simulation of a parabolic trough collector[M]. ISES Solar World Congress, Harare, Zimbabwe,1995:1-10.
    [45]Muller, M. Test loop for research on direct steam generation in parabolic trough power plants[J]. Solar Energy Materials.1991,24:222-230.
    [46]Isabel Llorente Garcia, Jose Luis Alvarez, Daniel Blanco. Performance model for parabolic trough solar thermal power plants with thermal storage: Comparison to operating plant data[J]. Solar Energy,2011,85(10):2443-2460.
    [47]M.J. Montes, A. Aba'nades. Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors[J]. Solar Energy.2009,83(12):2165-2176
    [48]Gong, G. et al. An optimized model and test of the China's first high temperature parabolic trough solar receiver[J]. Solar Energy.2010, doi:10.1016/j.solener.2010.08.003.
    [49]Patnode, A.M. Simulation and Performance Evaluation of Parabolic Trough Solar Power Plants[D]. Ph.D. Thesis, University of Wisconsin-Madison, USA. 2006.
    [50]Frank L. Simulation of the Part Load Behavior of a 30MWe SEGS Plant[R]. Albuquerque:Sandia National Laboratories,1995.
    [51]Jones S. A., Pitz-Paal R., Schwarzboezl P., et al. TRNSYS Modeling of the SEGS VI Parabolic Trough Solar Electric Generating System[A]. Solar Forum 2001 [C]. Washington D.C.:2001.
    [52]Stuetzle T. A. Automatic Control of the 30MWe SEGS VI Parabolic Trough Plant[D]. Madison:Department of Mechanical Engineering, University of Wisconsin,2002.
    [53]Forristall R. Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver[R]. National Renewable Energy Laboratory,2003.
    [54]Price H., Kearney D. Reducing the Cost of Energy from Parabolic Trough Solar Power Plants [R]. National Renewable Energy Laboratory,2003.
    [55]阎秦.太阳能辅助燃煤发电系统热力特性研究[D].北京:华北电力大学,2011.
    [56]林汝谋,韩巍,金红光,赵雅文.太阳能互补的联合循环(ISCC)发电系统[J].燃气轮机技术.2013,26(2):1-16.
    [57]Ying You, Eric Hu. Thermodynamic advantage of using solar energy in the conventional power station [J]. Applied Thermal Engineering.1999,19(11): 1173-1176.
    [58]Hu Eric. Solar thermal aided power generation [J]. Applied Energy.2010,87(9): 2881-2885.
    [59]Ying You, Eric J. Hu. A medium-temperature solar thermal power system and its efficiency optimization[J]. Applied Thermal Engineering.2002,22(4): 357-364.
    [60]陈钢,吕泽华,赵士杭,周康.热力系统优化调度中热电联供汽轮机建模方法研究[J].电站系统工程.2003,19(4):10-12.
    [61]赵文升.大型火电机组回热加热系统数学模型的研究[D].华北电力大学硕士学位论文.2000:24-37.
    [62]崔凝,王兵树,马士英等.大型电站凝汽器动态数学模型的研究[J].汽轮机技术.2001,43(2):81-86,115.
    [63]崔凝.大型电站凝汽器动态数学模型的研究与应用[D].华北电力大学硕士学位论文.2000:24-39.
    [64]张江红.基于MATLAB的大型电站多压凝汽器的仿真建模[D].武汉大学硕士学位论文,2005:18-21.
    [65]阎秦.大型直接空冷凝汽器建模仿真研究[D].华北电力大学硕士学位论文.2007:24-36.
    [66]李大鹏,孙丰瑞,焦增庚.考虑汽蚀影响的给水泵仿真建模及实现[J].计算机仿真.2005,22(2):67-69.
    [67]魏铁铮.一种新的电站锅炉炉膛仿真模型的研制[J].中国电机工程学报.2000,20(3):50-52.
    [68]YangYongPing, Cui Yinghong, HouHonjuan et al. Researeh on solar aided coal-fired Power generation system and Performane Analysis[J]. Science In China(Series E).2008,51(8):1211-1221.
    [69]崔映红,杨勇平,张明智.太阳能一煤炭互补的发电系统与互补方式[J].中国电机工程学报.2008,28(5):102-107.
    [70]崔映红,杨勇平,杨志平,侯宏娟,郭喜燕.太阳能辅助燃煤一体化热发电系统耦合机理[J].中国电机工程学报.2008,28(29):99-104.
    [71]崔映红,杨勇平等.蒸汽直接冷却槽式太阳能集热器的传热流动性能研究[J].太阳能学报.2009,30(3):304-310.
    [72]崔映红,陈娟,杨阳,杨勇平.太阳能辅助燃煤热发电系统性能研究[J].中国电机工程学报.2009,29(23):92-98.
    [73]Qin Yan, Yongping Yang et. al. Multi-point and multi-level solar integration into a conventional coal-fired power plant [J].Energy and Fuels.2010, DOI: 10.1021/ef9012906.
    [74]Qin Yan, E. Hu, Y.P Yang. Dynamic modeling and simulation of a solar direct steam generating system[J]. International Journal of Energy Research, in press. doi:10.1002/er.1678.
    [75]Yongping Yang, Qin Yan, RongrongZhai et al. An efficient way to use medium-or-low temperature solar heat for power generation e integration into conventional power plant [J].Applied Thermal Engineering.2011,31(2-3): 157-162.
    [76]Qin Yan, Eric Hu, Yongping Yang, RongrongZhai. Evaluation of solar aided thermal power generation with various power plants [J]. International Journal of Energy Research, in press. doi:10.1002/er.1748.
    [77]RongrongZhai, Yongping Yang et.al. The evaluation of solar contribution in solar aided coal-fired power plant[J].International journal of photoenergy. DOI: 10.1155/2013/197913.2013.
    [78]Yang Yongping, ZhaiRongrong, et.al. Study on multi-objective optimization of load dispatch including renewable energy and CCS technologies [J]. International Journal of Energy Research.2010,34(8):702-715.
    [79]Zhai, Rongrong, Zhu, Yong, Yang, Yongping,et.al. Exergetic and Parametric Study of a Solar Aided Coal-Fired Power Plant[J]. ENTROPY,2013,15(3): 1014-1034.
    [80]Dimityr Popov. An option for solar thermal repowering of fossil fuel fired power plants[J]. Solar Energy,2011,85(2):344-349.
    [81]HongJuan Hou, YongPing Yang, Eric Hu, JiFeng Song. Evaluation of solar aided biomass power generation systems with parabolic trough field[J]. Science China Technological Sciences.2011,54(6); 1455-1461.
    [82]杨勇平,崔映红,侯宏娟,等.太阳能辅助燃煤一体化热发电系统研究与经济性分析[J].中国科学:E辑,2009(4):673-679.
    [83]李金平张明紫邓育轩何坚.槽式太阳能集热与燃煤热发电的高效集成[J].兰州理工大学学报2010,6:37-40.
    [84]Hu E, Baziotopoulos C, Li Y. Solar aided power generation from coal fired power stations:THERMSOLV software[C]//AUPEC 2002:conference proceedings. Monash University,2002:1-7.
    [85]M.V.J.J. Suresh, K.S. Reddy,Ajit Kumar Kolar.4-E(energy, exergy, environment and economic) analysis of solar thermal aided coal-fired power plant[J]. Energy for Sustainable Development,2010,14:267-279.
    [86]Rongrong Zhai, Yong Zhu, Yongping Yang. Exergetic and Parametric Study of a Solar Aided Coal-Fired Power Plant[J]. Entropy 2013,15(3),1014-1034.
    [87]Hou Hong-juan, Yu Zhen-yue, Yang Yong-ping. Performance evaluation of solar aided feedwater heating of coal-fired power generation (SAFHCPG) system under different operating conditions[J]. Applied Energy.2013,112: 710-718.
    [88]Rongrong Zhai, Pan Peng, Yongping Yang, Miaomiao Zhao. Optimization study of integration strategies in solar aided coal-fired power generation system[J]. Renewable Energy.2014,68:80-86.
    [89]J.L.silveira, C.E.Tuna, Thermeconomic analysis method for optimization of combined heat and power systems[J]. Progress In Energy And Combustion Science.2003,29:479-485.
    [90]M. K. Gupta, S. C. Kaushik. Exergetic utilization of solar energy for feed water preheating in a conventional thermal power plant[J]. International Journal of Energy Research.2009,33(6):593-604.
    [91]Rongrong Zhai,Yongping Yang,Yong Zhu, Denggao Chen. The Evaluation of Solar Contribution in Solar Aided Coal-Fired Power Plant[J]. International Journal of Photoenergy.2013, Article ID 197913.
    [92]彭盼.太阳能辅助燃煤发电系统热力性能分析与优化[D].华北电力大学硕士学位论文.2013.
    [93]陈娟.太阳能与50MW供热机组一体化热发电系统集成研究[D].华北电力大学硕士学位论文.2008.
    [94]李少宁.基于火电机组的太阳能热利用研究[D].华北电力大学硕士学位论文,华北电力大学(北京),2008.
    [95]Cui Y, Chen J, Yang Y, et al. Performance research on solar aided coal-fired electricity generation system[J]. Proceedings of the CSEE,2009,29(23):92-98.
    [96]Y. M. El-Sayed, R. A. Gaggioli, A critical review of second law costing methods-I:Background and Algebraic Procedures [J]. Energy Resour-ASME, 1989,111:1-7.
    [97]R. A. Gaggioli, Y. M. El-Sayed, A critical review of second law costing methods-II:Calculus Procedures[J]. Energy Resour-ASME,1989,111:8-15.
    [98]A. Baghernejad, M. Yaghoubi, Exergoeconomic analysis and optimization of an Integrated Solar Combined Cycle System (ISCCS) using genetic algorithm[J], Energy Conversion and Management,2011,52:2193-2203.
    [99]王修彦.工程热力学[M].北京:机械工业出版社,2009:183-185.
    [100]S.M. Jeter. Analytical determination of the optical performance of practical parabolic trough collectors from design data[J]. Solar Energy.1987,39(1): 11-21.
    [101]Duffie, John A., Beckman, William A. Solar Engineering of Thermal Processes.2nd edition[M]. New York:John Wiley and Sons, Inc..1991.
    [102]Incropera, F., DeWitt, D.. Fundamentals of Heat and Mass Transfer Third Edition[M]. New York, John Wiley and Sons.1990.
    [103]Ratzel, A., Hickox, C., Gartling, D. Techniques for Reducing Thermal Conduction and Natural Convection Heat Losses in Annular Receiver Geometries[J]. Journal of Heat Transfer.1979,101(1):108-113.
    [104]王志峰,童春辉.国际太阳能热发电技术发展情况[R].太阳能热发电三亚论坛.2004.
    [105]Tadahmun Ahmed Yassen. Experimental and Theoretical Study of a Parabolic Trough Solar Collector[J], Anbar Journal for Engineering Sciences. 2012,5(1):109-125.
    [106]阎秦,杨岗,鄢长会等.带储热的太阳能光煤互补电站运行模式研究[J].电力建设,2013,34(9):28-31.
    [107]朱勇.太阳能辅助燃煤系统性能评价与运行模式研究[D].北京:华北电力大学,2013.
    [108]侯宏娟,高嵩,杨勇平,崔映红.槽式集热场与燃煤机组混合发电系统经济性分析[J],华北电力大学学报,2010,37(1):20-22.
    [109]Calde's, N., et al., Economic impact of solar thermal electricity deployment in Spain. Energy Policy[J],2009,37(5):1628-1636.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700