用户名: 密码: 验证码:
复合相变储能材料的自组装合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变储能材料(Phase Change Materials)因其在相变的过程中能够吸收或释放大量的热,可以起到控温和储能的作用,能够解决能量供求在时间和空间上分配不平衡的矛盾,是提高能源利用率的有效手段。它可以广泛应用于航空航天、太阳能利用、工业余热回收、采暖空调及家用电器等领域。复合相变储能材料由于可以解决相变储能的流动性及相变过程中的体积变化,成为当前材料科学领域的研究热点,对其研究也取得了很大的进展。但作为一种具有深远应用潜力的新型材料,复合相变储能材料目前尚未获得大规模的工业化生产。如何提高其相变潜热、热传导率以及长期工作稳定性;如何简化合成工艺,降低复合相变储能材料的生成成本及如何提高相变储能材料与各种材料的相容性等问题还有待进一步研究。本文第一部分旨在提高传统微胶囊复合相变储能材料的力学稳定性,采用自组装技术合成了具有抗裂、抗压、抗冲击性能的聚合物基壁材包覆的微胶囊复合相变储能材料。第二部分旨在提高复合相变储能材料的导热系数,提高其工作热响应能力,合成了一系列不同形貌的无机壁材包覆的微胶囊复合相变储能材料。第三部分通过多功能的相变储能材料与无机材料组装,合成了有机/无机杂化的储能聚合物/层状介孔二氧化硅复合体系、及正十八烷/碳酸钙新型杂化体系。我们首先在不同的表面活性剂如苯乙烯-马来酸酐的钠盐共聚物(SMA)、十二烷基硫酸钠(SDS)、聚乙烯醇(PVA)的组装条件下,以不同的核壳质量投料比,合成了一系列改性氨基树脂包覆的微胶囊复合相变储能材料。采用间苯二酚对氨基树脂进行改性提高了微胶囊壁材的抗裂、抗冲击性能。结果发现在以SMA为组装模板剂,核壳比为75/25时制得的微胶囊复合相变储能材料具有光滑致密的表观形貌和规则的“核-壳”结构,并且具备较高的相变性能,包覆效率能达到92%。进一步研究发现,以SMA为组装模板剂,采用不同的水溶性活性单体即乙二胺(EDA)、二乙烯三胺(DETA)、端氨基聚醚Jeffamine,在不同的核壳比条件下,通过界面聚合法组装合成了不同结构的聚脲壁材包覆的微胶囊复合相变储能材料。结果发现,随着活性单体扩散速率的降低,微胶囊的表观形貌变好,微胶囊的平均粒径变大,即采用端氨基聚醚Jeffamine作为胺类活性单体制备的聚脲微胶囊复合相变储能材料具有光滑致密的球形表面。并且随着核壳比的增大,微胶囊的壁材变薄,70/30条件下制备的聚脲微胶囊复合相变储能材料具有最佳的“核-壳”结构和相变行为。但是其热稳定性略低于采用EDA制备的微胶囊复合相变储能材料,主要是由于其较长的烷基链易于分解造成的。我们又通过溶胶—凝胶过程和自组装技术,在pH值高于无机硅源等电点及不同核壳比条件下,制备了一系列二氧化硅壁材包覆的微胶囊复合相变储能材料,旨在提高复合相变储能材料的导热性能。结果表明,合成的复合相变储能材料的导热系数显著提高,最高能达到0.6213W·m-1·K-1。在pH=2.45条件下制备的微胶囊复合相变储能材料,表面致密光滑,具有较好的相变性能和优异的抗渗透性能,其相变焓能够达到180J/g。这为复合相变储能材料导热性能的提高提供了新方法。由于无机硅源在等电点左右的水解缩聚速率不同,通过滴加不同pH值的酸溶液控制无机硅源的水解-缩聚速率,采用自组装过程合成了以二氧化硅为壁材的微胶囊复合相变储能材料。讨论了不同pH值条件下,无机硅源水解缩聚速率与缩聚产物在相变储能材料液滴表面沉积速率的匹配平衡。结果显示,在pH=2.89制备的微胶囊样品具有致密的二氧化硅壁材和光滑的球形表面,平均粒径大约为17.0μm,且该样品具有较高的相变性能和抗渗透性能。且微胶囊样品的热传导性能均显著提高,这为微胶囊复合相变储能材料的工业化生产奠定了基础。另外,在储能聚合物PEGDS/层状二氧化硅体系中,通过在非水溶剂中的溶胶—凝胶过程,控制有机/无机界面的作用力,得到了具有层状结构的介孔二氧化硅材料。由于组装模板剂PEGDS分子链中的亲水集团与无机硅源前驱体之间的亲水相互作用和PEGDS中硬脂酸链段的疏水作用存在一个复杂的平衡状态,该平衡状态仅在一定含量的PEGDS下存在,因此,在PEGDS含量为20.73-31.75wt.%范围内,形成了长程有序的层状介孔结构。在该一维层状二氧化硅的层间距内,具有二维自由度的PEGDS分子链仍然可以结晶。但是层状介孔结构对PEGDS分子链的束缚,导致PEGDS的熔融和结晶温度大大降低。该体系提出了一条合成具有层状结构的聚合物/二氧化硅杂化材料的新路线,而且为研究高分子在新的长程有序结构内的受限结晶开辟了新途径。最后,我们通过自组装技术和微胶囊技术,以正十八烷为芯材,十二烷基苯磺酸钠为表面活性剂,碳酸钙为无机壁材制备了一系列正十八烷/碳酸钙微胶囊复合相变储能材料。分析结果显示,该复合材料的结构中同时含有碳酸钙的方解石晶型和球霰石晶型。当正十八烷的含量为20wt.%,组装模板剂含量为0.4wt.%时,合成的材料具有表面光滑致密的球霰石结构,主要是由于组装模板剂与Ca2+生成络合物,组装模板剂头部亲水基团的距离合适,诱导CO32-在胶束液滴表面定向成核结晶得到的晶体结构。该球霰石晶体结构可以有效地包覆胶束液滴中的正十八烷,但是球霰石形成复杂的三维空间网络,严重束缚了内部正十八烷分子链的运动,破坏了正十八烷的结晶性能,导致其相变行为难以发生,相变焓大大降低。
Phase change materials (PCM) can absorb, store, and release large amounts of latent heat over a defined temperature range while undergoing phase changes, thus, they have gained a great scientific interest in modern technology due to the impending shortage and increasing cost of energy resources. Composite PCM have attracted more and more attention in recent years, since they can prevent PCM from leaking and harmful interaction with the environment, and can supply a large heat capacity to control the volume changes when phase change occurs. However, there are still some limitations for traditional composite PCMs, such as poor thermal and physical stability, and quite low thermal conductivity. Therefore, in this thesis, we synthesized a series of composite PCMs with toughening-reagent modified polymers as wall material, which supply a new method to improve the thermal and physical stability of traditional PCM. We also develop a novel inorganic encapsulation technique to enhance thermal conductivity of PCM, and a series of organic PCM/inorganic hybrids with novel regular structure were prepared. The influence of synthetic conditions on the morphology and performance of composite PCM was also studied. First, a series of micro-PCMs based on n-octadecane core and resorcinol-modified melamine-formaldehyde shell were synthesized by in-situ polymerization method. The influence of various self-assembly templates (SMA, SDS, and PVA) and core/shell weight ratio on the performance of micro-PCMs was studied. Results suggested that using SMA as self-assembly template is optimal for the fabrication of the microcapsules. The micro-PCMs fabricated with a core/shell weight ratio of 75/25 by using SMA, have a compact spherical surface with a mean particle size of about 16μm. This sample has a much better phase change properties and a higher efficiency of encapsulation (about 92%) than the others, while it also exhibits a better stability through the anti-osmosis measurement. These micro-PCMs can be used in the manufacture of thermal-regulated fibers, fabrics and building materials. Then, the micro-PCMs based on n-octadecane core and polyurea shells containing different soft segments in the molecular chain were successfully synthesized through interfacial polycondensation. Various amines (i.e. EDA, DETA, and Jeffamine) were used as water-soluble monomers to investigate the changes of morphology and chemical structure for the wall materials of micro-PCMs. The microcapsules synthesized by using Jeffamine as the amine monomer have a smoother and more compact surface than those using EDA and DETA. It is also found that the microcapsules synthesized by using Jeffamine have a large mean particle size with a centralized size distribution. These microcapsules under this condition also exhibit much better phase change properties, higher encapsulation efficiency, and better anti-osmosis property than the other two samples, although they have poorer thermal stabilities. Furthermore, the core/shell weight ratio of 70/30 is optimal to synthesize micro-PCMs with good pergormance. Furthermore, a novel microencapsulated PCM based on an n-octadecane core and an inorganic silica shell was designed to enhance thermal conductivity and phase-change performance. These silica microcapsules were synthesized by using TEOS as an inorganic source through a sol-gel process. They exhibit a spherical morphology with a well-defined core-shell microstructure. Furthermore, the silica microcapsules synthesized at 2.45 display a smooth and compact surface and present a large particle size range of 7-16μm, thus n-Octadecane inside the silica microcapsules still retains a good crystallinity. These silica microcapsules have good thermal stability, and the encapsulated n-octadecane can achieve good phase change behavior, high encapsulation efficiency, and good antiosmosis property by controlling the loading of core material and acidity of the reaction solution during the sol-gel process. Especially, the thermal conductivity of these silica microcapsules is significantly enhanced due to the presence of the high thermal conductive silica wall. In addition, the silica microcapsules were also synthesized through interfacial condensation. The aim of this study is to discuss the influence of acidity in a large rage (pH=0.93-4.07) on the micro-structure of silica microcapsules. Although the silica microcapsules obtained in different conditions present a spherical morphology with well-defined core-shell microstructure, the samples formed at pH 2.89 achieve a compact silica wall with fairly smooth surface as well as a large mean particle size of about 17.0μm, suggesting an optimal acidity for the preparation of silica microcapsules. Compared to the samples synthesized in chapter 4, the thermal conductivity of these silica microcapsules is more highly improved, which indicates that the silica wall is more compact than that synthesized by sol-gel process. Therefore, encapsulation of n-octadecane with the silica wall material through interfacial condensation can be a perspective way to prepare micro-PCMs with enhanced thermal transfer and phase-change performance for potential applications to thermal-regulating textiles and fibers. Interestingly, the lamellar-mesostructured PEGDS/silica hybrids have been synthesized by using amphiphilic PEGDS as template through self-assembly in sol-gel process. A delicate balance between the hydrophilic interactions at the surfactant head group-silanol interface and the hydrophobic interactions between the stearate segments in the surfactant can be maintained in a severe range of TEOS/PEGDS weight ratio, resulting in the final lamellar mesostructure of the hybrids only containing 20.73-31.25 wt% PEGDS. The molecular chains of PEGDS with 2D degree of freedom could still crystallize, though they were stranded one dimensionally between the silica interlayers. However, the confinement effects of the lamellar mesostructure caused a significant decrease in both the melting and crystallization temperatures of the PEGDS. This work not only presents a novel synthetic route to polymer/silica hybrids with the lamellar mesostructure, but also creates opportunities to study the confined crystallization within a new long-range-ordered space. Besides, a series of novel n-octadecane/calcium hybrids were synthesized by using sodium lauryl benzenesulfate (DBS) as template through self-assembly process. Since inorganic crystals of defined shape and orientation are produced by DBS, the synthesized hybrids have two crystalline forms, calcite and vaterite. As the hybrids containing 20 wt.% n-octadecane synthesized with 0.4 wt.% DBS, vaterite crystals were mainly formed since self-assembly template stereoselectively bind with Ca2+, initiate targeted crystal nuclei and inhibit its growth, tending to induce the nucleation of vaterite. While with high weight percent of n-octadecane and DBS, the interplay of nucleation and growth becomes more complicated, and the viscosity of solution increases, whereas the influence of DBS on the CaCO3 crystal growth was decreased, thus the hybrids tend to form calcite crystals. In addition, the hybrids with vaterite crystals can effectively encapsulate n-octadecane, however, the 3D structure of vaterite seriously inhibits the motion of n-octadecane molecular chains which induce a significant decrease in phase chase properties of encapsulated n-octadecane.
引文
[1]Tyagi V V, Buddhi D. PCM thermal storage in buildings:a state of art [J]. Renew. Sust. Energy Rev.,2007,11:1146-1166
    [2]Kenisarin M, Mahkamov K. Solar energy storage using phase change materials [J]. Renew. Sust. Energy Rev.,2007,11:1913-1965
    [3]Zalba B, Marin J M, Cabeza L F, Mehling H. Review on thermal energy storage with phase change:materials, heat transfer analysis and applications [J]. Appl. Therm. Eng., 2003,23:251-283
    [4]Farid M M, Khudhair A M, Razack S, Hallai S A. A review on phase change energy storage:materials and applications [J]. Energy Convers. Manage.,2004,45:1597-1615
    [5]Biswas D R. Thermal energy storage using sodium sulfate deca-hydrate and water [J]. Solar Energy,1977,19(1):99-110
    [6]Biechenall C E, Riechman A F. Heat storage in eutectic alloys [J]. Metallurgical Transactions A,1980,11:1415-1420
    [7]Gluck A, Tamme R, Kalfa H, et al. Development and testing of advanced TES materials for solar thermal central receiver plants [C]. Proceedings ISES Solar World Congress, 1991:1943-1948
    [8]Hahne E, Taut U, Grob Y. Salt ceramic thermal energy storage for solar thermal central receiver plants [C]. Proceedings ISES Solar World Congress,1991:1937-1942
    [9]Feldman D, Banu D, Hawes D. Low chmn esters of stearic acid as phase change materials for thermal energy storage in buildings [J]. Sol. Energy Mater. Sol. Cells,1955,36(3): 311-322
    [10]Yagi J, Akiyama T. Storage of thermal energy for effective use of waste heat from industries [J]. J. Mater. Processing Tecnol.,1995,48:793-804
    [11]Neeper D A. Thermal dynamics of wallboard with latent heat storage [J]. Sol. Energy, 2000,68(5):393-403
    [12]Farid M, Kong W J. Underfloor heating with latent heat storage [J]. Proceedings of Institute of Mechanical Eng.,2001,215(5):601-609
    [13]Hammou Z A, Lacroix M. A new PCM storage system for managing simultaneously solar and electric energy [J]. Energy and Buildings,2006,38(3):258-265
    [14]Tzvetkvo G, Fink R H. Temperature-dependent X-ray microspectroscopy of phase change core-shell microcapsules [J]. Scr. Mater.2008,59:348-351
    [15]You M, Zhang X X, Li W, Wang X C. Effects of Micro-PCMs on the fabrication of MicroPCMs/polyurethane composite foams [J]. Thermochim. Acta,2008,472:20-24
    [16]Hasnain S M. Review on sustainable thermal energy storage technologies part 1:heat storage materials and techniques [J]. Energy Convers. Manage.1998,39:1127-1138
    [17]Sari A., Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material [J].
    Appl. Therm. Eng.,2007,27 (8-9):1271-1277
    [18]Dessouky H E, Juwayhel F A. Effectiveness of a thermal energy storage system using phase-change materials [J]. Energy Convers. Manage.,1997,38 (6):601-617
    [19]Inaba H. New challenge in advanced thermal energy transportation using functionally thermal fluids [J]. Int. J. Therm. Sci.,2000,39(9-11):991-1003
    [20]E Eckert, Goldstein R J, Ibele W E. Heat transfer - a review of 1996 literature [J]. Int. J. Heat Mass Transfer,2000,43(8):1273-1371
    [21]Stritih U. Heat transfer enhancement in latent heat thermal storage system for buildings [J]. Energy Buildings,2003,35:1097-1104
    [22]Gschwander S, Schossig P, Henning H M. Micro-encapsulated paraffin in phase-change slurries [J]. Sol. Energy Mater. Sol. Cells,2005,89:307-315
    [23]Zhang X, Fan Y, Tao X, Yick K. Fabrication and properties of microcapsules and nanocapsules containing n-octadecane [J]. Mater. Chem. Phys.2004,88:300-307
    [24]Yang R, Xu H, Zhang Y P. Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion [J]. Sol. Energy Mater. Sol. Cells,2003,80:405-416
    [25]Mulligan J C, Colvin D P. Microencapsulated phase change material suspensions for heat transfer in spacecraft thermal systems [J]. J. Spacecr. Rockets,1996,33:278-284
    [26]Cho J S, Kwon A, Cho C G. Microencapsulation of octadecane as a phase change material by interfacial polymerization in an emulsion system [J]. Colloid Polym. Sci.,2002,280: 260-266
    [27]Mark E. Use of microencapsulated phase change materials to enhance the thermal performance of apparel [J]. Am. Soc. Mech. Eng.,1999,44:235-239
    [28]Su J F, Wang L X, Ren L. Preparation and mechanical properties of thermal energy storage microcapsules [J]. Colloid Polym. Sci.,2005,284:224-228
    [29]Su J F, Wang L X, Ren L. Fabrication and thermal properties of microPCMs:used melamine formaldehyde resins as shell material [J]. J. Appl. Polym. Sci.,2006,101: 1522-1528
    [30]Wang J P, X P Zhao, Guo H L. Preparation of microcapsules containing two-phase core materials [J]. Langmuir,2004,20:10845-10850
    [31]Kenisarin M, K Mahkamov. Solar energy storage using phase change materials [J]. Renew. Sustain. Energy Rev.,2007,11:1913-1965
    [32]Hasnain S. Review on sustainable thermal storage technology [J]. Energy Convers. Manage.,1998,39(11):1127-1138
    [33]Lee T, Hawes D, Banu D, Feldman D. Control aspects of latent heat storage and recovery in concrete [J]. Sol. Energy Mater. Sol. Cells,2000,62(3):217-237
    [34]Darkwa K. Evaluation of regenerative phase change drywalls:low-energy buildings application [J]. Int. J Energy Res.,1999,23(14):1205-1212
    [35]Mckinney R, Bryant Y, Colvin D. Method of reducing infared viewability of objects [P]. US Patent,6373058,2002-4-16
    [36]Shim H, Mcullough E, Jines B. Using phase change materials in clothing [J]. Text. Res. J., 2001,71(6):495-502
    [37]Glover R, Bishop M, Tencer M. Packaging system for thermally controlling the temperature of electronic equipment [P]. US Patent,6104611,2000-8-15
    [38]He Q, Zhang W. A study on latent heat storage exchanges with the high-temperature phase-change material [J]. Int. J. energy Res.,2001,25:331-341
    [39]Wang J, Chen G, Zheng F. Study on phase change temperature distributions of composite PCMS in thermal energy storage systems [J]. Int. J. energy Res.,1999,23:277-285
    [40]Wang J, Ouyang Y, Chen G. Experimental study on charging processes of a cylindrical heat storage capsule employing multiple-phase-change materials [J]. Int. J. energy Res., 2001,25:439-447
    [41]Krzysztof P, Kinga F. Recent developments in polymeric phase change materials for energy storage:poly(ethylene oxide)/stearic acid blends [J]. Polym. Adv. Technol.2005, 16:127-132
    [42]Ahmet K. Energy storage applications in greenhouses by means of phase change materials (PCMs):a review [J]. Renew. Energy,1998,13(1):89-103
    [43]张仁元.相变材料与相变储能技术[M].北京:科学出版社,2009,11-19
    [44]Abhat A. Low temperature latent thermal energy storage system:heat storage materials [J]. Sol. Energy,1983,30(4):313-332
    [45]Kaygusuz K. The viability of thermal energy storage [J]. Energy Sources,1999,21: 745-756
    [46]Farid M M, Khudhair A M, Siddique A, Said A H. A review on phase change energy storage:materials and applications [J]. Energy Convers. Manage.2004,45(9-10): 1597-1615
    [47]Sharma S D, Sagara K. Latent heat storage materials and systems:a review [J]. Int J Green Energy,2005,2:1-56
    [48]Sharma A, Tyagi V V, Chen C R, Buddhi D. Review on thermal energy storage with phase change materials and applications [J]. Renew. Sustain. Energy Rev.2009,13:318-345
    [49]Ozonur Y, Mazman M, Paksoy H O, Evliya H. Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material [J]. Int. J. Energy Res., 2006,30:741-749
    [50]徐建霞.中温太阳能集热系统相变的贮能性能及过冷特性研究[D].广州:广东工业大学,2008.
    [51]Mondal S. Phase change materials for smart textiles-An overview [J]. Appl. Therm. Eng., 2008,28:1536-1550
    [52]Wang X W, Lu E R, et al. Heat storage performance of the binary systems neopentyl glycol/pentaerytritol and neopentyl glycol/trihydroxy methyl-aminomethane as solid-solid phase change materials [J]. Energy Covers. Manage.2000,41(2):129-134
    [53]Dincer I, Dost S, Li X. A review of phase change materials research for thermal energy storage in heating and cooling application at the University of Dayton from 1982 to 1996 [J]. Inter. J. Global Energy Issues,1997,9(4-6):351-364
    [54]Garg H P, et al. Solar thermal energy storage [M]. Dordrecht:D. Reidel Publishing Company,1985
    [55]Rao Y, Lin G, Luo Y, Chen S, Wang L. Preparation and thermal properties of microencapsulated phase change material for enhancing fluid flow heat transfer[J]. Heat Transfer-Asian Research,2007,36 (1):28-37
    [56]Sari A. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change materials for thermal energy storage:preparation and thermal properties [J].
    Energy Convers. Manag.2004,45:2033-2042
    [57]Cai Y, Wei Q, Huang F, Lin S, Chen F, Gao W. Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites [J]. Renew. Energy,2009,34:2117-2123
    [58]Sun G, Zhang Z. Mechanical strength of microcapsules made of different wall materials [J]. Int. J. Pharm.,2002,242:307-311
    [59]Khudhair A M, Farid M M. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials [J]. Energy Convers. Manage. 2004,45:263-275
    [60]Sarier N, Onder E. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics [J]. Thermochim. Acta,2007,452:149-160
    [61]Sharma S D, Kitano H, Sagara K. Phase change materials for low temperature solar thermal application [J]. Res. Rep. Fac.Eng. Mie. Univ.,2004,29:31-64
    [62]Broadhurst M G. An analysis of the solid phase behavior of the normal paraffins [J]. J. Res. Nat. Bur. Stand-A Phys. Chem.,1962,66A(3):241-249
    [63]Himran S, Suwondo A, Mansoori G. Characterization of alkanes and paraffin waxes for application as phase change energy storage medium. Energy Sources,1994,16:117-128
    [64]Fang X M, Zhang Z G A novel montmorillonite-based composite phase change material and its applications in thermal storage building materials [J]. Energy Build.,2006,38: 377-380
    [65]Liu X, Liu H Y, Wang S J, Zhang L, Cheng H. Preparation and thermal properties of form stable paraffin phase change material encapsulation [J]. Energy Convers. Manag.,2006, 47:2515-2522
    [66]Peng S, Fuchs A, Wirtz R A. Polymeric phase change composites for thermal energy storage [J]. J Appl. Polym. Sci.,2004,93:1240-1251
    [67]Zhang Z G, Fang X M. Study on paraffin/expanded graphite composite phase change thermal storage material. Energy Convers. Manag.2006,47:303-310
    [68]Hong Y, G XS. Preparation of polyethylene-paraffin compound as a form-stable solid-liquid phase change material [J]. Sol. Energy Mater. Sol. Cells,2000,64:37-44
    [69]Fang X M, Zhang Z G, Chen Z H. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials. Energy Convers Manage.2008,49:718-723
    [70]Su J F, Wang L X, Ren L. Synthesis of polyurethane microPCMs containing n-octadecane by interfacial polycondensation:influence of styrene-maleic anhydride as a surfactant [J]. Colloids Surf. A:Physicochem. Eng. Aspects,2007,299:268-275
    [71]Liu X, Liu H Y, Wang S H, Zhang L, Cheng H. Preparation and thermal properties of form-stable paraffin phase change material encapsulation [J]. Sol. Energy,2006,80: 1561-1567
    [72]Wang W, Yang X, Fang Y, Ding J, Yan J. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using b-Aluminum nitride [J]. Appl. Energy,2009,86:1196-1200
    [73]Voelker C, Kornadt O, Ostry M. Temperature reduction due to the application of phase change materials [J]. Energy Build.,2008,40:937-944
    [74]Feng H, Liu X, He S. Studies on solid-solid phase change transitions of polyols by
    infrared spectroscopy [J]. Thermochimica Acta.2000,348:175-179
    [75]Pincemina S, Olivesa R, Pya X, Christ M. Highly conductive composites made of phase change materials and graphite for thermal storage [J]. Sol. Energy Mater. Sol. Cells,2008, 92:603-613
    [76]张仁元.相变材料与相变储能技术[M].北京:科学出版社,2009,185
    [77]Beginn U, Applicability of frozen gels from ultra high molecule weight polyethylene and paraffin wax as shape persistent solid-liquid pHase change materials [J]. Macromolecular Mater. Eng.,2003,288,245
    [78]Olives S, Maurans. Paraffin/porous graphite matrix composite as a high and constant power thermal storage material [J]. Int. J. Heat Mass. Transfer,2001,4:2727-2737
    [79]Leitch P, Tassinari T H. New materials in the new millennium [J]. J. Ind. Text.2000,29: 173-191
    [80]Suryanarayana C, Rao K C, Kumar D. Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings, Prog. Org. Coat.2008,63:72-78
    [81]Kim E Y, Kim H D. Preparation and properties of microencapsulated octadecane with waterborne polyurethane [J]. J. Appl. Polym. Sci.,2005,96:1596-1604
    [82]张正国,文磊,方晓明,邵刚,黄弋峰.复合相变储热材料的研究与发展[J].化工进展.2003,(4):462-465
    [83]Wong M, Jacobson J. Assembly of nanoparticles into hollow spheres sing block copolypeptides [J]. Nano. letter,2002,2(6):583-588
    [84]Asaji K. Microencapsule processing and technology. New York and Basel:Marcel Dekker Inc.,1980
    [85]Roy S K, Sengupta S. An evaluation of microencapsulated phase change materials for use in enhanced heat transfer fluids [J]. Int. Comm. Heat Mass Transfer,1986,18(4):495-507
    [86]Roy S K, Sengupta S. The melting process within spherical enclosures [J]. J. Heat Transfer,1987,106:539-542
    [87]Goel M, Roy S K, Sengupta S M. Laminar forced convection heat transfer in microencapsulated phase change material suspensions [J]. Int. J. Heat Mass Transfer, 1994,37(4):593-604
    [88]Hawladera M N A, Uddina M S, Khinb M M. Microencapsulated PCM thermal energy storage system [J]. Appl. Energy,2003,74:195-202
    [89]Frere W, Danicher L, Gramain P. Preparation of polyurethane microcapsules by interfacial polycondensation [J]. Eur. Polym. J.,1998,34:193-199
    [90]Shin Y, Yoo D I, Son K. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). Ⅳ. Performance properties and hand of fabrics treated with PCM microcapsules [J]. J. Appl. Polym. Sci.,2005,97:910-915
    [91]Zhang X, Fan Y, Tao X, Yick K. Crystallization and prevention of supercooling of microencapsulated n-alkanes [J]. J. Colloid Interface Sci.,2005,281:299-306
    [92]Sarier N, Onder E. Thermal characteristics of polyurethane foams incorporated with phase change materials [J]. Thernochim. Acta.2007,454:90-98
    [93]Giraud S, Bourbigot S, Rochery M, et al. Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating [J]. Polym. Degrad. Stabil.,2005,88:106-113
    [94]Lane G A, Glew D N. Heat of fusion system for solar energy storage. In:Proceedings of the workshop on solar energy storage subsystems for the heating and cooling of buildings
    [M]. Virginia:Charlothensville,1975,43-55
    [95]Herrick S, Golibersuch D C. Quantitative behavior of a new latent heat storage device for solar heating/cooling systems. In:General International Solar Energy Society Conference, 1978
    [96]Pielichowski K, Flejtuch K. Differential scanning calorimetric studies on poly (ethylene glycol) with different molecular weights for thermal energy storage materials [J]. Polym Adv Technol,2002,13:690-696
    [97]Abhat A. Low temperature latent thermal energy storage system:heat storage materials [J]. Sol Energy 1983,30(4):313-332
    [98]Alkan C, Sari A, Uzun O. Poly (ethylene glycol)/acrylic polymer blends for latent heat thermal energy storage [J]. AIChE J 2006,52(9):3310-3314
    [99]Kenisarin M, Mahkamov K. Solar energy storage using phase change materials [J] Renew. Sustain. Energy Rev.,2007,11(9):1913-1965
    [100]Tyagi V V, Buddhi D. PCM thermal storage in buildings:a state of art [J]. Renew Sustain Energy Rev.,2007,11(6):1146-1166
    [101]Pasupathy A, Velraj R, Seeniraj R V. Phase change materials-based building architecture for thermal management in residential and commercial establishments [J]. Renew Sustain Energy Rev.,2008:39-64
    [102]宋健,陈磊,李效军.微胶囊化技术及应用[M].北京:化学工业出版社,2001
    [103]Holman M E. The use of microencapsulated phase-change materials to enhance the thermal performance of apparel [J]. HTD-Vol.363/BED-Vol,44:235-239
    [104]Li S, He Y, Li C, et al. In vitro release of Protein from poly(butylcyanoacrylate) nanocapsules with an aqueous core [J]. Colloid Polym. Sci.,2005,283(5):480-485
    [105]Aboubakar M, Puisieux F, Couvreur P, et al. Study of the mechanism of insulin encapsulation in poly(isobutyleyanoaerylate) nanocapsules obtained by interfacial polymerization [J]. J. Biomedical Mater. Res.,1999,47:561-568
    [106]Riontasser L. Fessi H. Brianqon S, et al. New approach of the preparation of nanocapsules by an interfacial polycondensation reaction [J]. Polym. Bulletin,2003,50:169-174
    [107]Shi H F, Zhang X X, Wang X C. A new photothermal conversion and thermo-regulated fibers [J]. Indian J. Fibre and Text. Res.2004,29:7-11
    [108]王武生,曾俊,阮德礼等.原位聚合合成纳米胶囊[J].高分子材料科学与工程,2001,17(4):34-36
    [109]樊耀峰,张兴祥,王学晨等.热处理对相变材料纳胶囊性能的影响[J].材料工程,2005,21(1):288-292
    [110]Tadaaki T, Heat aceumulating microcapsule and its production [P]. Japan,7213890.1995
    [111]Zhang X X, Wang X C, Tao X M. Energy storage polymer/MicroPCMs blended chips and thermo-regulated fibers [J]. J. Mater. Sci.,2005,40(14):3729-3734
    [112]李玲.表面活性剂与纳米技术[M].北京:化学工业出版社,2003,68-70
    [113]Pause B. Nonwoven protective garments with thermo-regulating properties, Asian Text. J., 2004,13(4):62-64
    [114]Vigo T L, Frost C M. Temperature-adaptable textile fibers and method of preparing same [P]. US Patent.4871615.1989
    [115]Zhang X X. Heat-storage and thermo-regulated textiles and clothing, in:X.M. Tao (Ed.), Smart fibres, fabrics and clothing, Woodhead Publishing [M]. UK,2001,34-57
    [116]Gries T. Smart textiles for technical applications[J]. Technische Textilen/Technical Textiles 2003,46
    [117]Thakare A M, Sangwan A, Yadav S. Providing comfort through phase change materials [J]. Man Made Text. India 2005,48 (6):239-242
    [118]Bendkowska W, Tysiak J, Grabowski L, Blejzyk A. Determining temperature regulating factor for apparel fabrics containing phase change material [J]. Int. J. Clothing Sci. Technol.,2005,17 (3-4):209-214
    [119]Ying B, Kwok Y L, Li Y, Yeung C Y, Song Q W. Thermal regulating functional performance of PCM garments [J]. Int. J. Clothing Sci. Technol.,2004,16 (1/2):84-96
    [120]Pause B. Nonwoven protective garments with thermo-regulating properties [J]. J. Industrial Text.2003,33 (2):93-99
    [121]Pause B. Nonwoven protective garments with thermo-regulating properties [J]. Asian Text. J.,2004,13 (4):62-64
    [122]Nelson G. Application of microencapsulation in textiles [J]. Int. J. Pharmaceutics,2002, 242(1-2):55-62
    [123]Rossi R M, Bolli W P. Phase change materials for the improvement of heat protection [J]. Advan. Eng. Mater.,2005,7(5):368-373
    [124]Feldman D, Banu D, Hawes D, Ghanbari E. Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard [J]. Sol. Energy Mater. Sol. Cells,1991,22:231-42
    [125]Schossig P, Henning H M, Gschwander S, Haussmann T. Micro-encapsulated phase-change materials integrated into construction materials [J]. Sol. Energy Mater. Sol. Cells,2005,89:297-306
    [126]Kuznik F, Virgone J, Noel J. Optimization of a phase change material wallboard for building use [J]. Appl. Therm. Eng.,2008,28:1291-1298
    [127]Shi L, Neng Z, Guo F. Eutectic mixtures of capric acid and lauric acid applied in building wallboards for heat energy storage [J]. Energy Build.,2006,38:708-711
    [128]Shi L, Guo F, Neng Z, Li D. Experimental study and evaluation of latent heat storage in phase change materials wallboards [J]. Energy Build.,2007,39:1088-1091
    [129]Shi L, Neng Z, Guo F. Impact of phase change wall room on indoor thermal environment in winter [J]. Energy Build.,2006,38:18-24
    [130]Lee T, Hawes D W, Banu D, Feldman D. Control aspects of latent heat storage and recovery in concrete [J]. Sol. Energy Mater. Sol. Cells,2000,62:217-37
    [131]Zhou G, Yang Y, Wang X, Zhou S. Numerical analysis of effect os shape stabilized phase change material plates in a building combined with night ventilation. Appl. Energy,2009, 86:52-59
    [132]Farid M M., Khudhair A M, Razack SAK, Al-Hallaj S. A review on phase change energy storage:materials and applications, Energy Convers. Manag.,2004,45:1597-1615
    [133]谭羽非,新型相变蓄能墙体的应用探讨[J].新型建筑材料,2003,(2):3
    [134]Feldman D, Shapiro M, Banu D, Fucks CJ. Fatty acids and their mixtures as phase change materials for thermal energy storage [J] Sol. Energy Mater. Sol. Cells 1989,18:201-216
    [135]Tabrizi N S, Sadrameli M. Modelling and simulation of cyclic thermal regenerators utilizing encapsulated phase change materials (PCMs) [J]. Inter. J. Energy Res.,2003, 27(4):431-440
    [136]Xavier P, Olivers P, Mauran S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material [J]. Heat Mass Transfer,2001,44(14):2727-2737
    [137]Hawlader M N A, Uddin M S, Zhu H J. Encapsulated phase change materials for thermal energy storage:experiments and simulation [J]. Inter. J. Energy Res.,2002,26(2):159-162
    [1]Song Q, Li Y, Xing J, Hu J, Marcus Y. Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles [J]. Polymer,2007,48: 3317-3323
    [2]Su J F, Wang L X, Ren L. Preparation and characterization of double-MF shell microPCMs using in building materials[J]. J. Appl. Polym. Sci,2005,97:1755-1762
    [3]Su J F, Wang L X, Ren L. Fabrication and thermal properties of microPCMs:used melamine formaldehyde resin as shell material [J]. J. Appl. Polym. Sci,2006,101: 1522-1528
    [4]Zhang J P, Zhao X P, et al. Preparation of microcapsules containing two-phase core materials [J]. Langmuir,2004,20:10845-10850
    [5]Shin Y, Yoo D, Son K. Development of thermalre gulating textile materials with microencapsulated phase change materials(PCM). Ⅱ. Preparation and application of PCM microcapsules [J]. J. Appl. Polym. Sci.,2005,96:2005-2010
    [6]Daiguji H., Makuta T., et al. Fabrication of hollow melamine-formaldehyde microcapsules from microbubble templates [J]. J. Phys. Chem. B 2007,111:8879-8884
    [7]Colvin D P, Bryant Y G, Driscoll J C, Mulligan J C. Thermal insulating coating employing microencapsulated phase change material and method [P]. US Patent,5804297.1998-9-8
    [8]Shim H, McCullough E A, Jones B W. Using phase change materials in clothing [J]. Text. Res. J.2001,71 (6):495-502
    [9]Argillier J F, Soto-Portas M L, Zydowicz N, Mechin F, Chomard A. Process for manufacturing microcapsules by interfacial polycondensation with polyoxyalkyleneamine and acid chlorides[P]. US Patent,6706397.2004-3-16
    [10]Hartmann M H. Stable phase change materials for use in temperature regulating synthetic fibers, fabrics and textiles [P]. US Patent,6689466.2004-2-10
    [11]Beestman G B, Deming J M. Encapsulation by interfacial polycondensation, and aqueous herbicidal composition containing microcapsules produced thereby [P]. US Patent. 4280833.1981-7-28
    [12]Sengupta A, Nielsen K E, Barinshteyn G, Li K. Encapsulation process and encapsulated products [P]. US Patent.6248364.2001-6-19
    [13]Bryant Y G, Colvin D P. Fiber with reversible enhanced thermal storage properties and fabrics made therefrom [P]. US Patent.4756958.1988-7-12
    [14]Boh B, Kosir I, Knez E, Kukovic M, et al. Microencapsulation and testing of the agricultural animal repellent, Daphne [J]. J. Microencapsulation,1999,16(2):169-180
    [15]Coullerez Q Leonard D, Lundmark S, Mathieu H J. XPS and ToF-SIMS study of freeze-dried and thermally cured melamine-formaldehyde resins of different molar ratios [J]. Surf. Interface Anal.,2000,29(7):431-443
    [16]Kim E, Kim H. Preparation and properties of microencapsulated octadecane with waterborne polyurethane [J]. J. Appl. Polym. Sci.2005,96:1596-1604
    [17]Sun G, Zhang Z. Mechanical properties of melamine-formaldehyde microcapsules [J]. J. Microencapsulation,2001,18(5):593-602
    [18]Sun G, Zhang Z. Mechanical strength of microcapsules made of different wall materials [J]. Int. J. Pharm.2002,242:307-311
    [19]Brown E N, Kessler M R, Sottos N R, White S R. In situ poly (ureaformaldehyde) microencapsulation of dicyclopentadiene [J]. J. Microencapsul.2003,20 (6):719-730
    [20]Braun D, Sauerwein R, Hellmann G P. Polymeric surfactants from styrene-co-maleic-anhydride copolymers [J]. Macromol. Symp.2001,163:59-66
    [21]钱蕾,陈水林.压敏显色微胶囊的合成及性能研究,中国纺织大学学报[J].1996,22(5):1-8
    [22]Li W, Zhang X, Wang X, Niu J. Preparation and characterization of microencapsulated phase change material with low remnant formaldehyde content [J]. Mater. Chem. Phys. 2007,106(2-3):437-442
    [23]Chazhengina S Y, Kotelnikova E N, Filippova I V, Filatov S K. Phase transitions of n-alkanes as rotator crystals [J]. J. Mol. Struct.2003,647:243-257
    [24]Sirota E B, Herhold A B. Transient phase-induced nucleation [J]. Science 1999,283: 529-532
    [25]Oliver M J, Calvert P D. Homogeneous nucleation of n-alkanes measured by differential scanning calorimetry [J]. J. Cryst. Growth,1975,30:343-351
    [26]Yamagishi Y, Sugeno T, Ishige T. An evaluation of microencapsulated PCM for use in cold energy transportation medium [J]. IEEE 96082,1996,3:2077-2083
    [27]Fan Y, Zhang X, Wang X, Li J, Zhu Q. Super-cooling prevention of microencapsulated phase change material [J]. Thermochimica Acta.2004,413(1-2):1-6
    [1]Yadav S, Kartic C, Suresh A K. Release rates from semi-crystalline polymer microcapsules formed by interfacial polycondensation [J]. J. Membr. Sci.1997,125: 213-218
    [2]El-Gibaly I, Anwar M. Hemolysate-filled polyethylenimine and polyurea microcapsules as potential red blood cell substitutes:effect of aqueous monomer type on properties of the prepared microcapsules [J]. Int. J. Pharm.2004,278:25-40
    [3]Mathiowitz M D, Cohen M D. Polyamide microcapsules for controlled release. II. Characterization of the membranes [J]. J. Membr. Sci.1989,40:27-41
    [4]Montasser I, Fessi H, Briancon S, Lieto J. Method for preparing colloidal particles in the form of nanocapsules [P]. US Patent,7348031,2008-3-25
    [5]Beestman, G B, Deming J M. Encapsulation by interfacial polycondensation [P]. US Patent.4417916.1983-11-29
    [6]Beestman G B, Deming J M. Encapsulation by interfacial polycondensation and aqueous herbicidal composition containing microcapsules produced thereby [P]. US Patent. 4280833.1981-7-28
    [7]Chen L, Xu L, Shang H, Zhang Z. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system [J]. Energy Conversion and Management,2009,50:723-729
    [8]Cho J S, Kwon A, Cho C G. Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system [J]. Colloid Poly Sci 2002,280: 260-266
    [9]Montasser I, Briancon S, Fessi H. The effect of monomers on the formulation of polymeric nanocapsules based on polyureas and polyamides [J]. Int. J. Pharm.2007,335:176-179
    [10]Hirech K, Payan S, Carnelle G, Brujes L, Legrand J. Microencapsulation of an insecticide by interfacial polymerization [J]. Powder Technology,2003,130:324-330
    [11]Yadav S K, Suresh A K, Khilar K C. Microencapsulation in Polyurea Shell by Interfacial Polycondensation [J]. AIChE J.1990,36:431-438
    [12]Girauda S, Bourbigota S, Rocherya M, et al. Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating [J]. Polym. Deg. Stab.2005, 88:106-113
    [13]Hong K, Park S. Polyurea microcapsules with different structures:Preparation and properties [J]. J. Appl. Polym. Sci.2000,78(4):894-898
    [14]Tamami B, Koohmareh G A. Synthesis and characterization of polyureas derived from 4-aryl-2,6-bis(4-isocyanatophenyl)pyridines [J]. Designed Monomers and Polymers,2007, 10:221-233
    [15]Sarier N, Onder E. Thermal characteristics of polyurethane foams incorporated with phase change materials [J]. Thernochim. Acta,2007,454:90-98
    [16]Ji H B, Kuang J G, Qian Y. Development of an immobilization method by encapsulating inorganic metal salts forming hollow microcapsules [J]. Catal. Today,2005,105:605-611
    [17]Hong K, Park S. Preparation of polyurethane microcapsules with different soft segments and their characteristics [J]. React. Funct. Polym.,1999,42:193-200
    [18]Su J F, Wang L X, Ren L. Synthesis of polyurethane microPCMs containing n-octadecane by interfacial poly condensation:Influence of styrene-maleic anhydride as a surfactant [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007,299:268-275
    [19]Das S, Yilgor I, Yilgor E, Inci B, Tezgel O, Beyer F L, Wilkes G L. Structure-property relationships and melt rheology of segmented, non-chain extended polyureas:Effect of soft segment molecular weight [J]. Polymer,2007,48:290-301
    [20]Taguchi Y, Yokoyama H, Kado H, Tanaka M. Preparation of PCM microcapsules by using oil absorbable polymer particles, Colloids Surf. A:Physicochem. Eng. Aspects,2007,301: 41-47
    [21]Willkomm W R, Chen Z S, Macosko C W, Gobran D A, Thomas E L. Properties and phase separation of reaction injection molded and solution polymerized polyureas as a function of hard block content [J]. Polym. Eng. Sci.1988,28:888-900
    [22]Ryan A J, Stanford J L, Still R H. Application of thermal methods in the characterisation of poly(urethane-urea)s formed by reaction injection moulding [J]. Br. Polym. J.1988,20: 77-83
    [23]Primeatix D J. A study of polyurea spray elastomer system [J]. High Solid Coatings,1994, 15:2-7
    [24]王善琦.高分子化学原理.北京:北京航空航天大学出版社[M],1993.180
    [25]李克友等.高分子合成原理及工艺学.北京:科学出版社[M],1999.522-526
    [26]Hong K, Park S. Preparation and characterization of polyurea microcapsules with different diamines [J]. Materials Research Bulletin,1999,34:963-969
    [27]Wirpsza Z. Polyurethanes chemistry [J]. Technol. Applica.,1998:32
    [28]李玲.表面活性剂与纳米技术[M].北京:化学工业出版社,2003,68-70
    [29]Hong K, Park S. Preparation of polyurea microcapsules containing ovalbumin [J]. Materials Chemistry and Physics,2000,64:20-24
    [30]Chazhengina S Y, Kotelnikova E N, Filippova I V, Filatov S K. Phase transitions of n-alkanes as rotator crystals [J]. J. Mol. Struct.2003,647:243-257
    [31]Sirota E B, Herhold A B. Transient phase-induced nucleation [J]. Science 1999,283: 529-532
    [32]Oliver M J, Calvert P D. Homogeneous nucleation of n-alkanes measured by differential scanning calorimetry [J]. J. Cryst. Growth,1975,30:343-351
    [33]Yamagishi Y, Sugeno T, Ishige T. An evaluation of microencapsulated PCM for use in cold energy transportation medium [J]. IEEE 96082,1996,3:2077-2083
    [34]Fan Y, Zhang X, Wang X, Li J, Zhu Q. Super-cooling prevention of microencapsulated phase change material [J]. Thermochimica Acta.2004,413(1-2):1-6
    [1]Chow L C, Zhang J K. Thermal conductivity enhancement for phase change storage media [J]. Int Commun Heat Mass Tran.,1996,23(1):91-100
    [2]Wang W, Yang X, Fang Y, Ding J, Yan J. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using P-Aluminum nitride [J]. Appli. Energy,2009,86:1196-1200
    [3]Rao Y, Lin G P, Luo Y, Chen S L, Wang L. Preparation and thermal properties of microencapsulation phase change material for enhancing fluid flow heat transfer [J]. Heat Transfer-Asian Res.,2007,36:28-37
    [4]Lamberg P. Approximate analytical model for two-phase solidification problem in a finned phase-change material storage [J]. Appli. Energy,2004,77 (2):131-152
    [5]Romero-Cano M S, Vincent B. Controlled release of 4-nitroanisole from poly(lactic acid) nanoparticles [J]. J. Control. Release,2002,82:127-135
    [6]Fukai J, Hamada Y, Morozumi Y, Miyatake O. Effect of carbonfiber brushes on conductive heat transfer in phase change materials [J]. Inter. J. Heat Mass Transfer,2002, 45 (24):4781-4792
    [7]Elgafy A, Lafdi K. Effect of carbon nanofiber additives on thermal behavior of phase change materials [J]. Carbon.,2005,43 (15):3067-3074
    [8]Bugaje I M. Enhancing the thermal response of latent heat storage systems [J]. International J. Energy Res.,1997,21 (9):759-766
    [9]Hasnain S M. Review on sustainable thermal energy storage technologies, part I:heat storage materials and techniques [J]. Energy Convers. Manage.,1998,39 (11):1127-1138
    [10]Pan W, Ye J W, Ning G L, Lin Y, Wang J. A novel synthesis of micrometer silica hollow sphere [J]. Mater. Res. Bull.2009,44:280-283
    [11]Zhang H J, Wu J, Zhou L P, Zhang D Y, Qi L M. Facile synthesis of monodisperse microspheres and gigantic hollow shells of mesoporous silica in mixed water-ethanol solvents [J]. Langmuir,2007,23:1107-1113
    [12]Deng Z W, Chen M, Zhou S X, You B, Wu L M. A novel method for the fabrication of monodisperse hollow silica spheres [J]. Langmuir,2006,22:6403-6407
    [13]Darbandi M, Thomann R, Nann T. Hollow silica nanospheres:in situ semi-in situ, and two-step synthesis [J]. Chem. Mater.,2007,19:1700-1703
    [14]Radu D R, Lai C Y, Jeftinija K, Rose E W, Jeftinija S, Lin V S. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent [J]. J. Am. Chem. Soc.,2004,126:13216-13217
    [15]Lai C Y, Trewyn B G, Jeftinija D M, Jeftinija K, Xu S, Jeftinija S, V.S Lin. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules, J. Am. Chem. Soc.,2003,125:4451-4459
    [16]Tourne-Peteilh C, Lerner D A, Charnay C, Nicole L, Begu S, Devoisselle J M. The potential of ordered mesoporous silica for the storage of drugs:the example of a pentapeptide encapsulated in a MSU-Tween 80 [J]. Chem. Phys. Chem.,2003,4:281-286
    [17]Munoz B, Ramila A, Perez-Pariente J, Diaz I, Vallet-Regi M. MCM-41 organic modification as drug delivery rate regulator [J]. Chem. Mater.,2003,15:500-503
    [18]Song S W, Hidajat K, Kawi S. Functionalized SBA-15 materials as carriers for controlled drug delivery:influence of surface properties on matrix-drug interactions [J]. Langmuir, 2005,21:9568-9575
    [19]RO J C, Chung I J. Sol-gel kinetics of tetraethylorthosilicate (TEOS) in acid catalyst [J]. J. Non-Crystalline Solids,1989,110:26-32
    [20]余锡宾,王华林,訾振华.TEOS-PEG无机-有机杂化复合材料的研究[J].高分子材料科学与工程,1999,1.14-18
    [21]张正国,黄弋峰,方晓明,邵刚.硬脂酸/二氧化硅复合相变储热材料制备及性能研究[J].化学工程,2005,33.34-43
    [22]林怡辉,张正国,王世平.硬脂酸—二氧化硅复合相变材料的制备[J].广州化工,2002,30(1),18-21
    [23]林怡辉,张正国,王世平.溶胶—凝胶法制备新型蓄能复合材料的研究[J].华南理工大学学报(自然科学版),2001,29(11),7-10
    [24]Kraack H, Sirota E B, Deutsch M. Measurement of homogeneous nucleation in normal-alkanes [J]. J. Chem Phys.,2000,112:6873-6885
    [25]Chazhengina S Y, Kotelnikova E N, Filippova I V, Filatov S K. Phase transitions of n-alkanes as rotator crystals [J]. J. Mol. Struct.,2003,647:243-257
    [26]Sirota E B, Herhold A B. Transient phase-induced nucleation [J]. Science,1999,283: 529-532
    [27]Oliver M J, Calvert P D. Homogeneous nucleation of n-alkanes measured by differential scanning calorimetry [J]. J. Cryst. Growth,1975,30:343-351
    [1]Wang W, Yang X, Fang Y, Ding J. Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials [J]. Applied Energy,2009,86:170-174
    [2]Wang L Y, Tsai P S, Yang Y M. Preparation of silica microspheres encapsulating phase-change material by sol-gel method in O/W emulsion [J]. Journal of Microencapsulation,2006,23(1):3-14
    [3]Zhang K, Wu W, Meng H, Guo K, Chen J F. Pickering emulsion polymerization: Preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure [J]. Powder Technology,2009,190:393-400
    [4]Shulkin A, Stover H. Microcapsules from styrene-maleic anhydride copolymers:study of morphology and release behavior [J]. J. Membr. Sci.2002,209:433-444
    [5]Ni P, Zhang M, Yan N. Effect of operating variables and monomers on the formation of polyurea microcapsules [J]. J. Membr. Sci.1995,103:51-55
    [6]Yadav S, Suresh A, Khilar K. Microencapsulation in polyurea shell by interfacial polycondensation [J] AICHE J.1990,36:431-438
    [7]Yamazaki N, Du Y, Nagai M, Omi S. Preparation of polyepoxide microcapsule via interfacial polyaddition reaction in W/O and O/W emulsion systems [J]. Colloids and Surf. B:Bio-interfaces,2003,29:159-169
    [8]Zhao M, Zheng L, Bai X, Li N, Yu L. Fabrication of silica nanoparticles and hollow spheres using ionic liquid microemulsion droplets as templates [J]. Colloids and Surf. A: Physicochem. Eng. Aspects,2009,346:229-236
    [9]Kraack H, Sirota E B, Deutsch M. Measurement of homogeneous nucleation in normal-alkanes [J]. J. Chem Phys.2000,112:6873-6885
    [10]Chazhengina S Y, Kotelnikova E N, Filippova I V, Filatov S K. Phase transitions of n-alkanes as rotator crystals [J]. J. Mol. Struct.2003,647:243-257
    [11]Sirota E B, Herhold A B. Transient phase-induced nucleation [J]. Science 1999,283: 529-532
    [12]Oliver M J, Calvert P D. Homogeneous nucleation of n-alkanes measured by differential scanning calorimetry [J]. J. Cryst. Growth,1975,30:343-351
    [13]Yamagishi Y, Sugeno T, Ishige T. An evaluation of microencapsulated PCM for use in cold energy transportation medium [J]. IEEE 96082,1996,3:2077-2083
    [14]Fan Y, Zhang X, Wang X, Li J, Zhu Q. Super-cooling prevention of microencapsulated phase change material [J]. Thermochimica Acta.2004,413(1-2):1-6
    [15]Rao Y, Lin G P, Luo Y, Chen S L, Wang L. Preparation and thermal properties of microencapsulation phase change material for enhancing fluid flow heat transfer [J]. Heat Transfer-Asian Res.,2007,36:28-37
    [1]Pielichowski K, Flejtuch K. Differential scanning calorimetric studies on poly (ethylene glycol) with different molecular weights for thermal energy storage materials [J]. Polym Adv Technol,2002,13:690-696
    [2]Abhat A. Low temperature latent thermal energy storage system:heat storage materials [J]. Sol Energy 1983,30(4):313-332
    [3]Alkan C, Sari A, Uzun O. Poly (ethylene glycol)/acrylic polymer blends for latent heat thermal energy storage [J]. AIChE J 2006,52(9):3310-3314
    [4]Kenisarin M, Mahkamov K. Solar energy storage using phase change materials [J] Renew Sustain Energy Rev,2007,11(9):1913-1965
    [5]Tyagi V V, Buddhi D. PCM thermal storage in buildings:a state of art [J]. Renew Sustain Energy Rev,2007,11(6):1146-1166
    [6]Pasupathy A, Velraj R, Seeniraj R V. Phase change materials-based building architecture for thermal management in residential and commercial establishments [J]. Renew Sustain Energy Rev 2008:39-64
    [7]Chow L C, Zhang J K. Thermal conductivity enhancement for phase change storage media [J]. Int Commun Heat Mass Tran,1996,23(1):91-100
    [8]Zhang K, Wu W, Meng H, Guo K, Chen J F. Pickering emulsion polymerization: Preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure [J]. Powder Technology,2009,190:393-400
    [9]Judeinstein P, Sanchez C. Hybrid Organic-Inorganic Materials:A Land of Multidisciplinarity [J]. J. Mater. Chem.1996,6:511-525
    [10]Moreau J E, Vellutini L, Man M C, Bied C. New Hybrid Organic-Inorganic Solids with Helical Morphology via H-Bond Mediated Sol-Gel Hydrolysis of Silyl Derivatives of Chiral (R,R)-or (S,S)-Diureidocyclohexane [J]. J. Am. Chem. Soc.2001,123:1509-1510
    [11]Gomez-Romero P. Hybrid organic-inorganic materials-in search of synergic activity [J]. Adv. Mater.,2001,13(3):163-174
    [12]Phillip G, Schmidt H. The reactivity of TiO2 and ZrO2 in organically modified silicates [J]. J. Non-Cryst. Solids,1986,82(1-3):31-36
    [13]Phillip G, Schmidt H. New materials for contact lenses prepared from Si-and Ti-alkoxides by the sol-gel process [J]. J. Non-Cryst. Solids,1984,63(1-2):283-292
    [14]Dahmouche K, Atik M, Mello N C, Bonagamba T J, Panepucci H, Aegerter M A, Judeinstein P. Investigation of new ion-conducting ORMOLYTES:structure and properties [J]. J. Sol-Gel Sci. Technol.,1997,8(1-3):711-715
    [15]Armelao L, Barreca D, Bottaro G, et al. Au/TiO2 nanosystems:a combined RF-Sputtering/Sol-Gel approach [J]. Chem. Mater.,2004,16:3331-3338
    [16]Kim D S, Park H B, Rhim J W, Lee Y M. Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell
    applications [J]. J. Membr. Sci.2004,240 (1-2):37-48
    [17]Schottner G. Hybrid sol-gel derived polymers:applications of multifunctional materials [J]. Chem. Mater.2001,13:3422-3435
    [18]Senguptaa R, Bandyopadhyaya A, Sabharwalb S, Chakia T K, Bhowmick A K. Polyamide-6,6/in situ silica hybrid nanocomposites by sol-gel technique:synthesis, characterization and properties [J]. Polymer,2005,46(10) 3343-3354
    [19]Jiang S, Yu D, Ji X, An L, Jiang B. Confined crystallization behavior of PEO in silica networks [J]. Polymer,2000,41(6):2041-2046
    [20]Jiang S, Qiao C, Tian S, Ji X, An L, Jiang B. Confined crystallization behavior of PEO in organic networks [J]. Polymer,2001,42(13):5755-5761
    [21]Grandi S, Magistris A, Mustarelli P, Quartarone E, Tomasi C, Meda L. Synthesis and characterization of SiO2-PEG hybrid materials [J]. J. Non-Cryst. Solids,2006,352(3): 273-280
    [22]Yang J, Zhao T, Cui J, Liu L, Zhou Y, Li G, Zhou E, Chen X. Nonisothermal crystallization behavior of the poly(ethylene glycol) block in poly(L-lactide)-poly(ethylene glycol) diblock copolymers:Effect of the poly(L-lactide) block length [J]. J. Polym. Sci. Part B:Polym. Phys.2006,44(22):3215-3226
    [23]Lorenzo A T, Arnal M L, Muller A J, Fierro A B, Abetz V. Confinement effects on the crystallization and SSA thermal fractionation of the PE block within PE-b-PS diblock copolymers [J]. Eur. Polym. J.,2006,42(3):516-533
    [24]Sun L, Zhu L, Ge Q, Quirk R P, Xue C, et al. Comparison of crystallization kinetics in various nanoconfined geometries [J]. Polymer,2004,45(9):2931-2939
    [25]Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T-W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc.,1992,114:10834-10843
    [26]Monnier A, SchEth F, Huo Q, Kumar D, Margolese D, Maxwell R S, Stucky G D, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka B. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures [J]. Science,1993, 261:1299-1303
    [27]Huo Q, Margolese D I, Ciesla U, Demuth D G, Feng P, Gier T E, Sieger P, Firouzi A, Chmelka B F, SchEth F, Stucky G D. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays [J]. Chem. Mater.,1994,6: 1176-1191
    [28]Inagaki S, Fukushima Y, Kuroda K. Synthesis of highly ordered mesoporous materials from a layered polysilicate[J]. J. Chem. SocChem. Commun.,1993:680-682
    [29]Yanagisawa T, Shimizu T, Kuroda K, Kato C. The preparation of Alkytrimethylammonium-Kanemite complexes and their conversion to microporous materials[J]. Bull. Chem. Soc. Jpn.,1990,63:988-992
    [30]Goltner C G, Antonietti M. Mesoporous materials by templating of liquid crystalline phases[J]. Adv. Mater.,1997,9:431-436
    [31]Vartuli J C, Kresge C T, Leonowicz M E, Chu A S, McCullen S B, Johnson I D, Sheppard E W. Synthesis of mesoporous materials:liquid-crystal templating versus intercalation of layered silicates[J]. Chem. Mater.,1994,6:2070-2077
    [32]Hoffmann F, Cornelius M, Morell J, Froba M. Silica-based mesoporous organic-inorganic hybrid materials[J]. Angew. Chem. Int. Ed.,2006,45,3216-3251
    [33]张金中,王中林等.自组装纳米结构[M].北京:化学工业出版社,2003,14-16
    [34]Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores [J]. Science,1998,279:548-552
    [35]Zhao D, Huo Q, Feng J, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc.1998,120:6024-6036
    [36]Yu C, Tian B, Fan J, Stucky G D, Zhao D. Salt effect in the synthesis of mesoporous silica templated by non-ionic block copolymers [J]. Chem. Commun.2001:2726-2727
    [37]R. Ryoo, S. Jun. Improvement of Hydrothermal Stability of MCM-41 Using Salt Effects during the Crystallization Process [J]. J. Phys. Chem. B,1997,101:317-320
    [38]Luque R, Campelo J M, Luna D, Marinas J M, Romero A A. Highly ordered mesoporous silica structures templated by poly(butylene oxide) segment di-and tri-block copolymers [J]. Micropor. Mesopor. Mater.2001,44:65-72
    [39]Soler-Illia G J, Sanchez C, Lebeau B, Patarin J. Chemical strategies to design textured materials:from microporous and mesoporous oxides to nanonetworks and hierarchical structures [J]. Chem. Rev.2002,102:4093-4138
    [1]Xie A J, Zhang C Y, Shen Y H, Qiu L G, Xiao P P, Hu Z Y. Morphologies of calcium carbonate crystallites grown from aqueous solutions containing polyethylene glycol [J]. Cryst. Res. Technol.,2006,41:967-971
    [2]Cai W Y, Xu Q, Zhao X N, Zhu J J, Chen H Y. Porous gold-nanoparticle-CaCO3 hybrid material:preparation, characterization, and application for horseradish peroxidase assembly and direct electrochemistry[J]. Chem. Mater.,2006,18:279-284
    [3]Butler M F, Frith W J, Rawlins C, Weaver A C, Butler M H. Hollow calcium carbonate microsphere formation in the presence of biopolymers and Additives [J]. Cryst. Growth Des.,2009,9(1):534-545
    [4]Falini G, Fermani S, Gazzano M, Ripamonti A. Oriented crystallization of vaterite in collagenous matrices [J]. Chem.-Eur. J.1998,4(6):1048-1052
    [5]Falini G, Albeck S, Weiner S, Addadi L. Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules [J]. Science,1996,271:67-69
    [6]Feng Q L, Pu G, Pei Y, Cui F Z, Li H D, Kim T N. Polymorph and morphology of calcium carbonate crystals induced by proteins extracted from mollusk shell [J]. J. Cryst. Growth, 2000,216(1-4):459-465
    [7]Han Y J, Aizenberg J. Effect of magnesium ions on oriented growth of calcite on carboxylic acid functionalized self-assembled monolayer [J]. J. Am. Chem. Soc.,2003, 125:4032-4033
    [8]] Litvin A L, Samuelson L A, Charych D H, Kaplan D L. Influence of supramolecular template organization on mineralization [J]. J. Phys. Chem.1995,99:12065-12068
    [9]Colfen H, Qi L. A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer [J]. Chem. Eur. J.,2001,7:106-116
    [10]Manoli F, Dalas E. Calcium carbonate crystallization in the presence of glutamic acid [J]. J. Cryst. Growth,2001,222(1-2):293-297
    [11]Sedlak M, Antoniettic M, Colfen H. Synthesis of a new class of double-hydrophilic block copolymers with calcium binding capacity as builders and for biomimetic structure control of minerals [J]. Macromol. Chem. Phys.,1998,199,247-254
    [12]Damle C, Kumar A, Sainkar S R, Bhagawat M, Sastry M. Growth of calcium carbonate crystals within fatty acid bilayer stacks [J]. Langmuir 2002,18,6075-6080
    [13]Raz S, Weiner S, Addadi L. Formation of high-magnesian calcites via an amorphous precursor phase:possible biological implications [J]. Adv. Mater.,2002,12:38-42
    [14]Colfen H, Qi L. A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer [J]. Chem.,2001,7 (1):106-116
    [15]Mak W C, Cheung K Y, Trau D. Influence of different polyelectrolytes on layer-by-layer microcapsule properties:encapsulation efficiency and colloidal and temperature Stability [J]. Chem. Mater.2008,20:5475-5484
    [16]Rautaray D, Ahmad A. Biosynthesis of CaCO3 crystals of complex morphology using a fungus and an actinomycete [J]. J. Am. Chem. Soc.,2003,125 (48):14656-14657
    [17]Qi L, Li J, Ma J. Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactant s and double-hydrophilic block copolymers [J]. Adv. Mater.,2002,14(4): 300-303
    [18]Wei H, Shen Q, Wang H, Gao Y, Zhao Y, Xu D, Wang D. Influence of segmented copolymers on the crystallization and aggregation of calcium carbonate [J]. J. Cryst. Growth,2007,303:537-545
    [19]Yu S H, Colfen H, Hartmann J, Antonietti M. Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double-hydrophilic block copolymers [J]. Adv. Funct. Mater.2002,12:541-545
    [20]Park R J, Meldrum F C. Synthesis of single crystals of calcite with complex morphologies [J]. Adv. Mater.,2002,14:1167-1169

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700