用户名: 密码: 验证码:
听觉系统自动加工汉语声调和辅音时的大脑半球优势
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
语言是人类进化的产物,是人类之间进行交流与沟通的重要工具。对于大脑是如何感知并且加工处理随着时间快速变化且具有复杂成分的语言信号的机制,一直是科学界关于人脑研究的重要问题,但是迄今为止,还有很多问题没有弄清楚。语言作为一种交流工具,它是一种声音信息的集合,不同种族的人具用不同的语言。语言的基本单位是音素,由音素形成音节,再组合形成语言。但是作为声调语言例如汉语普通话的声调却有着不同的特性,每个音节会伴随着基频(f0)的变化而产生声调。在功能上,声调可以用来反映不同说话者的声音、用于情绪的表达(这种现象主要出现在大多数西方语言的语句表达上,如疑问句)以及表意的功能(在声调语言中语意的表达)。
     声调语言中的声调成分是随着音节变化时,伴随着基频的改变而出现的。并且对于相同的音节,不同的声调可以表达出不同的语意。例如第一声调ma1表示“妈”;第二声调ma2表示“麻”。声调是如何在大脑中加工处理的,一直是神经语言学研究中的一个重要问题,人们特别感兴趣究竟哪个大脑半球在处理声调的优势半球。目前,有关声调加工的优势脑半球存在着两种假说。一种是功能假说(functional hypothesis):认为声调按照完全它们本身所拥有的语言功能主要在左侧大脑半球处理。另一种是声学假说(acoustic hypothesis):认为所有的调,不论其拥有什么样的功能,都是主要在右侧大脑半球处理,因为调的声学属性主要是一种频率上的变化,而这样的声音主要是在右侧大脑半球处理加工的。关于这两种假说,目前报道的结果经常互相矛盾,形成了一个长期争论。尽管很多研究支持功能性假说,包括在脑部缺损病人,正常人的行为学实验以及功能成像实验,但不是所有的实验结果都支持这种假说。而且也有一部分研究结果是支持声学假说的。本论文工作主要研究当声调在作为一种声学信息被传入到大脑中的时候,在听觉认知的自动加工阶段即注意前的早期阶段,究竟哪个大脑半球处理占优势。
     大脑中处理声音的位置主要是在左右两侧颞叶的颞上回和颞中回部位,以及位于蹑叶后部的联合区域。早在19世纪,通过对脑部受损病人的神经心理学的测试,Fechner和Wernicke就发现左右两侧半球在加工处理声音信息上的角色差异。随着近代科技的发展,功能成像技术也被应用到研究大脑结构以及功能的研究中。大量的研究证实左侧大脑半球在处理语言时占据优势;而右侧大脑半球在处理音乐时占据优势。但是由于脑受损病人受损区域的不固定性,以及功能成像技术本身的低时间分辨率的局限性,都无法精确地观察言语信号是如何在大脑中作为声音信号处理的。而脑诱发电位技术拥有相当高的时间分辨率,可以实时地观察到大脑对刺激的反应。所以有可能适合用于精确分析听觉信息在大脑中加工的时间过程。
     因此,对于作为声调语言的超音段成份的声调一直以来都存在疑问,就是它是否和构成基础的音段成份,例如辅音,在不同的优势脑半球进行加工。为了回答这个问题,我们选用母语是汉语的受试者,通过高频率的播放由辅音和元音构成的有汉语语意的音节,低频率的播放改变辅音音节(辅音组)或者改变声调(声调组)从而达到改变汉语语意的音节。为了克服fMRI和PET时间分辨率低的弱点,本工作采用高时间分辨率的脑电技术记录脑听觉事件相关电位和分析其中的失匹配负波成份(mismatch negativity,MMN)。所记录到的MMN成分反映了听觉系统在早期认知阶段(注意前阶段)对外界信号的自动加工过程。本研究发现在听觉认知的注意前阶段:(1)在辅音组中,改变辅音在左侧大脑半球诱发的MMN幅度要高于右侧大脑半球的幅度;(2)在声调组中,右侧大脑半球的MMN幅度要高于左侧大脑半球的幅度。这个结果显示在早期的听觉认知加工过程中,针对声调和辅音脑半球优势是相反的。由于声调和辅音在定义语义时有着相同的功能,这个相反的半球优势模式说明在意识前阶段,决定脑半球优势的因素是听觉输入的声学特性,而不是其功能。该结果已经在2006年12月发表在《美国科学院院刊》(PNAS)上。这篇论文认为,先前报道的相关研究工作未能够通过分阶段观测大脑听觉认知处理过程来研究这个问题,但实际上声学假说在早期的意识前加工阶段是成立的,而功能假说则在后期的意识加工阶段是成立的。这篇论文同时提出了一个两级听觉认知模型,将声学假说和功能假说统一起来。根据这个模型,在意识前阶段右脑依据听觉输入的声学特性成为处理汉语声调的优势半球,而到了意识阶段左脑依据听觉输入的语义功能成为处理汉语声调的优势半球。
Language is the product of human evolution and an important tool for human communication. The mechanisms through which the human brain perceives and discriminates complex and rapidly changing components of human speech are not well understood and remain as an important question for brain research. Although speech is a compound sound and there exists a variety of speech in the world, it is built with syllables composed of the phonemes. Variations in fundamental frequency (f0) form pitch patterns of speech, or lexical tones which have different functions in the different languages. The speech pitch can be used to identify the speaker's voice, mood and doubt. But the pitch pattern, or a lexical tone, of a tonal language such as Mandarin Chinese has a unique linguistic function: they encode word meaning as vowels and consonants do.
     In tonal languages, lexical tones acoustically correlate with variations of the fundamental frequency (f0) of a syllable. The same syllable can represents different word meanings when it is accented in different lexical tones. For example, syllable /mal/ means "mother", /ma2/ means "hemp". How the brain processes lexical tones is an important issue in neurolinguistic research. In particular, it remains as an interesting question which hemisphere dominates the processing of a lexical tone in the brain. Currently, there are two competing hypotheses about hemisphere dominance for processing lexical tones in tonal languages. The functional hypothesis predicts that a lexical tone will be preferentially processed in the left hemisphere based on its linguistic functions. Alternatively, the acoustic hypothesis predicts that a lexical tone will be preferentially processed in the right hemisphere based on its acoustic structures. The two hypotheses are competing and neither can account for a full range of experimental data.
     When non-speech sounds are used as the stimulus, the lateralization patterns as revealed with fMRI or PET are well predicted by the acoustic hypothesis. Arguing against this hypothesis are data from the fMRI or PET experiments which use lexical tones as the stimulus to demonstrate that additional areas of the left hemisphere will be activated in native tonal language speakers versus English speakers, suggesting the dependence of hemisphere lateralization on linguistic functions and language experience, rather than on acoustic features. Because fMRI or PET measures hemodynamic responses with a temporal resolution ranging from seconds to tens of seconds, the observation from these neuroimaging studies, which require subjects to execute a discrimination task, likely represents the temporally aggregated brain activities including those at an attentive stage of auditory processing. However, the hemisphere lateralization for an auditory response to speech sound can occur as early as 144 ms after the onset of stimulus. Thus, there is a possibility that the auditory response to lexical tones at such an early stage was actually lateralized to the right hemisphere based on their acoustic features but confounded with the response components at a later stage of processing and not explicitly revealed in the previous fMRI or PET studies. The present study attempted to identify which hypothesis prevails in early auditory processing with whole-head electric recordings of the mismatch negativity (MMN) from native Mandarin Chinese speakers under a passive auditory odd-ball paradigm. The recorded MMN response occurred around 200 ms after the onset of stimulus and reflected the brain's automatic processing at a pre-attentive stage. This study demonstrates that early auditory processing of a lexical tone at a pre-attentive stage is actually lateralized to the right hemisphere. A meaningful auditory word with a consonant-vowel structure is frequently presented to native Mandarin Chinese speakers and either its lexical tone or initial consonant using an odd-ball paradigm infrequently varied to create a contrast and result in a change in word meaning. The lexical tone contrast evoked a stronger pre-attentive response, as revealed by whole-head electric recordings of the mismatch negativity, in the right hemisphere than in the left whereas the consonant contrast produced an opposite pattern. Given the distinct acoustic features between a lexical tone and a consonant, this opposite lateralization pattern suggests the dependence of hemisphere dominance mainly on acoustic cues before speech input is mapped into a semantic representation in the processing stream.
引文
Alho, K., Connolly, J. F., Cheour, M., Lehtokoski, A., Huotilainen, M., Virtanen, J., Aulanko, R. and Ilmoniemi, R. J., 1998. Hemispheric lateralization in preattentive processing of speech sounds. Neurosci Lett. 258, 9-12.
    Alho, K., Tervaniemi, M., Huotilainen, M., Lavikainen, J., Tiitinen, H., Ilmoniemi, R. J., Knuutila, J. and Naatanen, R., 1996. Processing of complex sounds in the human auditory cortex as revealed by magnetic brain responses. Psychophysiology. 33, 369-375.
    Ashbumer, J. and Friston, K. J., 2000. Voxel-based morphometry—the methods. Neuroimage. 11, 805-821.
    Atienza, M., Cantero, J. L. and Dominguez-Marin, E., 2002. Mismatch negativity (MMN): an objective measure of sensory memory and long-lasting memories during sleep. Int J Psychophysiol. 46, 215-225.
    Baudoin-Chial, S. J., 1986. Hemispheric lateralization of modern standard Chinese tone processing Neurolinguistics. 2, 189-199.
    Berlin, C. I., Lowe-Bell, S. S., Cullen, J. K., Jr. and Thompson, C. L., 1973. Dichotic speech perception: an interpretation of right-ear advantage and temporal offset effects. J Acoust Soc Am. 53, 699-709.
    Bradvik, B. D., C.; Holtas, S.; Rosen, I.; Ryding, E.; Ingvar, D., 1990. Do single right hemisphere infarcts or transient ischaemic attack result in aprosody? Acta Neurol Scand 81, 61-70.
    Celsis, P., Boulanouar, K., Doyon, B., Ranjeva, J. P., Berry, I., Nespoulous, J. L. and Chollet, F., 1999. Differential fMRI responses in the left posterior superior temporal gyrus and left supramarginal gyrus to habituation and change detection in syllables and tones. Neuroimage. 9, 135-144.
    Cheour-Luhtanen, M., Alho, K., Sainio, K., Rinne, T., Reinikainen, K., Pohjavuori, M., Renlund, M., Aaltonen, O., Eerola, O. and Naatanen, R., 1996. The ontogenetically earliest discriminative response of the human brain. Psychophysiology. 33, 478-481.
    Ciesielski, K. T., Courchesne, E. and Elmasian, R., 1990. Effects of focused selective attention tasks on event-related potentials in autistic and normal individuals. Electroencephalogr Clin Neurophysiol. 75, 207-220.
    Cohen, D., 1972. Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer. Science. 175, 664-666.
    Cohen, H. and Forget, H., 1995. Auditory cerebral lateralization following cross-gender hormone therapy. Cortex. 31, 565-573.
    Davis, A. E. and Wada, J. A., 1977. Hemispheric asymmetries of visual and auditory information processing. Neuropsychologia. 15, 799-806.
    Dehaene-Lambertz, G., Dehaene, S. and Hertz-Pannier, L., 2002. Functional neuroimaging of speech perception in infants. Science. 298, 2013-2015.
    Eng, N. O., L. K.; Harris, K. S.; Abramson, A. S., 1996. Tone perception ndeficits in Chinese-speaking Broca's aphasics.. Aphasiology. 10, 649-659.
    Fitch, R. H., Miller, S. and Tallal, P., 1997. Neurobiology of speech perception. Annu Rev Neurosci. 20, 331-353.
    Foundas, A. L., Leonard, C. M., Gilmore, R., Fennell, E. and Heilman, K. M., 1994. Planum temporale asymmetry and language dominance. Neuropsychologia. 32, 1225-1231.
    Fox, P. T., Mintun, M. A., Raichle, M. E. and Herscovitch, P., 1984. A noninvasive approach to quantitative functional brain mapping with H2 (15)O and positron emission tomography. J Cereb Blood Flow Metab. 4, 329-333.
    Fox, P. T. and Raichle, M. E., 1986. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA. 83, 1140-1144.
    Fox, P. T., Raichle, M. E., Mintun, M. A. and Dence, C., 1988. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 241, 462-464.
    Gandour, J. and Dardarananda, R., 1983. Identification of tonal contrasts in Thai aphasic patients. Brain Lang. 18, 98-114.
    Gandour, J., Petty, S. H. and Dardarananda, R., 1988. Perception and production of tone in aphasia. Brain Lang. 35, 201-240.
    Gandour, J., Ponglorpisit, S., Dechongkit, S., Khunadorn, F., Boongird, P. and Potisuk, S., 1993. Anticipatory tonal coarticulation in Thai noun compounds after unilateral brain damage. Brain Lang. 45, 1-20.
    Gandour, J., Ponglorpisit, S., Khunadorn, F., Dechongkit, S., Boongird, P., Boonklam, R. and Potisuk, S., 1992. Lexical tones in Thai after unilateral brain damage. Brain Lang. 43, 275-307.
    Gandour, J., Potisuk, S., Ponglorpisit, S., Dechongkit, S., Khunadorn, F. and Boongird, P., 1996. Tonal coarticulation in Thai after unilateral brain damage. Brain Lang. 52, 505-535.
    Gandour, J., Wong, D., Hsieh, L., Weinzapfel, B., Van Lancker, D. and Hutchins, G. D., 2000. A crosslinguistic PET study of tone perception. J Cogn Neurosci. 12, 207-222.
    Gandour, J., Wong, D. and Hutchins, G., 1998. Pitch processing in the human brain is influenced by language experience. Neuroreport. 9, 2115-2119.
    Gannon, P. J., Holloway, R. L., Broadfield, D. C. and Braun, A. R., 1998. Asymmetry of chimpanzee planum temporale: humanlike pattern of Wernicke's brain language area homolog. Science. 279, 220-222.
    Geschwind, N., 1965a. Disconnexion syndromes in animals and man. Ⅰ. Brain. 88, 237-294.
    Geschwind, N., 1965b. Disconnexion syndromes in animals and man. Ⅱ. Brain. 88, 585-644.
    Geschwind, N., 1972a. Cerebral dominance and anatomic asymmetry. N Engl J Med. 287, 194-195.
    Geschwind, N., 1972b. Language and the brain. Sci Am. 226, 76-83.
    Good, C. D., Johnsrude, I., Ashburner, J., Henson, R. N., Friston, K. J. and Frackowiak, R. S., 2001. Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage. 14, 685-700.
    Hier, D. B., LeMay, M., Rosenberger, P. B. and Perlo, V. P., 1978. Developmental dyslexia. Evidence for a subgroup with a reversal of cerebral asymmetry. Arch Neurol. 35, 90-92.
    Homma, S., Musha, T., Nakajima, Y., Okamoto, Y., Blom, S., Flink, R., Hagbarth, K. E. and Mostrom, U., 1994. Location of electric current sources in the human brain estimated by the dipole tracing method of the scalp-skull-brain (SSB) head model. Electroencephalogr Clin Neurophysiol. 91, 374-382.
    Hopkins, W. D., Marino, L., Rilling, J. K. and MacGregor, L. A., 1998. Planum temporale asymmetries in great apes as revealed by magnetic resonance imaging (MRI). Neuroreport. 9, 2913-2918.
    Howie, J., 1976. Acoustical Studies of Mandarin Vowels and Tones.
    Hsieh, L., Gandour, J., Wong, D. and Hutchins, G. D., 2001. Functional heterogeneity of inferior frontal gyrus is shaped by linguistic experience. Brain Lang. 76, 227-252.
    Hugdahl, K., Bronnick, K., Kyllingsbaek, S., Law, I., Gade, A. and Paulson, O. B., 1999. Brain activation during dichotic presentations of consonant-vowel and musical instrument stimuli: a 150-PET study. Neuropsychologia. 37, 431-440.
    Hugdahl, K., Carlsson, G., Uvebrant, P. and Lundervold, A. J., 1997. Dichotic-listening performance and intracarotid injections of amobarbital in children and adolescents. Preoperative and postoperative comparisons. Arch Neurol. 54, 1494-1500.
    Hughes, C. P. C., J. -L.; Su, M. -S., 1983. Aprosodia in Chinese patients with right cerebral hemisphere lesion. Arch Neurol. 40, 732-736.
    Hynd, G. W., Cohen, M. and Obrzut, J. E., 1983. Dichotic consonant-vowel (CV) testing in the diagnosis of learning disabilities in children. Ear Hear. 4, 283-286.
    Ide, A., Dolezal, C., Fernandez, M., Labbe, E., Mandujano, R., Montes, S., Segura, P., Verschae, G., Yarmuch, P. and Aboitiz, F., 1999. Hemispheric differences in variability of fissural patterns in parasylvian and cingulate regions of human brains. J Comp Neurol. 410, 235-242.
    Ip, K. H., R., 1993. Dichotic listening of Chinese and English words. Psychologia. 36, 140-143.
    Josse, G. and Tzourio-Mazoyer, N., 2004. Hemispheric specialization for language. Brain Res Brain Res Rev. 44, 1-12.
    Kimura, D., 1973. The asymmetry of the human brain. Sci Am. 228, 70-78.
    Klein, D., Zatorre, R. J., Milner, B. and Zhao, V., 2001. A cross-linguistic PET study of tone perception in Mandarin Chinese and English speakers. Neuroimage. 13,646-653.
    Kraus, N., McGee, T., Littman, T., Nicol, T. and King, C., 1994. Nonprimary auditory thalamic representation of acoustic change. J Neurophysiol. 72, 1270-1277.
    Kutas, M. and Hillyard, S. A., 1980. Reading senseless sentences: brain potentials reflect semantic incongruity. Science. 207, 203-205.
    Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M. S., Turner, R. and et al., 1992. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 89, 5675-5679.
    Lange, N., 1996. Statistical approaches to human brain mapping by functional magnetic resonance imaging. Stat Med. 15, 389-428.
    Leonard, C. M., Puranik, C., Kuldau, J. M. and Lombardino, L. J., 1998. Normal variation in the frequency and location of human auditory cortex landmarks. Heschl's gymrus: where is it? Cereb Cortex. 8, 397-406.
    Levitsky, W. and Geschwind, N., 1968. Asymmetries of the right and left hemisphere in man. Trans Am Neurol Assoc. 93,232-233.
    Liberman, A. M. and Whalen, D. H., 2000. On the relation of speech to language. Trends Cogn Sci. 4, 187-196.
    Low, A., Rockstroh, B., Cohen, R., Hauk, O., Berg, P. and Maier, W., 1999. Determining working memory from ERP topography. Brain Topogr. 12, 39-47.
    Luck S J and M, G, 1998. The Attentive Brian. MIT.
    Mazziotta, J. C., Phelps, M. E., Carson, R. E. and Kuhl, D. E., 1982. Tomographic mapping of human cerebral metabolism: auditory stimulation. Neurology. 32, 921-937.
    Moen, I., 1993. Functional lateralization of the perception of Norwegian word tones-evidence from a dichotic listening experiment. Brain Lang. 44, 400-413.
    Naatanen, R., 1982. Processing negativity: an evoked-potential reflection of selective attention. Psychol Bull. 92, 605-640.
    Naatanen, R., 1995. The mismatch negativity: a powerful tool for cognitive neuroscience. Ear Hear. 16, 6-18.
    Naatanen, R., 2001. The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm). Psychophysiology. 38, 1-21.
    Naatanen, R., 2003. Mismatch negativity: clinical research and possible applications. Int J Psychophysiol. 48, 179-188.
    Naatanen, R. and Alho, K., 1995. Mismatch negativity-a unique measure of sensory processing in audition. Int J Neurosci. 80, 317-337.
    Naatanen, R., Gaillard, A. W. and Mantysalo, S., 1978. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst). 42, 313-329.
    Naatanen, R., Lehtokoski, A., Lennes, M., Cheour, M., Huotilainen, M., Iivonen, A., Vainio, M., Alku, P., Ilmoniemi, R. J., Luuk, A., Allik, J., Sinkkonen, J. and Alho, K., 1997. Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature. 385,432-434.
    Naatanen, R., Paavilainen, P., Tiitinen, H., Jiang, D. and Alho, K., 1993. Attention and mismatch negativity. Psychophysiology. 30, 436-450.
    Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H. and Ugurbil, K., 1992. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A. 89, 5951-5955.
    Packard, J. L., 1986. Tone production deficits in nonfluent aphasic Chinese speech. Brain Lang. 29, 212-223.
    Peretz, I., I990. Processing of local and global musical information by unilateral brain-damaged patients. Brain. 113 (Pt 4), 1185-1205.
    Perret, E., Simeon, G. and Hugenschmidt, W., 1970. [Cerebral hemispheric dominance and simultaneous perception of verbal and non-verbal stimuli]. Schweiz Arch Neurol Neurochir Psychiatr. 107, 87-95.
    Pettigrew, C. M., Murdoch, B. E., Ponton, C. W., Finnigan, S., Alku, P., Kei, J., Sockalingam, R. and Chenery, H. J., 2004. Automatic auditory processing of english words as indexed by the mismatch negativity, using a multiple deviant paradigm. Ear Hear. 25, 284-301.
    Picton, T. W., Alain, C., Otten, L., Ritter, W. and Achim, A., 2000. Mismatch negativity: different water in the same river. Audiol Neurootol. 5, 111-139.
    Ritter, W. and Vaughan, H. G., Jr., 1969. Averaged evoked responses in vigilance and discrimination: a reassessment. Science. 164, 326-328.
    Robin, D. A., Tranel, D. and Damasio, H., 1990. Auditory perception of temporal and spectral events in patients with focal left and right cerebral lesions. Brain Lang. 39, 539-555.
    Rothenberger, A., Grozinger, B., Foit, A. and Woerner, W., 1987. Do event-related potentials (ERPs) reflect right hemisphere's processing of semantics? Int J Neurosci. 33, 93-101.
    Rubens, A. B., Mahowald, M. W. and Hutton, J. T., 1976. Asymmetry of the lateral (sylvian) fissures in man. Neurology. 26, 620-624.
    Ryalls, J. and Reinvang, I., 1986. Functional lateralization of linguistic tones: acoustic evidence from Norwegian. Lang Speech. 29 (Pt 4), 389-398.
    Schroger, E., 1998. Application of ERP Measures in Psychological Research. Behavior Research Methods, Instruments, & Computers. 30, 131-145.
    Shapleske, J., Rossell, S. L., Woodruff, P. W. and David, A. S., 1999. The planum temporale: a systematic, quantitative review of its structural, functional and clinical significance. Brain Res Brain Res Rev. 29, 26-49.
    Shtyrov, Y., Pihko, E. and Pulvermuller, F., 2005. Determinants of dominance: is language laterality explained by physical or linguistic features of speech? Neuroimage. 27, 37-47.
    Sininger, Y. S. and Cone-Wesson, B., 2004. Asymmetric cochlear processing mimics hemispheric specialization. Science. 305, 1581.
    Tallal, P., Miller, S. and Fitch, R. H., 1993. Neurobiological basis of speech: a case for the preeminence of temporal processing. Ann N Y Acad Sci. 682, 27-47.
    Toga, A. W. and Thompson, P. M., 2003. Mapping brain asymmetry. Nat Rev Neurosci. 4, 37-48.
    Tremblay, K., Kraus, N., Carrell, T. D. and McGee, T., 1997. Central auditory system plasticity: generalization to novel stimuli following listening training. J Acoust Soc Am. 102, 3762-3773.
    Van Lancker, D. F., V. A., 1973. Hemispheric specialization for pitch and tone: Evidence from Thai. J Phonetics. 1,101-109.
    Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C. and Winter, A. L., 1964. Contingent Negative Variation: an Electric Sign of Sensorimotor Association and Expectancy in the Human Brain. Nature. 203,380-384.
    Westbury, C. F., Zatorre, R. J. and Evans, A. C., 1999. Quantifying variability in the planum temporale: a probability map. Cereb Cortex. 9, 392-405.
    Wetzel, W., Ohl, F. W., Wagner, T. and Scheich, H., 1998. Right auditory cortex lesion in Mongolian gerbils impairs discrimination of rising and falling frequency-modulated tones. Neurosci Lett. 252, 115-118.
    Whalen, D. H. and Liberman, A. M., 1987. Speech perception takes precedence over nonspeech perception. Science. 237, 169-171.
    Winkler, I., Lehtokoski, A., Alku, P., Vainio, M., Czigler, I., Csepe, V., Aaltonen, O., Raimo, I., Alho, K., Lang, H., Iivonen, A. and Naatanen, R., 1999. Pre-attentive detection of vowel contrasts utilizes both phonetic and auditory memory representations. Brain Res Cogn Brain Res. 7, 357-369.
    Woldorff, M. G., Hackley, S. A. and Hillyard, S. A., 1991. The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology. 28, 30-42.
    Wong, P. C., 2002. Hemispheric specialization of linguistic pitch patterns. Brain Res Bull. 59, 83-95.
    Wong, P. C., Parsons, L. M., Martinez, M. and Diehl, R. L., 2004. The role of the insular cortex in pitch pattern perception: the effect of linguistic contexts. J Neurosci. 24, 9153-9160.
    Yiu, E. F., A., 1995. Lexical tone disruption in Cantonese aphasic speakers. Phonetics. 9, 79-92.
    Zatorre, R. J. and Belin, P., 2001. Spectral and temporal processing in human auditory cortex. Cereb Cortex. 11,946-953.
    Zatorre, R. J., Belin, P. and Penhune, V. B., 2002. Structure and function of auditory cortex: music and speech. Trends Cogn Sci. 6, 37-46.
    Zatorre, R. J., Evans, A. C., Meyer, E. and Gjedde, A., 1992. Lateralization of phonetic and pitch discrimination in speech processing. Science. 256, 846-849.
    Zatorre, R. J., Meyer, E., Gjedde, A. and Evans, A. C., 1996. PET studies of phonetic processing of speech: review, replication, and reanalysis. Cereb Cortex. 6, 21-30.
    Zurif, E. B. and Salt, P. E., 1970. The role of syntax in dichotic listening. Neuropsychologia. 8, 239-244.
    Alho, K., J. F. Connolly, et al.(1998). "Hemispheric lateralization in preattentive processing of speech sounds." Neurosci Lett 258(1): 9-12.
    Amaro, E., Jr. and G. J. Barker(2006). "Study design in fMRI: basic principles." Brain Cogn 60(3): 220-32.
    Gandour, J., D. Wong, et al.(2002). "A cross-linguistic FMRI study of spectral and temporal cues underlying phonological processing." J Cogn Neurosci 14(7): 1076-87.
    Geschwind, N. and A. M. Galaburda(1985). "Cerebral lateralization. Biological mechanisms, associations, and pathology: Ⅰ. A hypothesis and a program for research." Arch Neurol 42(5): 428-59.
    Giard, M. H., J. Lavikainen, et al.(1995). "Separate representation of stimulus frequency, intensity and duration in auditory sensory memory: an event related potential and dipol-model analysis." J Cogn Neurosci 7(2): 133-43.
    Huotilainen, M., I. Winkler, et al.(1998). "Combined mapping of human auditory EEG and MEG responses." Electroencephalogr Clin Neurophysiol 108(4): 370-9.
    J., H.(1976). Acoustical Studies of Mandarin Vowels and Tones.
    Kim, S. G., W. Richter, et al.(1997). "Limitations of temporal resolution in functional MRI." Magn Reson Med 37(4): 631-6.
    Kimura, D.(1973). "The asymmetry of the human brain." Sci Am 228(3): 70-8.
    Klein, D., R. J. Zatorre, et al.(2001). "A cross-linguistic PET study of tone perception in Mandarin Chinese and English speakers." Neuroimage 13(4): 646-53.
    Knosche, T. R., S. Lattner, et al.(2002). "Early parallel processing of auditory word and voice information." Neuroimage 17(3): 1493-503.
    Liberman, A. M. and D. H. Whalen(2000). "On the relation of speech to language." Trends Cogn Sci 4(5): 187-196.
    Naatanen, R., A. W. Gaillard, et al.(1978). "Early selective-attention effect on evoked potential reinterpreted." Acta Psychol (Amst) 42(4): 313-29.
    Naatanen, R., S. Pakarinen, et al.(2004). "The mismatch negativity (MMN): towards the optimal paradigm." Clin Neurophysiol 115(1): 140-4.
    Penfield, W.(1972). "The electrode, the brain and the mind." Z Neurol 201(4): 297-309.
    Picton, T. W., C. Alain, et al.(2000). "Mismatch negativity: different water in the same river." Audiol Neurootol 5(3-4): 111-39.
    Schonwiesner, M., R. Rubsamen, et al.(2005). "Hemispheric asymmetry for spectral and temporal processing in the human antero-lateral auditory belt cortex." Eur J Neurosci 22(6): 1521-8.
    Shankweiler, D. and M. Studdert-Kennedy(1967). "Identification of consonants and vowels presented to left and right ears." Q J Exp PsychoI 19(1): 59-63.
    Shankweiler, D. and M. Studdert-Kennedy(1975). "A continuum of lateralization for speech perception?" Brain Lang 2(2): 212-25.
    Shtyrov, Y., T. Kujala, et al.(2000). "Discrimination of speech and of complex nonspeech sounds of different temporal structure in the left and right cerebral hemispheres." Neuroimage 12(6): 657-63.
    Shtyrov, Y., E. Pihko, et al.(2005). "Determinants of dominance: is language laterality explained by physical or linguistic features of speech?" Neuroimage 27(1): 37-47.
    Tervaniemi, M. and K. Hugdahl(2003). "Lateralization of auditory-cortex functions." Brain Res Brain Res Rev 43(3): 231-46.
    Wada, J. A., R. Clarke, et al.(1975). "Cerebral hemispheric asymmetry in humans. Cortical speech zones in 100 adults and 100 infant brains." Arch Neurol 32(4): 239-46.
    Whalen, D. H. and A. M. Liberman(1987). "Speech perception takes precedence over nonspeech perception." Science 237(4811): 169-71.
    Wong, P. C.(2002). "Hemispheric specialization of linguistic pitch patterns." Brain Res Bull 59(2): 83-95.
    Wong, P. C., L. M. Parsons, et al.(2004). "The role of the insular cortex in pitch pattern perception: the effect of linguistic contexts." J Neurosci 24(41): 9153-60.
    Zatorre, R. J. and P. Belin(2001). "Spectral and temporal processing in human auditory cortex." Cereb Cortex 11(10): 946-53.
    Zatorre, R. J., P. Belin, et al.(2002). "Structure and function of auditory cortex: music and speech." Trends Cogn Sci 6(1): 37-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700