用户名: 密码: 验证码:
基于介电频谱特性的低压橡胶绝缘电缆老化程度评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电缆在电力系统中承担着输送电能的重要作用,电缆绝缘材料老化状态直接影响用电设备的使用安全和电力系统运行可靠性,因此对于电缆绝缘状态检测技术的研究逐渐受到了广泛的重视。本文对橡胶绝缘低压电缆进行了单因素和多因素的加速老化分析,结合介电频谱特性测量,提出了一种可在低压电缆上应用的无损检测方法。通过该方法建立了低压电缆绝缘老化方程,并应用人工神经网络优化分析低压电缆老化状态。本文提出的无损检测方法可应用于低压电缆状态评估,对保障电缆安全运行具有实际应用意义。
     论文详细地研究了橡胶绝缘低压电缆损耗的老化机理,指出了影响绝缘材料老化的典型因素。针对绝缘材料老化特征分析了常用诊断方法的优缺点和诊断的重点。根据电缆结构分析建立了等效结构模型和电缆老化模型,计算不同等效模型中与绝缘性能相关的电气参数。论述了介电频谱检测方法的原理和特点,分析了介电频谱检测参数(介质损耗角正切值)的测量特性和影响测量结果的主要因素。
     针对橡胶绝缘低压电缆设计了加速热老化试验和浸水热老化试验,获取不同老化情况下的试样。测量了试样的介电频谱曲线,对比分析了介电频谱曲线与机械性能曲线、化学性能曲线的内在联系,得到了整个测量区间内介电频谱曲线与绝缘材料劣化性能密切相关的敏感区间。确定了低频敏感区间为10-2。Hz-1Hz分析得到了该区间内介电频谱曲线的积分特性。结果表明了介电频谱积分特征值具有明显的温度特性,并与机械性能参数的变化规律相同。通过浸水老化试验,得到了在水分存在下介电频谱曲线与绝缘材料内部含水量及老化特性之间的关系。试验结果表明了介电频谱低频敏感区间积分值更好地反映了绝缘材料的劣化程度和含水量情况,为构建基于介电频谱特性的热老化方程打下基础。
     在加速热老化试验的基础上,选取介电频谱低频区间积分值作为推导老化状态方程的特征值。选取了基准温度后,推导了其他老化温度下的时间折算因数,得到温度的折算方法;通过拟合基准温度下介电频谱低频区间积分值数据得到老化趋势方程,再与折算方法综合分析得出绝缘材料老化方程。推导分析出多因素互相影响函数并修正了老化方程,进而推出材料的多因素老化状态。理论分析和实际测量结果表明,介电频谱低频区间积分值具有良好的测量准确性和检测效果,电缆实际运行数据也验证了老化方程的有效性。
     由于低压电缆敷设的环境,利用人工神经网络的良好预测特性分析电缆现场敷设的复杂环境,修正了介电频谱的老化方程中多因素的影响并统计分析了线芯温度。建立了三层BP人工神经网络,利用Matlab软件预测人工神经网络的输出数据,并结合原始测量数据得到训练误差,根据训练误差来推断了老化特征值的有效性和线芯温度的准确性。结果表明,人工神经网络训练后介电频谱域低频区间积分值有效地反映出橡胶绝缘低压电缆老化程度,准确预测了线芯温度。
     基于介电频谱低频区间特征值的橡胶绝缘低压电缆评估方法,有效地反映出了绝缘材料的老化特征,定量的分析出了绝缘材料的老化状态,为低压电缆现场老化评估工作提供了一种可应用的无损测量方法。
The low-voltage cables play an important role in transporting energy in power system; the degradation of insulation directly affects the safety of electrical equipment and maintains stable operation of power system, so that it has great application value and widespread attention for the research of detection degradation cable insulation. In this paper, combined with the characteristics of frequency domain spectroscopy, a new diagnostic method called nondestructive detection was proposed based on the analysis of single-factor and multi-factor accelerated thermal aging test for low-voltage cables. The aging equation of insulation was built by this method, and the degradation of low-voltage cables was analyzed by using neural network. This nondestructive method could apply to detect the condition of low-voltage cables, which had practical significance for protecting safety.
     In this paper, the aging mechanism of low-power cables had been studied in detail, and the typical aging factors were pointed out in the process of aged insulation. Contrary to aging characteristics of insulation materials, the advantages and focus of the commonest diagnostic methods were discussed. Based on the equivalent structural model and aging model, the electrical parameters within different models were calculated. Meanwhile, this paper introduced the principle and characteristics of frequency dielectric spectroscopy, and analyzed the measurement characteristics and main influencing factors of frequency dielectric spectroscopy.
     The cable samples were designed into the accelerated thermal aging and thermal-water aging test, and the samples at different aging condition were obtained, respectively. The frequency domain spectroscopy was mainly measured and compared with mechanical and chemical curves to find out internal relation, and the sensitive measurement range went hand in hand with degradation was obtained. The sensitive range of low frequency was determined from10-2Hz to1Hz, and the integral characteristics of frequency domain spectroscopy were analyzed. The results showed that the integral values of frequency domain spectroscopy had obviously temperature characteristics which were in accordance with the regulation of mechanical properties. Through by thermal-water aging testing, the relationship between degradation and frequency domain spectroscopy was estimated. The results showed that the integral values of frequency domain spectroscopy were better responded the degradation and moisture content of insulation lay a foundation for the thermal aging model foundation of frequency domain spectroscopy.
     By analyzing the experimental data of thermal aging testing, the integral values were chosen as the characteristics of aging equation. After the reference temperature was selected, the temperature conversion method was obtained by deducing the time multiplicative shift factor with the same characteristics value at different aging temperatures; combined with integral equation of the deterioration tendency under reference temperature, the aging model of integral of frequency domain spectroscopy was derived by comprehensively analyzing with temperature conversion. And then, the mutual influence function of multi-factor was derived and the aging equation was fixed. Theoretical analysis and measurement results showed that the method of dielectric spectroscopy in low frequency was accurate and had good prediction, and the effectiveness of aging equation was checked by the actual operation data.
     Due to the environment of low-voltage cables, complex environment factors were analyzed by using artificial neural network with good prediction, and the effection of multi-aging-factor of accelerated aging model and conductor temperature were built. The feed forward neural network with back propagation error of three-layer was proposed, and the predicted data was measured and analyzed by Matlab on the basis of measurement. According to measurement errors, the effectiveness of aging characteristics and the veracity of conductor temperature were deduced. The results proved that the frequency domain spectroscopy which was trained by Artificial Neural Network effectively reflected the degradation and accurately predicted the conductor temperature.
     The method was based on frequency dielectric spectroscopy at low frequency range to assess the degradation of low-voltage cables, can effectively reflect the aging characteristics, and quantitatively analyze the aging condition of low-voltage cables with rubber insulation, so that this nondestructive detection method can be applied to estimate low-voltage cables in field.
引文
[1]曲靖,郭剑波.“九五”期间我国电网事故统计分析[J].电网技术,2004,28(21):60-62.
    [2]王楠.电容型设备绝缘在线监测与故障诊断的研究[D].河北:华北电力大学,2004.
    [3]Jonscher A. K. Dielectric relaxation in solids [M]. London:Chelsea Dielectrics Press, 1983:273-277.
    [4]Jonscher A. K. Universal relaxation law [M]. London:Chelsea Dielectrics Press,1996: 178-184.
    [5]Daniel V. Dielectric relaxation [M]. London:Academic Press,1967:164-170.
    [6]Hill N. E., Vaughan W. E., Price A. H., et al. Dielectric properties and molecular behavior [M]. London:Van Nostrand Reinhold Company,1969:373-377.
    [7]Dissado L. A., Fothergill J. C. Electrical degradation and breakdown in polymers [M]. Londond:Peter Peregrinus,1992:271-285.
    [8]王星.海底电缆绝缘监测方法研究[D].武汉:华中科技大学,2009.
    [9]韩向明.船用低压电缆绝缘状态检测[D].大连:大连理工大学,2008.
    [10]胡钮林.电线电缆绝缘检测技术的研究[D].南京:东南大学,2004.
    [11]郑晓泉,屠德民,王国红.水树老化XLPE电缆绝缘的超低频响应研究[J].电线电缆,1999,(3):38-39.
    [12]Dang C. Some technical consideration on very low frequency cable diagnostic [C]. IEEE PES Transmission and Distribution Conference and Exposition, Dallas, Texas, USA,2003: 639-642.
    [13]龚李伟.电容型设备绝缘在线监测与智能化故障诊断研究[D].武汉:华中科技大学,2008.
    [14]International Engineering Consortium. IEC 60505-2011:Evaluation and Qualification of Electrical Insulation Systems [S], Geneva,2011:37-43.
    [15]Gulski E., Smit J. J., Wester F. J., et al. Condition assessment of high voltage power cables[C]. International Conference on Power System Technology, Singapore,2004: 1661-1666.
    [16]吕桂英,朱华,林安,等.高分子材料的老化与防老化评价体系研究[J].化学与生物工程,2006,(6):1-4.
    [17]王建庆.橡塑电力电缆现场绝缘试验分析与绝缘故障的预防[D].天津:天津大学,2009.
    [18]Densley J. Ageing mechanisms and diagnostics for power cables-an overview [J]. IEEE Electrical Insulation Magazine,2001,17(1):14-22.
    [19]Fothergill J. C., Montanari G. C., Stevens G. C. Electrical, microstructural, physical and chemical characterization of HV XLPE cable peelings for an electrical aging diagnostic data base [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2003,10(3): 514-527.
    [20]Fabiani D., Montanari G. C., Laurent C., et al. Polymeric HVDC cable design and space charge accumulation. Part 1:insulation/semicon interface [J]. IEEE Electrical Insulation Magazine,2007.23(6):11-19.
    [21]Delpino S., Fabiani D., Montanari G.C., et al. Polymeric HVDC cable design and space charge accumulation. Part 2:insulation interface [J]. IEEE Electrical Insulation Magazine,2008,24(1):14-24.
    [22]Fabiani D, Montanari G. C, Laurent C., et al. Polymeric HVDC cable design and space charge accumulation. Part 3:effect of temperature gradient [J]. IEEE Electrical Insulation Magazine,2008,24(2):5-14.
    [23]Lim F. N., Fleming R. J., Naybour R. D. Space charge accumulation in power cable XLPE insulation [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999,6(3):273-281.
    [24]Hozumi N., Takeda T., Suzuki H., et al. Space charge behavior in XLPE cable insulation under 0.2-1.2 MV/cmdc fields [J]. IEEE Transactions on Dielectrics and Electrical Insulation,1998,5(1):82-90.
    [25]Fu M., Chen G., Fothergill J. C. "Mirror Image Effect" space charge distribution in XLPE power cable under opposite stressing voltage polarity [C]. The 15th International Symposium on High Voltage Engineering (ISH), Beijing, China,2005:25-29.
    [26]Choo W., Chen G. Electric field determination in DC polymeric power cable in the presence of space charge and temperature gradient under dc conditions [C]. International Conference on Condition Monitoring and Diagnosis, Beijing, China, 2008:21-24.
    [27]Dissado L. A., Zadeh S., Fothergill J. C., et al. Temperature dependence of charge packet velocity in XLPE cable peelings [C]. Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, (CEIDP), Vancouver, Canada,2007:425-428.
    [28]Qi X. G., Boggs S. Thermal and mechanical properties of EPR and XLPE cable compounds [J]. Electrical Insulation Magazine,2006,22(3):19-24.
    [29]李咏今.天然橡胶硫化胶的热氧老化性研究[J].合成材料老化与应用,2006,35(2):21-23.
    [30]Kellar E., Williams G., Krongauz V.,.et al. Dielectric relaxation spectroscopy and molecular dynamics of a liquid-crystalline polyacrylate containing spiropyran groups [J]. Journal of Materials Chemistry,1991,1(3):331-337.
    [31]Ehsani M., Bakhshandeh G. R., Morshedian J. The dielectric behavior of outdoor high-voltage polymeric insulation due to environmental aging [J]. European Transactions on Electrical Power,2006,17(1):47-59.
    [32]王铁军.舰船电缆热老化寿命的研究[J].海军工程大学学报.2000,(1):76-79.
    [33]Sandelin M. J., Gedde U. W. Long-term performance of cables based on chlorosulphonated polyethylene [J]. Polymer Degradation and Stability,2004,86(2):331-338.
    [34]Hsu Y. T. Correlation between mechanical and electrical properties for assessing the degradation of ethylene propylene rubber cables used in nuclear power plants [J]. Polymer Degradation and Stability,2007,92(7)-.1297-1303.
    [35]Kim C., Jin Z. J., Jiang P. K., et al. Investigation of dielectric behavior of thermally aged XLPE cable in the high-frequency range [J]. Polymer Testing,2006,25(4)-.553-561.
    [36]Denardin E. L.G., Janissek P. R., Samios D. Time-temperature dependence of the thermo-oxidative aging of polychloroprene rubber:The time-temperature-transformation (TTT) superposition method and the lifetime prediction [J]. Thermochimica Acta, 2002,395(1-2,3):159-167.
    [37]Mathew A. P., Packirisamy S., Thomas S. Studies on the thermal stability of natural rubber/polystyrene interpenetrating polymer networks:thermogravimetric analysis [J]. Polymer Degradation and Stability,2001.27(3):423-439.
    [38]Kader M. A., Bhowmick A. K. Thermal ageing, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates [J]. Polymer Degradation and Stability,2003,79(2):283-295.
    [39]Yu H. P., Li S. D., Zhong J. P., et al. Studies of thermooxidative degradation process of chlorinated natural rubber from latex [J]. Thermochiraica Acta,2004,410(1-2): 119-124.
    [40]刘盖世.船用CXF型号电缆的绝缘老化实验以及寿命分析[D].大连:大连海事大学,2011.
    [41]土磊,钟成元.绝缘子泄露电流及其分析方法发展现状[J].电气开关,2011,(1):9-11.
    [42]Fukunaga K., Tan M., Takehana H. New partial discharge detection method for live UHV/EHV cable joints[J]. IEEE Transactions on Electrical Insulation,1992,27(3):669-674.
    [43]冯义,樊友兵,徐阳.电缆接头局部放电在线检测中的抗干扰研究[J].高电压技术,2006,32(7):61-63.
    [44]孙静.高压电力电缆局部放电检测技术研究[D].上海:上海交通大学,2012.
    [45]肖林华.电缆绝缘老化的诊断技术[J].价值工程.2012(13):37.
    [46]General Electric Energy Co. General condition assessment of XLPE and PILC cables [R]. USA, GE Energy,2005.
    [47]Zaengl W. S. Applications of dielectric spectroscopy in time and frequency domain for HV power equipment [J]. Electrical Insulation Magazine.2003,19(6):9-22.
    [48]Hernandez Me jia J. C., Perkel J., Harley R., et al. Correlation between Tan Δ diagnostic measurements and breakdown performance at VLF for MV XLPE cables [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2009,16(1):162-170.
    [49]Zaengl W. S. Dielectric spectroscopy in time and frequency domain for HV power equipment. I. Theoretical considerations [J]. Electrical Insulation Magazine,2003,19(5):5-19.
    [50]Hayward D., Gawayne M., Mahboubian-Jones B. Low-frequency dielectric measurements (104 to 6 X 104 Hz):a new computer-controlled method [J], Journal of Physics E:Scientific Instruments,1984,17(8):683-690.
    [51]Tokoro T., Nagao M., Kosaki M. Development of new method for measuring AC dissipation current in dielectric materials [J]. Electrical Engineering in Japan,1991,111(3): 1-9.
    [52]Kwaaitaal T., van den Eijnden W. M. M. M. A ratio transformer bridge for the measurement of low-loss tangents [C]. The 7th IEEE Instrumentation and Measurement Technology Conference, San Jose, USA,1990:20-26.
    [53]Farahani M., Borsi H., Gockenbach E. Dielectric response studies on insulating system of high voltage rotating machines [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2006,13(2)-.383-393.
    [54]Gilfvert U., Adeen L., Tapper M. Dilelectric spectroscopy in time and frequency domain applied to diagnostics of power transformers[C]. The Proceedings 6th International Conference Properties and Applications of Dielectric Materials, Xi'an, China,2000: 825-830.
    [55]袁泉.变压器油纸绝缘老化的频域介质响应试验及仿真研究[D].重庆:重庆大学,2010.
    [56]Nikolajevic, S. V. The behaviour of water in XLPE and EPR cables and its influence on the electric characteristics of insulation [J]. Power Delivery,1999,14(1):39-45.
    [57]Neimanis R. Diagnosis of moisture in oil/paper distribution cables Part I:estimation of moisture content using frequency-domain spectroscopy [J]. Power Delivery,2004, 19(1):9-14.
    [58]Helgeson A., Gafvert U. Dielectric response measurements in time and frequency domain on high voltage insulation with different response [C]. Proceedings of 1998 International Symposium on Electrical Insulating Materials, Toyohashi, Japan,1998: 393-398.
    [59]Shuzhen X., Middleton R., Fetherston F., et al. A comparison of return voltage measurement and frequency domain spectroscopy test on high voltage insulation [C]. 7th International Conference on Properties and Applications of Dielectric Materials, Nagoya, Japan,2003:351-355.
    [60]David E., Sami A., Soltani R. Low-Frequency dielectric response of epoxy-based polymer composites [C]. Annual Report Conference on Electrical Insulation and Dielectric Phenomena, (CEIDP), Quebec,2008:505-508.
    [61]Setayeshmehr A., Fofana I., Eichler C. Dielectric spectroscopic measurements on transformer oil-paper insulation under controlled laboratory conditions [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(4):1100-1111.
    [62]Hassan 0., Shyegani A. A., Borsi H., et al. Detection of oil-pressboard insulation aging with dielectric spectroscopy in time and frequency domain measurements [C]. Proceedings of the 2004 IEEE International Conference on Solid Dielectrics. Piscataway, USA,2004:665-668.
    [63]Saha T. K., Middleton R., Thomas A. Correlation between time and frequency domain polarisation measurements for transformer moisture assessment [C]. Australasian Universities Power Engineering Conference, Brisbane, Australia,2004:175-181.
    [64]Farahani M., Borsi H., Gockenbach E. Dielectric spectroscopy in time and frequency domain on insulation system of high voltage rotating machines [C]. Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, Piscataway, USA,2004:60-63.
    [65]Scarpa P. C. N., Svatik A., Das-Gupta D. K. Dielectric spectroscopy of polyethylene in the frequency range of 10-5 Hz to 106 Hz [J].Polymer Engineering and Science, 1996,36(8):1072-1080.
    [66]Fourmigue J. M., Parpal J. L., and Seguin J. N. Dielectric spectroscopy of XLPE cable insulation:comparison between time domain and frequency domain methods [C]. Proceedings of the 4th International Conference on Conduction and Breakdown in Solid Dielectrics, Sestri Levante,1992:235-240.
    [67]Kuschel M., Kalkner W. Dielectric response measurements in time and frequency domain of different XLPE homo and copolymer insulated medium voltage cables [J], Measurement and Technology,1999,146(5):243-248.
    [68]Oyegoke B., Hyvonen P., Aro M. Application of dielectric response measurement on power cable systems [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003,10(5)-.862-873.
    [69]Hvidsten S., Holmgren B., Adeen L., et al. Condition assessment of 12 and 24 kV XLPE cables installed during the 80s results from a joint norwegian/swedish research project [J]. Electrical Insulation Magazine,2005,21(6):17-23.
    [70]Werelius P. Development and application of high voltage dielectric spectroscopy for diagnosis of medium voltage XLPE cables [D]. Sweden Stockholm:Royal Institute of Technology (KTH),2001.
    [71]Herndndez-Mejia J. C., Harley R., Hampton N., et al. Characterization of ageing for MV power cables using low frequency Tan δ diagnostic measurements [J]. Dielectrics and Electrical Insulation,2008,16(3):1517-1525.
    [72]严璋.绝缘检测的专家系统及其综合诊断[J].吉林电力技术,1998(6):8-10.
    [73]Inoue H., Fukunaga Y., Narihisa H. Efficent hybird nerual net for chaotic time series prediction [C]. International Conference on Artificial networks, ICANN2001. Heidelberg:Springer public,2001:14-18.
    [74]王健石.电线电缆实用技术手册[M].北京:中国标准出版社,2004:284-306.
    [75]汪志远.电线电缆产品手册[M].北京:机械工业出版社,2005:184-194.
    [76]陈颜.浅析宁夏电网输电线路参数计算[J].宁夏电力,2007(1):5-7.
    [77]唐忠.面向金属护层的XLPE电力电缆故障特征及在线监测研究[D].武汉:华中科技大学,2009.
    [78]韩伟.电力电缆故障分析与测距研究[D].哈尔滨:燕山大学,2006.
    [79]马嘉.MATLAB6数学建模基础教程[M].北京:人民邮电出版社,2001:87-94.
    [80]蒋雄伟,贾志东,谢恒.绝缘材料老化寿命模型的研究进展[J].高电压技术,2000,26(3):44-46.
    [81]刘权江.单芯偏心电缆单位长度电容的计算[J].大学物理,2003,22(8):17-18.
    [82]Gafvert U. Dielectric response analysis of real insulation systems [C]. Proceedings of the 2004 IEEE International Conference on Solid Dielectrics. Piscataway, USA,2004.
    [83]Avellan A., Werelius P., Eriksson R. Frequency domain response of medium voltage XLPE cable terminations and its influence on cable diagnostics [C]. Conference Record of the 2000 IEEE International Symposium on Electrical Insulation, Anaheim,2000:2-5.
    [84]Ildstad E., Faremo H. Application of dielectric response measurements for condition assessment of service aged XLPE cables [C]. Conference on Electrical Insulation and Dielectric Phenomena. Austin, Texas,1999:122-127.
    [85]Heizmann T., Zaengl W. S. Influence of ageing on depolarization currents in polymer-insulated medium-voltage cables [C]. Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Knoxville, Tennessee,1991:324-329.
    [86]Hvidsen S., Ildstad E., Holmgren B., et al. Correlation between AC breakdown strength and low frequency and dielectric loss of water treed XLPE cables [J]. IEEE Transactions on Power Delivery,1998,13(1):40-45.
    [87]韦俊.介质损耗的分析和判断[J].贵州电力技术,2008(5):78-79.
    [88]Jonscher A. K. A new understanding of the dielectric relaxation of solids [J]. Journal of Materials Science,1981(16):2037-2060.
    [89]Helgeson A. Analysis of dielectric response measurements methods and dielectric properties of resin-rich insulation during processing [D]. Stockholm, Sweden:Royal Institute of Technology (KTH),2000.
    [90]Farahani M., Borsi H., Gockenbach E. Dielectric response studies on insulating system of high voltage rotating machines [J]. Dielectrics and Electrical Insulation.2006,13 (2):383-393.
    [91]Hamon B.V. An approximate method for deducing dielectric loss factor from direct-current measurements [J]. Power Engineering,1952,99(69):151-155.
    [92]Bernier S., Parpal J. L., David E., et al. Dielectric response of laboratory aged PE cables[C]. Electrical Insulation, SEI 2008, Conference Record of the 2008 IEEE International Symposium,2008:645-649.
    [93]Potvin C., Jean D., Lalancette D., et al. Diagnostic testing of MV accessories by time domain spectroscopy (TDS) [C]. Internationnal Conference on Insulated Power Cables, JICABLE, Versailles, France,2007:867-872.
    [94]Blythe A. R., Bloor D. Electrical Properties of Polymers [M]. United Kingdom:Cambridge University Press,2005:171-186.
    [95]Tumanski S. Principles of electrical measurement [C]. Boca Raton:The Chemical Rubber Company Press,2006:99-101.
    [96]Runt J. P., Fitzgerald J. J. Dielectric spectroscopy of polymeric materials: fundamentals and applications [M]. The United States:American Chemical Society Press, 1997:274-288.
    [97]Richert R. A simple current-to-voltage interface for dielectric relaxation measurements in the range 10-3 to 107 Hz [J]. Review of Scientific Instruments, 1996,67(9):3217-3221.
    [98]刘权江.单芯偏心电缆单位长度电容的计算[J].大学物理,2003,22(8):17-18.
    [99]胡文军,刘占芳,陈勇梅.橡胶的热氧加速老化试验及寿命预测方法[J].橡胶工业,2004,51:620-624.
    [100]李昂.橡胶的老化与寿命估算(续)[J].橡胶参考资料,2009,39(4):29-71.
    [101]Anandakumaran K., Seidl W., Castaldo P. V. Condition assessment of cable insulation systems in operating nuclear power plants [J]. Dielectrics and Electrical Insulation. 1999.6(3):376-384.
    [102]Guo T. C, Guo W. W. A transient-state theory of dielectric relaxation and the Curie-von Schweidler law [J]. Journal of Physics C:Solid State Physics,1983,16(10):1955-1960.
    [103]KTH Masters Diploma Work, ABB Corp. Comparison between time domain and frequency domain methods for dielectric measurements on oil impregnated cellulose[R]. Res Report SECR/KH/TR,1995.
    [104]Helgeson A. Dielectric properties of machine insulation studied with dielectric response [D]. Stockholm, Sweden:Royal Institute of Technology,1997.
    [105]Neimanis R. Dielectric diagnostics of oil-pager insulated current transformers [D]. Gothenburg, Sweden:Chalmers University of Technology,1997.
    [106]Mopsik F.I. The transformation of time-domain relaxation data into the frequency domain [J]. IEEE Transactions on Electrical Insulation,1985,20(6):957-964.
    [107]Zaharescu T., Giurginca M., Jipa S. Radiochemical oxidation of ethylene-propylene elastomers in the presence of some phenolic antioxidants [J]. Polymer Degradation and Stability,1999,63 (2):245-251.
    [108]Scheirs J., Bigger S. W., Billingham N. C. A review of oxygen uptake techniques for measuring polyolefin oxidation [J]. Polym Testing,1995,14(3):211-241.
    [109]Mpatel. Ageing & characterization of polysiloxane rubbers [J]. Ageing studies and lifetime extension of materials.1999, (4):97-101.
    [110]张苹,兰蕙萍,唐学明.1,2—聚丁二烯硫化胶的热氧老化性能及其防护体系的研究[J].高分子材料科学与工程,1989,(6):55-60.
    [111]谭亮红,董理,林达文.CR硫化胶老化过程中热性能和动态力学性能变化的研究[J].橡胶工业,2005,52(4):244-246.
    [112]徐杰,杜宝石,王文祥.由DTG曲线确定反应级数的新方法[J].物理化学学报,1991,7(6):730-734.
    [113]Neimanis R., Saha T. K., Eriksson R. Determination of moisture content in mass impregnated cable insulation using low frequency dielectric spectroscopy [C]. Power Engineering Society Summer Meeting, Seattle, Washington,2000:463-468.
    [114]Neimanis R., Eriksson R., Papazyan R. Diagnosis of moisture in oil/paper distribution cables-Part II:water penetration in cable insulation-experiment and modeling [J]. Power Delivery,2004,19(1):15-20.
    [115]朱立群,黄慧洁,杨飞,等.天然橡胶硫化胶在中性盐雾环境下的老化大效研究[C].全国第五届航空航天装备失效分析会议,浙江,宁波,2006:400-403.
    [116]Gjarde A. C. Mutifactor ageing models-origin and similarities [J]. Electrical Insulation Magazine,1997,13(1):6-13.
    [117]焦李成.神经网络系统理论[M].西安:电子科技大学出版社,1995:1-150.
    [118]高志文.人工神经网络的发展、研究内容及应用综述[J].山东电子,1998,(4):3-6.
    [119]张庆超,段晖,耿超,等.基于小波神经网络的输电线路故障检测[J].天津:天津大学学报,2003,36(6):710-713.
    [120]惠学军,李训铭.基于小波神经网络的小电流接地系统单相接地故障定位研究[D].南京:河海大学,2002.
    [121]姚志.船用电缆绝缘老化的研究[D].大连:大连理工大学,2008.
    [122]雷成华,刘刚,李钦豪.BP神经网络模型用于单芯电缆导体温度的动态计算[J].高电压技术,2011,37(1):184-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700