用户名: 密码: 验证码:
核电站数字化控制系统可靠性评价方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核电站的数字化控制系统是整个电站安全运行不可或缺的重要组成部分。它在电站的整个寿期内,要对电站进行全天候地监控以及保护,使之能够安全、稳定、高效地运行。一个安全可靠的控制系统,所带来的不仅仅是经济效益,还有巨大的社会效益(只有安全稳定运行的核电站才会得到民众的认可)。近年来,随着数字技术广泛地应用于核电站控制,数字化控制系统已然成为了发展的主流。数字化控制系统作为核电站控制的“神经中枢”,其任何一个环节出现问题,都有可能导致控制系统部分功能失效或引发整体系统故障,最终引发反应堆停堆、汽机脱扣等安全动作,这将极大地影响电站的经济效益;甚至还有可能导致堆芯损毁、放射性物质释放到环境中等极限事故,最终危及到公众安全。所以说,对数字化控制系统进行可靠性评价至关重要。由于数字化控制系统自身的复杂性,提出一套用于评价数字化控制系统可靠性的有效方法体系意义重大。
     随着人们对概率风险评价方法研究的深入,国内外的多家科研机构开始尝试着采用不同的方法对核电站数字化控制系统的可靠性进行评价。由于各个研究团体的切入角度,以及想要解决的问题不同,造成了目前的评价方法虽然针对性强,但普遍具有局限性,难以量化,与工程实际衔接不紧的问题,所以还无法形成一整套既有理论支撑,又能面向工程应用的完整评价体系。基于上述原因,本课题在充分调研的基础上,进行了如下研究:
     首先,本文改变了以往按物理设备分层的思路,从功能分层的角度出发(这是因为可靠性的定义强调的就是首先完成指定功能),把原有的系统、单元、模件、元件四层结构,变为了系统、微系统和基本单元三层结构。因为,这样做不仅更易于对各个层次进行可靠性评价,而且还能为数字化控制系统的可靠性评价建立起一套新的方法体系与思路。然后,本文借鉴了机械设备可靠性评价的经典模型——强度-载荷模型,根据数字化设备失效的特点,即多种冲击共同作用产生失效,而非设备的单一冲击多次作用产生失效,对其进行了拓展,形成了适用于数字化控制系统可靠性评价的广义无量纲强度-载荷模型。并在该模型的基础上,提出了动态模型和考虑共因失效的模型。考虑到工程应用的需要,在失效率已知的情况下,对多故障冲击模型(MESH)进行了改进。最后,本文以功能分层思想和广义无量纲强度-载荷模型为基础,以工程实际应用为导向,以工程设计文件——系统网络结构图为输入,建立了一套图形化的建模方法,即基于功能分层的系统网络结构图分析法。本文还为该方法定义了图符和基本概念,同时设计了计算步骤,并用一套真实的电厂数字化控制系统为对象进行了验证。
     本文提出的按功能分层评价的思路,给出了一套完整有效的数字化控制系统可靠性评价的方法体系。而广义无量纲强度-载荷模型的提出解决了数字化设备容易遭受多种类型载荷共同作用失效的问题,以及失效率未知情况下的共因失效问题。对失效率未知的情况,本文对原有的多故障冲击模型(MESH)进行了改进,较好的解决了该问题。本文最后还结合工程实际,把上述模型与系统网络结构图分析法相结合,解决了工程上实际的数字化控制系统可靠性评价问题。
Nuclear power plant control system is the indispensable important component for plant safe operation. In the whole life cycle of the plant, it is charge to monitor and protect the station, and make it safe, stable, efficient operate. A safe and reliable control system, is not only brought about by the economic benefits, there is a huge social benefit (only the safe and stable operation of the nuclear power plant will be public recognition). In recent years, along with the digital technology has been widely used in nuclear power plant control, digital control system has become the mainstream of development. Digital control system for nuclear power plant control "nerve center", its a part of any problems, are likely to lead to the part of control system failure or cause a system failure, eventually led to the reactor shutdown, turbine trip safety action, this will greatly affect the economic benefits of the power station; they may even lead to core damage, release of radioactive material into the environment medium ultimate accident, ultimately endanger public security. Therefore, the digital control system reliability evaluation is crucial. Due to the complexity of digital control system, it is great significance to put forward a set of effective methodology for evaluation of digital control system reliability.
     Along with the people study the PSA methods in-depth, a lot of domestic and foreign research institutions began to try different approaches to the nuclear plant digital control system reliability evaluation. Due to various research perspective, and need to resolve different issues, resulting in the current evaluation method, although targeted, but generally have limitations, it is difficult to quantify, and applying in engineer, so it is unable to form a complete set of both theoretical support, and can complete evaluation system for engineering application. Based on the above reasons, this paper on the basis of investigation, to do the following research:
     First of all, in this paper, a previous thought of system layering according to the physical equipments has been changed, system layering according to the function is used (reliability definition emphasizes the completion of a specified function). And the original system, unit, module, and element four layers structure, has been changed into the system, classical systems and basic unit consisting of three layers structure. In this way, it is more easy to do reliability evaluation for every layer, and finally get the whole system reliability evaluation results. A new methodology for digital control system reliability evaluation is provided. Then, this paper draws on the reliability of mechanical equipment evaluation model:strength-load model. And according to the digital equipment failure characteristics, namely multiple impact caused failure, rather than a single impact by multiple, a new kind of digital control system reliability evaluation model:generalized dimensionless strength-load model is put forward. And on the basis of the model, the dynamic model and considering the common cause failure model are also put forward. Considering the need of engineering application, the failure rate is known, the multi-fault impact model (MESH) is improved. Finally, based on functional hierarchical thought and generalized dimensionless strength-load model as the foundation, to the practical engineering application oriented, with engineering design documents:system network structure diagram as input, a set of graphical modeling method is established, namely the system network structure diagram analysis method. based on function layer. This paper also provide the self-defined symbol and basic concept for the method, while the design of the calculation procedure, and useing a real power plant as the research object.
     This paper puts forward new diea:based on functional hierarchical, and a complete set of effective digital control system reliability evaluation is presented. General dimensionless strength-load model is proposed to solve the problems of digital equipment which is easy to suffer from multiple types of loads, and common cause failure model under the condition of failure rate unknown. When the failure rate is unknown, the original fault impact model (MESH) is improved, betterly solves the problem. Finally, combined with the engineering practice, combining the model and system network structure diagram analysis method, the engineering actual digital control system reliability evaluation is resolved.
引文
[1]William M. Goble. Control Systems Safety Evaluation and Reliability [M]. The 3rd edition. U.S.:Instrument Safety Association,2010.
    [2]王常力,罗安。分布式控制系统(DCS)设计与应用实例[M]。北京:电子工业出版社,2004。
    [3]IAEA. Instrumentation and Control (I&C) Systems in Nuclear Power Plants: A Time of Transition [R]. Pennsylvania,2010.
    [4]K.Korsah, M.D. Muhlheim, and D.E. Holcomb. Industry Survey of Digital I&C Failures [M]. U.S.:Nuclear Regulatory Commission, May 2007.
    [5]Geddes, B. Torok, R. Digital I&C Operating Experience in the US [J]. TRANSACTIONS AMERICAN NUCLEAR SOCIETY,2008,98(1):299-302
    [6]Brill, R. W. Instrumentation and Control System Failures in Nuclear Power Plants[C].International Symposium on Software Reliability Engineering, 2000,1,327-335.
    [7]Bickel J.H., Risk implications of digital reactor protection system operating experience [J] Reliability Engineering and Systems Safety,2008, 93(1):66-73.
    [8]T.-L. Chu, et al. NUREG/CR-6962:Traditional Probabilistic Risk Assessment Methods for Digital Systems [M]. U.S.:Nuclear Regulatory Commission, 2008.
    [9]T.-L. Chu, et al. NUREG/CR-6997:Modeling Digital Feed water Control System Using Traditional Probabilistic Risk Assessment Methods [M]. U.S.: Nuclear Regulatory Commission,2008.
    [10]Jason Kirschenbaum, Paolo Bucci, Michael Stovsky, et al. A Benchmark System for Comparing Reliability Modeling Approaches for Digital Instrumentation and Control Systems [J]. American Nuclear Society (ANS) Nuclear Technology Journal,2009,165(1):53-95.
    [11]M. Yue, et al. Complex system reliability modeling with Dynamic Object Oriented Bayesian Networks (DOOBN) [J].Reliability Engineering and Systems Safety,2007,92(3):276-288.
    [12]T. Aldemir, D.W. Miller, M.P. Stovsky, et al. NUREG/CR-6901:Current State of Reliability Modeling Methodologies for Digital Systems and Their Acceptance Criteria for Nuclear Power Plant Assessments [M]. U.S.:Nuclear Regulatory Commission,2006.
    [13]T. Aldemir, S. Guarro, J. Kirschenbaum, et al. NUREG/CR-6985:A Benchmark Implementation of Two Dynamic Methodologies for the Reliability Modeling of Digital Instrumentation and Control Systems [M]. U.S.:Nuclear Regulatory Commission,2009.
    [14]T. Aldemir, M.P. Stovsky, J. Kirschenbaum, et al. NUREG/CR-6942: Dynamic Reliability Modeling of Digital Instrumentation and Control Systems for Nuclear Reactor Probabilistic Risk Assessments [M]. U.S.: Nuclear Regulatory Commission,2007.
    [15]Office of Nuclear Regulatory Research.NURGE/CR-1150:Reactor Risk Reference Document [M]. U.S:Nuclear Regulatory Commission,1987.
    [16]A. Milici, R. Mulvihill, S. Guarro. NUREG/CR-6710:Extending the Dynamic Flow graph Methodology (DFM) to Model Human Performance and Team Effects. U.S.:Nuclear Regulatory Commission,2001.
    [17]Yi Zhang, Rangavajhala, S., McDonald, M.P., et al. A Probabilistic approach for representation of interval data [J]. Reliability Engineering and System Safety,2011,96(l):117-130.
    [18]C. Garrett, G. Apostolakis. Automated hazard analysis of digital control systems [J]. ReliabEngSyst Safety 77,2002,26(1):1-17.
    [19]Chris J. Garrett, Chris J. Garrett. Risk-informed design guidance for future reactor systems [J]. Nuclear Engineering and Design,2005,235(14):1537-1556.
    [20]John H. Bickel. Risk implications of digital reactor protection system operating experience [J]. Reliability Engineering and System Safety,2008, 93(1):107-124.
    [21]L.M. Kaufman, B.W. Johnson. NUREG/GR-0020:Embedded Digital System Reliability and Safety Analyses [M]. U.S.:Nuclear Regulatory Commission, 2001.
    [22]L. Xing, A. Shrestha. Distributed Computer Systems Reliability Considering Imperfect Coverage and Common-Cause Failures [C]. Proc. of the 1st IEEE Workshop on Reliability and Autonomic Management in Parallel and Distributed Systems, Japan:Springer,2005:1073-1088.
    [23]National Energy Association. NEA/CSNI/R (2009)18:Recommendations on assessing digital system reliability in probabilistic risk assessments of nuclear plants. U.S.:NEA,2009.
    [24]JongGyun Choi, Poong Hyun Seong. Reliability assessment of embedded digital system using multi-state function [J]. Reliability Engineering and System Safety,2006,91(3):261-269.
    [25]Seung Ki Shin, Poong Hyun Seong, A quantitative assessment method for safety-critical signal generation failures in nuclear power plants considering dynamic dependencies [J]. Annals of Nuclear Energy,2011,38(2-3):269-278.
    [26]Suk Joon Kim, Poong Hyun Seong, Jun Seok Lee. A method for evaluating fault coverage using simulated fault injection for digitalized systems in nuclear power plants [J]. Reliability Engineering and System Safety,2006, 91(5):614-623.
    [27]SeDo Sohn. Quantitative evaluation of safety critical software testability based on fault tree analysis and entropy [J]. Journal of Systems and Software, 2004,73(2):351-360.
    [28]PoongHyun Seong, Jong Hyun Kim, The effect of information types on diagnostic strategies in the information aid [J]. Reliability Engineering and System Safety,2007,92(2):171-186.
    [29]Hyun Gook KANG, Jun Seok Lee, Man Cheol Kim. Evaluation of error detection coverage and fault-tolerance of digital plant protection system in nuclear power plants [J]. Annals of Nuclear Energy,2006,33(6):544-554.
    [30]Hyun-Kook Shin, Aldemir, T. Arndt, S. A. Digital Control System Reliability-Issues Related to the Modeling of Process Dynamics [J]. TRANSACTIONS- AMERICAN NUCLEAR SOCIETY.2005,92(3): 417-421.
    [31]Bernhard Kaiser, Sknourilova, P., Bris, R. Colored Petri Nets and a dynamic reliability problem [J], Journal of Risk and Reliability,2007,51(11):91-99.
    [32]Marc F6rster,Martin Schonbecka, Marvin Rausanda. Human and organisational factors in the operational phase of safety instrumented systems: A new approach. Safety Science,2010,48(3):310-318.
    [33]Wolfgang Weber, Suprasad V. AmariDynamic dependability models:an overview [C]. Proceedings of the First Workshop on Dynamic Aspects in Dependability Models for Fault-Tolerant Systems, U.S.:Springer,2007: 1373-1388.
    [34]H.D. Fischer, H. Roth-Seefrid, Advanced information systems to enhance operational safety [J]. Reliability Engineering and System Safety,1988,22(2): 91-106.
    [35]Sungwhan Cho, Jin Jiang. Analysis of surveillance test interval by Markov process for SDS1 in CANDU nuclear power plants [J]. Reliability Engineering and System Safety,2008,93(1):91-13.
    [36]Ahmad W. Al-Dabbagh, Lixuan Lu. Dynamic flow graph modeling of process and control systems of a nuclear-based hydrogen production plant [J]. International Journal of Hydrogen Energy,2010,35(18):9569-9580.
    [37]Ilkka Karanta, Matti Maskuniitty, Jan-Erik Holmberg. Reliability analysis of digital I&C systems in nuclear power plants-with the dynamic flow graph methodology [C]. SAFIR2010 interim seminar,2010,3,339-351.
    [38]Matti Koskimies, Keijo Heljanko, Ilkka Niemela. NPP Safety Automation Systems Analysis State of the Art [M]. Finland:Helsinki University of Technology TKK,2008.
    [39]John Eidar Simensen, Christian Gerst, Bj(?)rn Axel Gran, et al. Establishing the Correlation between Complexity and a Reliability Metric for Software Digital I&C-Systems [C]. Proceeding SAFECOMP '09 Proceedings of the 28th International Conference on Computer Safety, Reliability, and Security, 2009,6,79-91.
    [40]Enrico Zio, Piero Baraldi, Edoardo Patelli. Assessment of the availability of an offshore installation by Monte Carlo simulation [J]. International Journal of Pressure Vessels and Piping,2006,83(4):312-320.
    [41]Florent Brissaud, Carol Smidts, Anne Barros. Dynamic Reliability Modeling of Cooperating Digital-Based Systems. European Safety and Reliability Conference, ESREL 2009, Rhodes:Grece,2010,4,11-27.
    [42]P.V. Varde, S. Sankar, A.K. Verma. An operator support system for research reactor operations and fault diagnosis through a connectionist framework and PSA based knowledge based systems. Reliability Engineering and System Safety,1998,60(1):53-69.
    [43]Hui-Wen Huang, Li-Hsin Wang, Ben-Ching Liao, et al. Software safety analysis application of safety-related I&C systems in installation phase [J]. Progress in Nuclear Energy,2011,53(6):736-741.
    [44]周海翔。核电厂数字化反应堆保护系统结构与可靠性研究[D]。哈尔滨:哈尔滨工程大学,2007。
    [45]周海翔,王卫国。田湾核电站数字化反应堆保护系统可靠性分析[J]。核电子学与探测技术,2009,29(6):21-26。
    [46]周海翔,徐玮瑛。三代核电机组数字化仪控系统及其国产化分析[J],自动化仪,2010,31(8):40-46。
    [47]周海翔。田湾核电站安全仪控系统(TXS系统)失效概率估算[J],核科学与 工程,2007,27(1):52-57。
    [48]周海翔。田湾核电厂数字化反应堆保护系统故障模式与后果分析[J],原子能科学与技术,2009,41(6):15-21。
    [49]刘冲。核电站反应堆棒控棒位控制系统数字化软硬件设计及其可靠性研究[D]。湖南,南华大学,2010。
    [50]余少杰,赵军,童节娟。DFM在人员可靠性分析中的应用[J],核动力工程,2011,32(3):77-82。
    [51]E. Zio, F. Di Maio. Processing Dynamic Scenarios from a Reliability Analysis of a Nuclear Power Plant Digital Instrumentation and Control System [J], Annals of Nuclear Energy,2009,72(6):1091-1200.
    [52]Philippe Weber, Lionel Jouffe. Complex system reliability modeling with Dynamic Object Oriented Bayesian Networks (DOOBNs) [J], Reliability Engineering and System Safety,2006,91 (7):149-162.
    [53]Zhu D, Mosleh A, Smidts C. A framework to integrate software behavior into dynamic probabilistic risk assessment [J], Reliability Engineering & System Safety,2007,92(12),1733-1755.
    [54]Weber Philippe, Jouffe Lionel. Complex system reliability modeling with Dynamic Object Oriented Bayesian Networks. Reliability Engineering and System Safety,2006,91(2):149-162.
    [55]Nejad-Hosseinian, Seyed Hamed. Automatic Generation of Generalized Event Sequence Diagrams for Guiding Simulation Based Dynamic Probabilistic Risk Assessment of Complex Systems [D].U.S., University of Maryland,2007.
    [56]Jae Whan Kim. Reliability and Risk Issues in Large Scale Safety-critical Digital Control Systems [M]. U.S.:Springer London.2008
    [57]史东亮。田湾核电站数字化仪控系统应用情况交流[R]。北京:中国核能行业协会,2011。
    [58]Zaman, k., Rangavajhala, S., McDonald, M.P., et al. A Probabilistic approach for representation of interval data [J]. Reliability Engineering and System Safety,2011,96(1):117-130.
    [59]Zaman. K, Rangavajhala. S, McDonald. PM., et al. A probabilistic approach for representation of interval uncertainty [J], Reliability Engineering and System Safety,2009,63(9):119-131
    [60]J.C. Helton, J.D. Johnson, W.L. Oberkampf, et al. Representation of analysis results involving aleatory and epistemic uncertainty [J], Safety Science,2008, 46(6),631-638.
    [61]J.C. Helton, J.D. Johnson, W.L. Oberkampf, et al. Representation of analysis results involving aleatory and epistemic uncertainty [M]. Technical Report 4379:Sandia National Laboratories,2008.
    [62]Kwang-II Ahn, Joon-Eon Yang. The Explicit Treatment of Model Uncertainties in the Presence of Aleatory and Epistemic Parameter Uncertainties in Risk and Reliability Analysis [J]. Journal of the Korean Nuclear Society,2003,35(1):64-79.
    [63]Kornecki. Safety of computer control systems:challenges and results in software development [J], Annual Reviews in Control,2003,27(1):23-37.
    [64]Yuan-Shun Dai, Min Xie, Quan Long. Uncertainty Analysis in Software Reliability Modeling by Bayesian Approach with Maximum-Entropy Principle [J]. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2007,33(11):781-794.
    [65]Martin Schonbecka, Marvin Rausanda, and Jan Rouvroye. Human and organizational factors in the operational phase of safety instrumented systems: A new approach [J]. Safety Science,2010,48(3),310-318.
    [66]Kim M C, Seong P H. Computational method for probabilistic safety assessment of I&C systems and human operators in nuclear power plants [J]. Reliability Engineering and System Safety,2006,91(6),833-892.
    [67]Lixuan LU, Jin JIANG. Probabilistic Safety Assessment for Instrumentation and Control Systems in Nuclear Power Plants:An Overview [J]. Journal of NUCLEAR SCIENCE and TECHNOLOGY,2004,41(3):323-330.
    [68]曾声奎。系统可靠性设计分析教程[M]。北京:北京航天航空大学出版社,2006年。
    [69]邹桂根。机电一体化系统可靠性设计[M]。上海:上海交通大学出版社,1996年。
    [70]曾声奎,王自为。可靠性设计与分析[M]。北京:国防工业出版社,2011年。
    [71]蒋仁言,左明健。可靠性模型和应用[M]。北京:机械工业出版社,1999年。
    [72]陈希孺。概率论与数理统计[M]。北京:科学出版社,2000年。
    [73]蒋仁言。威布尔模型族:特性、参数估计和应用[M]。北京:科学出版社,1998年。
    [74]D.N.P. Murthy, Min Xie, R. Jiang. Weibull Models [M]. New Jersey:John Wiley & Sons, Hoboken,2003.
    [75]R. Jiang, D.N.P. Murthy. Maintenance:Decision Models for Management [M]. Beijing:Chinese Science Press,2008.
    [76]刘继春,王晔,汪富强。集散控制系统在岭澳核电站中应用[J],电力自动化设备,2010,30(6):105-110。
    [77]Lewis E. A load2capacity interference model for common mode failures in 1-out-of-2:G systems [J]. IEEE Transaction on Reliability,2001,50 (1):47-51.
    [78]Dilip R, Tanmoy D. A Discrediting Approach for Evaluating Reliability of Complex Systems under Stress-strength Model [J]. IEEE Tansaction on Reliability,2001,50 (2):145-150.
    [79]Li Jiping, Thompson G. A Method to Take Account of In-homogeneity in Mechanical Component Reliability Calculations [J]. IEEE Transaction on Reliability,2005,54 (1):159-168.
    [80]胡泽民,徐仁佐。非齐次泊松过程模型的参数计算方法[J],武汉大学学报,1995,41(31):321-325。
    [81]陈凤腾,左洪福,王华伟,等。基于非齐次泊松过程的航空备件需求研究和应用[J],系统工程与电子技术,2007,29(9):1585-1588。
    [82]P.R.Bouzas, M.J.Valderrama, A.M. Aguilera. On the characteristic functional of a doubly stochastic Poisson process:Application to a narrow-band process [J]. Applied Mathematical Modelling,2006,30(9):1021-1032.
    [83]P.R.Bouzas, M.J.Valderrama, A.M. Aguilera. Modeling the mean of a doubly stochastic Poisson process by functional data analysis [J].Applied Mathematical Modelling,2006,50(10):2655-2667.
    [84]Barros A, Grall A, Vasseur D. Estimation of common cause failure parameters with periodic tests [J]. Nuclear Engineering and Design,2009, 239(6):761-768.
    [85]Ramirez-Marquez JE, Coit DW. Optimization of system reliability in the presence of common cause failures [J]. Reliability Engineering and System Safety,2007,92(10):1421-1434.
    [86]Li CY, Chen X, Yi XS, Tao JY. Heterogeneous redundancy optimization for Multi-state series-parallel systems subject to common cause failures [J]. Reliability Engineering and System Safety,2010,95(2):202-7.
    [87]Vaurio JK. Common cause failure probabilities in standby safety system fault tree analysis with testing-scheme and timing dependencies [J]. Reliability Engineering and System Safety,2003,79(1):43-57.
    [88]Vaurio JK. Consistent mapping of common cause failure rates and alpha factors [J]. Reliability Engineering and System Safety,2007,92(5):628-645.
    [89]Li-yang X, Jin-yu Z, Xue-min W. Data mapping and the prediction of common cause failure probability [J]. IEEE Transactions on Reliability,2005, 54(2):291-296.
    [90]Vaurio JK. Extensions of the uncertainty quantification of common cause failure rates [J]. Reliability Engineering and System Safety,2002,78(1): 63-69.
    [91]Vaurio JK. Uncertainties and quantification of common cause failure rates and probabilities for system analyses [J]. Reliability Engineering and System Safety,2005,78(1):186-195.
    [92]谢里阳,林文强。共因失效概率预测的离散化模型[J],核科学与工程,2002,22(2):186-192。
    [93]金星,洪延姬,杜红梅。共因失效系统的可靠性分析方法[M]。北京:国防工业出版社,2002年。
    [94]吴红梅等。复杂系统脆性理论的风险分析[J],系统工程与电子技术,2008,30(10):101-107。
    [95]韦琦等。基于脆性的复杂系统崩溃的初探[J],哈尔滨工程大学学报,2003,24(2):51-58。
    [96]董秀媛,宋好卫,田熠斌。若干共因失效基本模型的分析[J],北京理工大学学报,2000,20(2):145-149。
    [97]吴继伟。MGL法在共因失效分析中的应用[J],核动力工程,1988,9(3):38-42。
    [98]SATYANARAYANA A, HAGSTROM J N. A new algorithm for the reliability analysis of Multi-Terminal networks [J]. IEEE Transactions on Reliability,1981, R-30(4):325-334.
    [99]SATYANARAYANA A. A unified formula for analysis of some network reliability problems [J]. IEEE Transactions on Reliability,1982,31(1):23-32.
    [100]Zhao Lian-Chang, Kong Fan-Jia. A new formula and an algorithm for reliability analysis of networks [J]. Microelectron. Reliab.1997, 37(3):511-518.
    [101]GOPAL CHAUDHURI, KUOLUNG HU, Nader Afshar. A new approach to system reliability [J]. IEEE Transactions on Reliability,2003,50(1):75-84.
    [102]SURESH RAI, MALATHI VEERARAGHAVAN. A survey of efficient reliability computation using disjoint products approach [J]. Networks,1995, 25(3):147-163.
    [103]金星等,大型网络系统可靠度计算新方法[J],系统仿真学报,2001,13(4):432-433。
    [104]姜震等,实时网络系统可靠性建模研究[J],航空学报,2004,25(3):412-417
    [105]CHATELET E, DUTUIT Y, RAUZY A, ET AL. An optimized procedure to generate sums of disjoint products [J]. Reliability Engineering and System Safety, 1999,65(3):289-294.
    [106]Yeh Wei-Chang. An improved sum-of-disjoint-products technique for the symbolic network reliability analysis with known minimal paths [J]. Reliability Engineering and System Safety,2007,92(2):260-268.
    [107]SINGH H, VAITHILINGAMAND S, ANNE R K. Terminal Reliability Using Binary Decision Diagrams [J]. Microelectron Reliab,1996,36(3): 363-365.
    [108]Kuo Sy-Yen, Lu Shyue-Kung, Yeh Fu-Min. Determining Terminal-Pair Reliability Based On Edge Expansion Diagrams Using OBDD [J]. IEEE Transactions on Reliability,1999,48(3):234-246.
    [109]金星,洪延姬。工程系统可靠性数值分析方法[M]。北京:国防工业出版社,2008年。
    [111]JOHAMNES U. HERRMANN, SIETENG SOH. A memory efficient algorithm for network reliability[C]. Proceedings of the 15th Asia-Pacific Conference on Communications,2009, Curtin University of Technology, Perth, Australia.
    [112]SUPRASAD V AMARI, Performability analysis of multi state computing systems using multivalued decision diagrams [J]. IEEE Transactions on Computers,2010,59(10):1419-1434.
    [113]SHRESTHA. Decision diagram based methods and complexity analysis for multi-state systems [J]. IEEE Transactions on Reliability,2010,59(1):145-162.
    [114]Lui H., Yang W T, Lui C. An improved Boolean algebra method for computing the network reliability [J]. Microelectron. Reliab.1992,32(10):1401-1419.
    [115]章文捷,沈元隆。一种最少不交和算法[J],南京邮电学院学报:自然科学版,1999(4):20-25。
    [116]曹晋华,程侃。可靠性数学引论[M]。北京:高等教育出版社,2006。
    [117]刘文。布尔代数[M]。第二版,北京:高等教育出版社,1981。
    [118]Saglietti, Francesca, Oster, Norbert. Computer Safety, Reliability, and Security [M]. Berlin/Heidelberg:Springer,2007。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700