用户名: 密码: 验证码:
Glidcop材料疲劳特性及同步辐射挡光元件的热疲劳寿命研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大科学装置是为解决重大科技中基础性、前瞻性的问题而投资兴建的基础科学研究和多学科交叉研究的公共平台,对促进经济社会全面、协调、可持续发展和国家安全有着重要作用。大科学装置中的关键零部件经常处于高温、高压和强辐射的极端环境中,承受着疲劳载荷,容易发生疲劳破坏,在设计阶段就需要重视疲劳破坏问题。
     坐落于我国上海的同步辐射光源是一台高性能的大科学装置,电子存储环设计能量位居世界第四。装置中介于存储环和光束线之间的一段光路称为前端区。前端区内的挡光元件,具有吸收同步辐射大部分高热负载的作用。挡光元件的设计面临第三代同步辐射极高功率密度的问题,目前常用的静强度设计方法虽然暂时解决了这一问题,但不够经济合理,而面对未来更高的要求还需要提出新的设计方法。
     本文针对上海光源的前端挡光元件设计问题,结合所在课题组承担的国家自然科学基金项目"Glidcop受同步辐射高热负载的疲劳失效机理研究”,对Glidcop材料的低周疲劳性能及挡光元件的热疲劳寿命评估展开研究,探索有限寿命的疲劳设计方法,采用了实验测试、数值模拟和理论建模相结合的研究方法。主要内容包括:
     1.总结了Glidcop材料的热物性参数随温度变化的特性。实验测试了材料在不同温度下的应力应变关系,获得了其弹塑性本构关系;进而研究了材料的低周疲劳性能,建立了不同温度下表征材料疲劳寿命的总应变-寿命关系。对Glidcop和第一、二代同步辐射装置常用材料无氧铜的力学性能进行全面对比,分析各自的优劣势,为两种材料的选择与使用提供依据。
     2.针对较多研究Glidcop的宏观低周疲劳性能,而对材料微裂纹起裂和扩展行为却鲜有研究的现象,设计了表面加工微孔的疲劳试样进行应力控制的低周疲劳试验,对试样的疲劳断裂过程进行相机拍摄,后期定量测量孔边裂纹的情况,探讨其特有的微裂纹起裂与扩展特性,给出描述微裂纹扩展速率的Tomkins公式,加深对材料疲劳破坏机理的认识。
     3.为考察Glidcop材料的低周疲劳寿命受表面粗糙度的影响,加工了不同表面粗糙度等级的疲劳试样,进行了应力控制的低周疲劳试验,通过拟合试验结果得到了材料的疲劳寿命与表面粗糙度的定量关系。鉴于粗糙表面对疲劳寿命的显著削弱作用,建议挡光元件的加工应采取有效方法控制内空腔壁面的粗糙度。
     4.应用热弹塑性有限元模拟了APS和SPring-8热疲劳实验试样的时变温度场和循环应力应变场,分析了试样的受力特点,以多轴疲劳中的等效应变法来预估挡光试样的热疲劳寿命。列举了五个不同的等效应变模型进行比较,分别依据各自文献的疲劳参数对两个实验进行了疲劳寿命预测,结果表明修正的Von Mises等效应变模型对所有工况预测的结果和实验结果吻合最好。该模型考虑了平均应力和弹塑性泊松比的影响,比较全面合理,工程上简单实用,是预测高功率光束辐照下的结构热疲劳寿命的理想模型。
     5.以上海光源的挡光元件为研究对象,对目前正服役的挡光元件采用的线弹性有限元法和静强度设计准则进行回顾,指出其中的不合理性。改用弹塑性有限元模拟得到元件上危险点的循环应力应变,用修正的Von Mises等效应变模型预估出束流总是正常或总是漂移下的寿命结果,而针对束流漂移发生较少的事实,结合Miner线性累积损伤理论综合给出挡光元件的最终寿命预测结果,形成了挡光元件的热疲劳寿命评估方法。上海光源的挡光元件目前的设计过于保守,即便束流强度增加到500mA仍有余量,考虑到挡光元件30年约104次循环加卸载的设计寿命,提出有限寿命的疲劳设计方法,为其优化设计提供参考。
Large scale scientific facilities are public platforms for basic and multidisciplinary researches, which aim toto solve the fundamental and forward-looking issues in the major technological fields. It plays an important role in the comprehensive, coordinated and sustainable economic and social development and national security. Usually, the key components of large scientific facilities work in the extreme environment with high temperature, high pressure, intense radiation and fatigue loads, and prone to fatigue failure. Therefore, the fatigue failure should be considered in the design stage.
     Shanghai Synchrotron Radiation Facility (SSRF) is a high performance large scale scientific facility with an electron storage ring ranked fourth in the world. The optical path between the storage ring and the beam line is called front end in the facility. In the front aera, there are a series of key components for absorbing the most of high heat load by synchrotron radiation. The design of the key components faces the challenge of the high power density of the third generation synchrotron radiation. Presently, although the static strength design method provides a temporary solution, it's not enough economic and reasonable. New design methods are essential for higher requirements in the future.
     This dissertation relays on the design of the high heat load components at the front end of SSRF and combines with a project of National Natural Science Foundation of China named "study on the fatigue failure of Glidcop under high heat load of synchrotron radiation". It aims at exploring a finite life design method and focuses on low cycle fatigue properties of Glidcop and thermal fatigue life prediction of high heat load components. The experimental test, numerical simulation and theoretical modeling are investigated and studied. The main contents are as follows.
     1. The temperature dependent thermal properties of Glidcop are reviewed. Stress-strain curves under various temperatures are tested and elastoplastic constitutive laws are obtained. Low cycle fatigue properties of this material at different temperatures were studied. Detailed comparisons of mechanical parameters are made between Glidcop and Oxygen-free copper, a common material in the first and second generation of synchrotron radiation facilities, for the purpose of analyzing their advantages and disadvantages and providing a reference for the selection and use of these two materials.
     2. Because of extensive studies of macroscopic low cycle fatigue properties of Glidcop and lack of microscopic researches on the behavior of crack initiation and propagation, a stress-controlled low cycle fatigue test is designed using specimens with artificial holes on the surface. The fatigue fracture process is recorded by a camera. The material-dependent micro-crack initiation and propagation characteristics are investigated through measuring the crack length at the hole edge. Furthermore, the Tomkins expression that describes the micro-crack growth rate is derived. This study is useful to well understand the fatigue failure mechanism of this material.
     3. In order to investigate the effect of surface roughness on the fatigue life of Glidcop, specimens with different levels of roughness are processed and stress-controlled low cycle fatigue tests are carried out. A quantitative relationship between the fatigue life and the surface roughness is obtained through fitting the test data. As the significant weakening effect on the fatigue life for a rough surface, it is suggested that the processing method of high heat load components should be effective to control the surface roughness of the inner cavity.
     4. Based on the APS and SPring-8thermal fatigue tests, thermal elastoplastic finite element method is used to obtian the transient temperature field and cyclic stress-strain response of the samples. After analyzing the mechanical characteristics, equivalent strain approach of multiaxial fatigue theory is suggested to predict the thermal fatigue lives of the experimental samples. For comparison, five different equivalent strain models are introduced for fatigue life prediction. According to the literature's fatigue parameters, the fatigue lives are estimated for the samples. The results show that the lives predicted by the modified Von Mises equivalent strain model best agrees with the experimental data in all load cases. The model not only involves the effects of mean stress, but also considers the difference of Poisson's ratios in the elastic and plastic stages. It is comprehensive, simple and practical in engineering. Therefore, it's an ideal model to predict the thermal fatigue life of components under high power beam radiation.
     5. The high heat load components of SSRF are designed presently under the instruction of linear elastic finite element method and static strength design criteria. To avoid its irrationality, an alternative method called elastoplastic finite element is used to simulate the cyclic stress and strain of the components. The fatigue lives are predicted by the modified Von Mises equivalent strain model for beam always normal or beam always drift. Since the beam drift is few, the final estimated fatigue lives should be calculated using Miner linear cumulative damage theory. Therefore, the thermal fatigue life assessment method for the high heat load components is formed. The design of the components in SSRF is too conservative, even if the beam current increases to500mA. Taking into account a design life of30years (equivalent to10,000thermal cycles) for the high heat load components, the present finite life design method is finally proposed to provide a significant direction for the optimal design.
引文
Afshara A, Simchi A.2008. Abnormal grain growth in alumina dispersion-strengthened copper produced by an internal oxidation process[J]. Scripta Materialia,58:966-969.
    Alp A.2002. Thermal-Stress Analysis of the High Heat-Load Crotch Absorber at the APS[C]. Proceedings of the 2nd International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation (MEDSI2002), Illinois, USA, September 5-6.
    Arola D, Ramulu M.1999. An examination of the effects from surface texture on the strength of fiber-reinforced plastics[J]. Journal of Composite Materials,33(2):101-123.
    AS S K, Skallerud B, Tveiten B W, Holme B.2005. Fatigue life prediction of machined components using finite element analysis of surface topography[J]. International Journal of Fatigue,27 (10-12):1590-1596.
    Basquin O.1910. The Exponential Law of Endurance Tests[C]. Proc. ASTM, Part Ⅱ.
    Biasci J C, Plan B, Zhang L.2002. Design and Performance of Esrf High-Power Undulator Front-End Components [J]. Journal of Synchrotron Radiation,9(1):44-46.
    Broyles S E, Anderson K R, Groza J R, et al.1996. Creep Deformation of Dispersion Strengthened Copper[J]. Metallurgical and Materials Transactions A,27A:1216-1227.
    Brown M, Miller K.1973. A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions[C]. Proceedings of the Institute of Mechanical Engineers.
    Cheng E, Peng Y, Cerbone R, Fogarty P, et al.1998. Study of a Spherical Tokamak Based Volumetric Neutron Source[J]. Fusion Engineering and Design,38(3):219-256.
    Chen Q, Abela R, Auderset H, et al.2001. A photon shutter for insertion device front ends at the SLS[J]. Nuclear Instruments and Methods in Physics Research A,467-468:752-757.
    Choi M, Gonczy J D, Howell J W, Niemann R C.1991. An Advanced Photon Source Crotch Absorber Design[C]. Particle Accelerator Conference, Accelerator Science and Technology, Conference Record of the 1991 IEEE.
    Coffin L.1954. A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal[M]. KAPL-853, Knolls Atomic Power Lab.
    Collins J, Conley C, Attig J.2002. Enhanced Heat Transfer Using Wire-Coil Inserts for High-Heat-Load Applications[C]. Proceedings of the 2nd International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation (MEDSI2002), Illinois, USA, September 5-6.
    陈海波.2009. SSRF光束线管道对流换热系数和材料热力学性能测试[R].合肥:SSRF项目研究报告.
    陈海波,金建峰.2006. SSRF前端热负载部件的热缓释有限元分析[R].合肥:SSRF项目研究报告.
    陈森玉.2000.预研中的上海同步辐射装置[J].中国科学院院刊,15(1):66-69.
    Daoud A, Vogt J B, Charkaluk E, et al.2012. Anisotropy effects on the tensile and fatigue behaviour of an oxide dispersion strengthened copper alloy[J]. Materials Science and Engineering A,534:640-648.
    Daoud A, Vogt J B, Charkaluk E, Zhang L, Biasci J C.2010. Effect of temperature on the low cycle fatigue behavior of Glidcop Al-15[J]. Procedia Engineering,2(1):1487-1495.
    Dieter G E.1976. Mechanical Metallurgy,2nd ed[M].Tokyo:MeGraw-Hill Kogakusha Ltd, pp. 306.
    邓彪,余笑寒,徐洪杰.2007.同步辐射硬x射线微束技术[J].核技术,30(5):397-402.
    董杰,陈学东,范志超,江慧丰,陆守香.2008.基于微裂纹扩展的蠕变疲劳寿命预测方法[J].金属学报,44(10):1167-1170.
    EI-Helieby S O A, Rowe G W.1980. Influence of surface roughness and residual stress on fatigue life of ground steel components[J]. Metals Technology,7(1):221-225.
    付德龙.2006.基于有限元分析的低周疲劳寿命预测方法的研究[D]:[博士].哈尔滨:哈尔滨工业大学.
    高闰丰,梅炳初,朱教群,赵莉,李守忠.2005.弥散强化铜基复合材料的研究现状与展望[J].稀有金属快报,24(8):1-6.
    Herbeaux C.2002. Status of the Storage Ring Vacuum System[C]. Proceedings of Soleil 2nd AC meeting, Aubin, France.
    郝琪,蔡芳.2010.多轴疲劳寿命预测方法研究[J].机械设计与制造,12:122-125.
    胡光举.2012.核主泵主轴表面热疲劳分析[D]:[硕士].大连:大连理工大学.
    Itoga H, Tokaji K, Nakajima M, Ko H N.2003. Effect of surface roughness on step-wise S-N characteristics in high strength steel[J]. International Journal of Fatigue,25(5):379-385.
    Jaski Y, Trakhtenberg E, Collins J, et al.2002. Thermomechanical Analysis of High-Heat-Load Components for the Canted-Undulator Front End[C]. Proceedings of the 2nd International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation (MEDSI2002), Illinois, USA, September 5-6, pp.390-397.
    金建峰.2009SSRF前端挡光元件设计的若干力学问题研究[D]:[博士].合肥:中国科学技术大学.
    金建峰,刘学,吴冠原,王纳秀,陈海波,张培强.2007SSRF前端光子挡光器的结构设计和热应力分析[J].中国科学技术大学学报,37(10):1231-1235.
    Klesnil M, Lukas P.1980. Fatigue of metallic materials[M]. Amsterdam:Elesevier.
    Kuzay T M.1994. A Review of Thermomechanical Considerations of High-Temperature Materials for Synchrotron Applications[J]. Nuclear Instruments & Methods in Physics Research Section A, 347(1-3):644-650.
    Lee J M, Nam S W.1990. Effect of crack initiation mode on low cycle fatigue life type 304 stainless steel with surface roughness[J]. Materials Letters,10(6):223-230.
    Leedy K D, Stubbins J F, Singh B N, Garner F A.1996. Fatigue behavior of copper and selected copper alloys for high heat flux applications [J]. Journal of Nuclear Materials,233-237: 547-552.
    Li G, Thomas B G, Stubbins J F.2000. Modeling creep and fatigue of copper alloys[J]. Metallurgical and Materials Transactions A,31A:2491-2502.
    刘家骅.2009Glidcop材料性能测试与SSRF热缓释部件热结构分析[D]:[硕士].合肥:中国科学技术大学.
    李美霞,郭志猛,赵奇特.2008.氧化铝弥散强化铜的研究进展及其应用[J].粉末冶金工业,18(1):36-40.
    刘龙飞,吕丽军.2006SSRF中高热载挡光器的热-应力分析[J].上海大学学报(自然科学版),12(5):57-461.
    李琼阳.2009.太阳能帆板的热疲劳研究[D]:[硕士].成都:西南交通大学.
    李勇.2005.氧化铝颗粒弥散强化铜基复合材料的研究[D]:[硕士].武汉:华中科技大学.
    刘智,王瑞刚,赵广生.1999.材料的塑性泊松比v,和弹塑性泊松比vep[J].塑性工程学报,6(22):26-29.
    李志江.2011.表面粗糙度产生原因及影响因素的分析与控制[J].装备制造技术,11:129-131.
    Maiya P S, Busch D E.1975. Effect of surface roughness on low-cycle fatigue behavior of Type 304 Stainless steel[J]. Metallurgical Transactions A,6A:1761-1774.
    Manson S.1954. Behavior of Materials under Conditions of Thermal Stress[M]. National Advisory Committee for Aeronautics.
    Manson S, Hirschberg M.1964. Fatigue Behavior in Strain Cycling in the Low-and Intermediate-Cycle Range[C]. Proceedings of the 10th Sagamore Army Materials Research Conference, New York, USA, Syracuse University Press.
    Marot G.1989. Design of the ESRF absorbers[R]. ESRF internal report.
    Miller TJ, Zinkle S J, Chin B A.1991. Strength and fatigue of dispersion-strengthened copper[J]. Journal of Nuclear Materials,179-181:263-266.
    Mitchell M R.1996. Fundamentals of Modern Fatigue Analysis for Design[M]. ASM Handbook-Fatigue and Fracture, Vol.19, pp.227-249.
    Mochizuki T, Sakurai Y, Shu D, Kuzay T M, Kitamura H.1998. Design of Compact Absorbers for High-Heat-Load X-Ray Undulator Beamlines at Spring-8[J]. Journal of Synchrotron Radiation, 5(4):1199-1201.
    Morrow J.1968. Fatigue design handbook, advances in engineering[M]. Society of Automotive Engineers, Warrendale, USA, Vol.4, Sec.3.2, pp.121-29.
    Murakami Y, Miller K J.2005. What is fatigue damage? A view point from the observation of low cycle fatigue process[J]. International Journal of Fatigue,27(8):991-1005.
    马礼敦,杨福家.2001.同步辐射应用概论[M].上海:复旦大学出版社.
    Nadkarni A V, Troxell J D, Verniers F.1989. GlidCop:dispersion strengthened copper:an advanced copper alloy system for automotive and aerospace applications[R]. Internal Report, SCM Metal Products Inc, Cleveland, OH, USA.
    Neuber H.1958. Theory of notch stresses[M]. Berlin:Springer.
    Noll G C, Erickson G C.1948. Allowable stresses for steel members of finite life[J]. Proc Soc Exp Stress Anal,5(2):132-143.
    Peterson R E.1974. Stress concentration factors[M]. New York:John Wiley and Sons.
    平修二,郭廷伟.1984.热应力与热疲劳(基础理论与设计应用)[M].北京:国防工业出版社.
    Ranvindranath V.2006. Thermal fatigue of Glidcop AL-15[D]:[Ph. D.]. USA:Illinois Institute of Technology.
    Ravindranath V, Sharma S, Rusthoven B, et al.2006. Thermal Fatigue Life Prediction of Glidcop(?)Al-15[C]. Proceedings of the 4th International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation (MEDSI2006), Himeji, Hyogo, Japan.
    Ravindranath V, Sharma S, Rusthoven B, et al.2008. Thermal Fatigue of High-Heat-Load Synchrotron Components[C]. Proceedings of the 5th International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation (MEDSI2008), Saskatoon, Saskatchewan, Canada, June 10-13.
    Robles J, Anderson K R, Groza J R, Gibeling J C.1994. Low-cycle fatigue of dispersion strengthened copper[J]. Metallurgical and Materials Transactions A,25A:2235-2245.
    Ryu J H, Nam S W.1989. Effect of surface roughness on low-cycle fatigue life of Cr-Mo-V steel at 550 ℃[J]. International Journal of Fatigue,11(6):433-436.
    SCM Metal Products Inc..1988. Glidcop grade AL-15 dispersion strengthened copper[R]. Technical Data Sheet, North Carolina, USA,137-149.
    SCM Metal Products, Inc..1994. Glidcop copper dispersion strengthened with aluminum oxide[R].官方宣传册.
    Sharma S, Rotela E, Barcikowski A.2000. High heat-load absorbers for the APS storage ring[C]. Proceedings of the 1st International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation (MEDSI2000), Wurenlingen, Switzerland, July 13-14.
    Sheng I C, Sharma S, Rotela E, et al.1995. Thermomechanical Analysis of a Compact-Design High Heat Load Crotch Absorber[C]. Proceedings of the 1995 Particle Accelerating Conference, Dallas, Texas, USA, pp.816-818.
    Simon N, Drexler E, Reed R.1992. Properties of Copper and Copper Alloys at Cryogenic Temperature[M]. US National Institute of Standards and Technology(USA):pp.850.
    Smith R N, Waston P, Topper T H.1970. A stress-strain function for the fatigue of matals[J]. Journal of Materials,5:767-778.
    Srivatsan T S, Anand S, Troxell J D.1993. Cyclic plastic strain response and fracture behaviour of an oxide-dispersion-strengthened copper alloy[J]. International Journal of Fatigue,15(5): 355-367.
    Srivatsan T S, Anand S, Troxell J D.1993. High strain cyclic fatigue and fracture of an oxide dispersion strengthened copper alloy[J]. Engineering Fracture Mechanics,46(2):183-198.
    Srivatsan T S, Al-Hajri M, Troxell J D.2004. The tensile deformation, cyclic fatigue and final fracture behavior of dispersion strengthened copper[J]. Mechanics of Materials,36(1-2): 99-116.
    Suraratchai M, Limido J, Mabru C, Chieragatti R.2008. Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy[J]. International Journal of Fatigue,30 (12):2119-2126.
    尚德广,王德俊.2007.多轴疲劳强度[M].北京:科学出版社.
    石多奇,杨晓光,王延荣.2006.一种考虑拉伸保持效应的多轴疲劳寿命模型[J].力学学报,38(2):255-261.
    苏凡凡,赵冬梅,任风章,贾淑果.2008.内氧化法制备AL2O3弥散强化铜基复合材料的研究[J].热加工工艺.37(22):99-102.
    时新刚,冯柳,王英,陈志伟.2007.纳米颗粒增强铜基复合材料的最新研究动态及发展趋势[J].冶金信息导刊,1:26-29.
    史媛媛.2011.YG8硬质合金的热疲劳性能研究[D]:[硕士].长沙:湖南大学.
    Takahashi S, Sano M, Mochizuki T, et al.2008. Fatigue life prediction for high-heat-load components made of GlidCop by elastic-plastic analysis[J]. Journal of Synchrotron Radiation, 15:144-150.
    Takahashi S, Sano M, Mochizuki T, et al.2013. Prediction of fatigue life of high-heat-load components made of oxygen-free copper by comparing with GlidCop[J]. Journal of Synchrotron Radiation,20:67-73.
    Takahashi S, Sano M, Mochizuki T, et al.2006. Reconsideration of Design Criteria for High-Heat-Load Components at SPring-8 Front Ends[C]. Proceedings of the 4th International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation (MEDSI2006), Himeji, Hyogo, Japan.
    Taylor D, Clancy O M.1991. Fatigue performance of machined surfaces[J]. Fatigue and Fracture of Engineering Materials and Structures,14 (2-3):329-336.
    Takiya T, Moehizuki T, Kitamura H.1998. Development of Enhanced Heat Transfer Coolant Channels for the SPring-8 Front End Components[R]. SPring-8 Annual Report, Harima Science Garden City, Hyogo, Japan, pp.164-166.
    Troxell J D.1989. Glidcop Dispersion Strengthened Copper:Potential Application in Fusion Power Generators[C]. IEEE Thirteenth Symposium on Fusion Engineering, Knoxville, USA.
    Thomas Nian H L, Albert Sheng I C, Kuzay T M.1992. Thermal Analysis of a Photon Shutter for APS Front Ends[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,319(1-3):197-206.
    唐福元.2004.同步辐射的发现、特性及其应用领域的开拓[J].物理与工程,14(3):34-38.
    Valdiviez R, Schrage D, Haagenstad H, Szalczinger J.2002. The Thermal Expansion of Some Common Linac Materials[C]. Proceedings of LINAC2002, Gyeongju, Korea:P767-769.
    Wareing J, Vaughan H G.1979. Influence of surface finish on low-cycle fatigue characteristics of Type 316 stainless steel at 400℃[J]. Metal Science,13(1):1-8.
    吴冠原.2006SSRF前端区工程设计报告[R].上海:SSRF项目研究报告.
    王纳秀.2006.同步辐射光束线热缓释技术研究及冷却技术的应用[D]:[博士].上海:上海应用物理研究所.
    王卫国.2006.轮盘低循环疲劳寿命预测模型和试验评估方法研究[D]:[博士].南京:南京航空航天大学.
    王中光(译).1999.材料的疲劳[M].北京:国防工业出版社.
    冼鼎昌.1999.同步辐射应用在中国的发展[J].物理,28(11):641-647.
    徐灏.1988.疲劳强度[M].北京:高等教育出版社.
    徐家凡.2012.大吨位冲击疲劳试验机性能分析与研究[D]:[硕士].南京:南京理工大学.
    闫明,孙志礼,杨强,陈凤熹.2007.热疲劳裂纹开裂过程的有限元模拟[J].东北大学学报(自然科学版),28(12):1741-1744.
    Zhang L, Biasci J C, Plan B.2002. ESRF thermal absorbers:temperature, stress and material[C]. Proceedings of the 2nd International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation (MEDSI2002), Illinois, USA, September 5-6.
    张东初,裴旭明.2003.加工工艺对表面粗糙度及疲劳寿命的影响[J].中国机械工程,14(16):1374-1377.
    赵飞云,徐朝银.1999.合肥光源超导wiggler前端区[J].真空科学与技术,19(5):340-344.
    章刚,刘军,刘永寿,岳珠峰.2010.表面粗糙度对表面应力集中系数和疲劳寿命的影响分析[J].机械强度,32(1):110-115.
    张家敏,亢若谷,彭茂公,田卫平,刘辉,单玉友.2004.产业化制备弥散强化铜材料的性 能及工艺研究[J],云南冶金,33(6):25-30.
    赵少汴.1999.多轴疲劳的应变-寿命曲线[J].机械强度,21(4):12-13.
    张文孝,郭成璧,岳奎梁莎莉,倪华.1995.热疲劳过程力学行为的数值模拟[J].大连理工大学学报,35(4):511-515.
    张晓楠,赵冬梅,董企铭,刘平,任凤章,田保红.2007.内氧化制备Al2O3/Cu复合材料组织性能研究[J].特铸造及有色合金,27(2):142-144.
    赵小风,徐洪杰.1996.同步辐射光源的发展和现状[J].核技术,19(9):568-576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700