用户名: 密码: 验证码:
高水头大流量作用下反拱水垫塘拱圈底板局部破坏机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水垫塘是高拱坝泄洪消能和防冲的主要措施之一。反拱水垫塘是一种新型的消能防冲结构形式,具有锚固量少,截面小,超载能力强和稳定性高等优点,是一种优化的水垫塘体型。反拱水垫塘拱圈底板块的稳定性是其在高水头和大流量作用下能否安全运用的关键问题,一直倍受国内外学者的关注,但对拱圈底板的破坏机理仍缺乏研究。本文在回顾总结前人研究的基础上,依据溪洛渡拱坝表孔水舌作用下的反拱水垫塘,按重力相似律和弹性相似律,设计了水垫塘水力学模型和局部拱圈水弹性模型。在高水头、大流量作用下,拱圈底板块之间的止水设施完全破坏,底板锚筋失效条件下,结合反拱水垫塘拱圈底板的局部破坏机理,从全流场范围对拱圈底板表面和缝隙动水压强的变化规律、底板块振动特性及底板块轴力传递规律进行了理论分析和试验研究,主要研究内容和成果有:
     (1)采用RNG k-e紊流模型对七表孔泄流的反拱和平底水垫塘流场进行三维数值模拟,经比较,两种水垫塘的流场中不仅存在已被认识到的横向漩涡,而且还有纵向漩涡,其是在入射水舌和折冲向左右岸运动的水舌诱导作用下形成,并向上下游螺旋推进;由横向漩滚末端向上翻滚的水流在回溯过程中,又形成了竖向漩涡。反拱水垫塘壁射流主流集中在溢流中心附近流动,流速沿横向向两岸减小,沿程衰减较慢;平底水垫塘壁射流流速沿横向分布均匀,沿程衰减较快。在平底水垫塘内,向左右岸折冲的高速射流冲击边墙与底板的隅角,形成明显的压强峰值,水位降低后,其仍然存在,对其底板和边墙的安全构成威胁。在水舌入水区,反拱水垫塘的流态和底板受力较好,在入水区上下游,平底水垫塘的流态和底板受力较好。
     (2)在整个流场范围内,对拱圈底板动水压强的时空变化规律进行了详细地试验研究,得到了底板表面和缝隙动水压强沿流程、沿拱圈的变化规律,及其时域和频域特性。从底板表面和缝隙时均压强角度,探讨了上举力的形成机理及最终导致底板失稳破坏的原因,提出了底板块起动的可能方式。针对反拱水垫塘底板的设计,对底板表面、底板缝隙瞬时最大压强和时均压强在底板块上的平均值沿流程和沿拱圈两方向进行规-化处理,提出其预测方法。
     (3)对拱圈单、多底板块振动进行理论分析,首次提出了拱圈底板的失稳机理及不同工况下,底板块自由振动的最大位移公式。研究结果表明,底板块的径向位移受底板缝隙宽度控制,因此,在工程上,控制缝隙宽度,特别是拱圈底板块之间的缝宽对于反拱水垫塘的局部稳定起至关重要的作用。
     (4)在全流场范围内,对反拱水垫塘拱圈单、多底板块振动位移特性进行了试验研究,提出了底板块振动的特性区及各自区域界定,分析了沿程各振动区底板块的振动特征。研究结果表明,在冲击强振区,振动底板块数目较少时,保持剧烈自由振动,随底板块数目增多,形成瞬时局部拱或长期局部拱;在上下游强振区内,所有底板块形成长期整体拱,其首部则形成瞬时局部拱或长期局部拱。水舌冲击区和上下游壁射流区的分界处,即冲击强振区和上下游强振区首部,-2.0=x/bm=1.5,为最危险的区域。
     (5)分析了拱圈底板块轴力的传递机理,建立了底板块锁定状态时力学的平衡方程,推导出底板块轴力与上举力、重力分量的关系式。通过试验研究,得到了底板块轴力沿流程和沿横向的变化规律及底板块受压强度与其位移之间的关系,验证了底板块轴力的传递规律。试验结果表明,随拱圈振动底板块数目增多,底板块径向位移增大,底板块间的接触面积减少,底板块存在发生强度破坏的可能,在反拱水垫塘设计和施工中应采取相应措施加以避免。
     (6)对拱圈底板表面和底板缝隙动水压强、底板块振动和底板块轴力频域特性的研究表明,底板块压强、振动及轴力脉动的主频集中在0-1Hz,属于低频窄带分布,脉动能量以低频域为主,与反拱水垫塘中射流卷吸,水跃旋滚的大涡主频甚为接近,底板块不会发生共振破坏,而且在底板块振动过程中,虽与相邻底板块不断的撞击和磨合,但不致使底板块端部混凝土材料发生疲劳破坏。
     (7)经过对研究成果的综合分析,揭示了拱圈底板块的局部破坏机理,提出了拱圈底板块失稳破坏的观点。研究表明,拱圈底板块锚固失效的连锁反应,导致底板块缝隙宽度的“累加效应”,使底板块飞出座穴,拱圈发生失稳破坏;由于拱圈底板块之间相互挤压,底板块侧部由于应力集中而发生强度破坏、局部裂缝或局部断裂;拱圈底板块间的轴力强度增大,传至拱端,拱座不能承受而发生强度破坏,或整体滑动。
Plunge pool is one of the major measures for flood discharge and energy dissipation and preventing erosion to the body of high arch dam. The Inverted arch plunge pool is a new form of energy dissipation and erosion preventions for dam body. It is an optimized plunge pool and enjoys such advantages as using fewer anchorages, smaller cross sections, strong overloading and high stability. The stability of the apron slabs on the arch ring of the inverted arch plunge pool decides whether it can be safely applied under the action of high water head and large discharge. Consistent attention has been paid to the damage mechanism of the apron slabs on the arch ring by designers at home and abroad. On the basis of previous studies and in light of the inverted arch plunge pool under the action of surface hole nappe in Xiluodu arch dam, the hydraulic model and hydroelastic model in the partial arch ring were designed in consideration of gravity similitude law and elasticity similitude law. Under the condition of high water head and large discharge and that all the seal installations between the apron slabs and the anchoring on the slabs were all out of function, the damage mechanism of the apron slabs on the arch ring was researched on and theoretically analyzed in the whole flow field in the following three aspects:the law of changes in the dynamic water pressures on the surface and between the slot of apron slabs; the characteristics of vibrating displacement of apron slabs on the arch ring; the law of changes in the axial force on the apron slabs on the arch ring. The major research contents and findings are as follows:
     (1) RNG k-e turbulent flow model was adopted to make three dimensional numerical value simulation on the seven surface holes of the inverted arch pool and flat plunge pool. The comparison shows that there are lateral swirls as well as longitudinal swirls which are caused by incident water jet and the water jet forced moving to the left and right banks. Both swirls are forced to move to the upper reach and lower reach in a spiral way. The flow rolled upside at the end of the lateral swirl is changed into vertical swirl when it is backtracking. The major flow of the wall jet in the inverted arch pool mainly moves around the center of the overflow. Its velocity decreases and decreases slowly along its way when flowing laterally to the two banks while the velocity of the wall jet in the flat plunge pool is evenly distributed laterally and decreases fast along the way. In the flat plunge pool, the high speed jet current dashes to the side wall and the corner of the slabs, formed an obvious pressure peak value, and remains there even after the water level is lowered, therefore poses a threat to the slabs and the side wall. The flow pattern and the force on the slabs perform well in the water jet entrance area in the inverted plunge pool while the flow patter and force on the slabs perform well in the upper and lower reaches in the flat plunge pool.
     (2) A detailed research on the changing law of time and space in the dynamic water pressures of apron slabs on the arch ring was conducted in the whole flow field. The law of changes in the dynamic water pressures on the surface and between the slots of apron slabs on the arch ring along the flowing path and along the arch ring and the feature of time domain and frequency domain in the fluctuating pressure were found. The time average pressures on the surface and between the slots of apron slabs on the arch ring were analyzed. The forming mechanism of uplift force was dealt with and the reasons for the failure of stability in apron slabs were discussed. The possible ways for the movement of apron slabs in the arch ring were put forward. In consideration of the design of the soleplate in the inverted arch plunge pool, the respective average of the instant maximum pressure and time average pressure on the surface and between the slot of apron slabs on the arch ring along the flow path and along the arch ring was normalized. The ways of predicting the average value in the instant maximum pressure and time average pressure on the surface and between the slots of apron slabs on the arch ring were put forward. The time-space correlative properties of the dynamic water pressures of apron slabs on the arch ring shows that the fluctuating pressure remains almost unchanged and transmits vertically along the slot and it tends to transmit from the two ends to the arch crown along the arch ring.
     (3) The theoretical analysis was made on the vibrations of single apron slab on the arch ring and of multi apron slabs on the arch ring. The maximum displacement formula was put forward for the first time under different experimental conditions. From the formula it can be concluded that the radial displacement of apron slabs is controlled by the slot width of the apron slabs; if the arch abutment remains stable after the apron slabs are locked, the apron slabs will not be moved out of their seats; however, if any of the apron slab loses the geometric condition of forming arch, the arch ring is doomed to lose its stability. Hence, the control on the slot width, especially the slot width between the apron slabs of the arch ring, plays a crucial role in the local stability of the inverted arch plunge pool.
     (4) Experimental research was conducted on the vibrating displacement characteristics of single and group of apron slabs of arch ring in the inverted arch plunge pool. The characteristic area of the vibrating slabs was put forward and the respective area definition was given. The vibrating characteristics along the flow in each vibrating area were analyzed. The research finding shows that in the strong impact vibrating area, the slabs remain in a state of free violent vibrating when the number of slabs is low. With the increase of the number of slabs, the instant partial arch or long-term partial arch is formed; in the upper and lower reach, all the slabs form an long term complete arch, its head part forms an instant partial or long term partial arch. The most dangerous area is located at the boundary area between the nappe impacted area and the upper and lower stream wall jet area, namely, in the strong impact vibrating area and the head part of the vibrating area in the upper and lower reaches, that is, when-2.0=x/bm=1.5.
     (5) The transfer mechanism of the slabs'axial force is analyzed in theory. The mechanics equilibrium equation of apron slabs of the arch ring in the state of being locked is established. The relation between the slabs'axial force and upper lifting force and weight component together with the calculation formula is deducted. The changing law of the slab's axial force along the flow path and along the horizontal direction as well as the relationship between the slab's compressive strength and its displacement is obtained. The experiment results show that the slab's radial displacement increases with the increase of the number of vibrating slabs; if the contact area between the slabs decreases, the slabs are likely to be destroyed; hence, relative measures should be taken to avoid this in designing and constructing the inverted arch plunge pool.
     (6) The dynamic water pressures on the surface and between the slot of apron slabs on the arch ring and the frequency features of the slab's vibration and axial force is researched. The results show that the major frequency of slab's fluctuating pressure and the slab's vibration and the changes in slab's axial force ranges from OHz to 1Hz; the fluctuation energy mainly shows low frequency with low frequency narrow band distribution, close to large eddy dominant frequency in the jet entrainment and hydraulic jump in the inverted arch plunge pool. Although the eigenvalue of the slab's vibration velocity and acceleration is large, the destruction due to resonance is unlikely to occur. In the process of slab's moving up to being locked, the collision and running-in with neighboring slab will not lead to fatigue and damage of the concrete material at the end of the slab.
     (7)A comprehensive analysis of the above findings reveals the failure mechanism of apron slab of the arch ring in the inverted arch plunge pool. The research shows that the accumulative effect of the slot width between slabs results in slab's flying out of its seat which in turn brings about the instability and destruction of the arch ring; the mutual extrusion between slabs leads to the damage or partial fissure or partial breakage in the side of the slab due to the focus of stress; the increase of the axial force between the slabs, when transferred to the end of the arch, makes the arch seat fail to stand it and being damaged seriously or a whole slide may occur.
引文
[1]陈宗梁.世界超级高坝[M].中国电力出版社,1998,1
    [2]高季章,刘之平等.“九五”科技国家重点科技攻关.300级高拱坝枢纽设计关键技术研究溪洛渡水电站高拱坝大流量泄洪消能关键技术专题研究报告[R].2000,6
    [3]崔广涛,彭新民等.反拱型水垫塘——窄河谷大流量高坝泄洪消能工的合理选择.水利水电技术[J],2001,32(12):1-3
    [4]彭新民,王继敏等.拱坝水垫塘拱形底板受力与稳定性实验研究.水力发电学报[J],1999,(2):52-59
    [5]孙建,陈长植.反拱水垫塘与平底水垫塘底板稳定性诸方面之比较.长江科学院院报[J],2003,20(4):3-6
    [6]孙建,李玉柱.再分析卡里巴拱坝下游河床冲刷严重的原因.长江科学院院报[J],2001,18(4):3-6
    [7]南京水利科学研究院,水利水电科学研究院.水工模型试验[M],第二版.北京:水利电力出版社,1985
    [8]Jose L SA, Nchez Bribiesca.Turbulence Effect on The Lining of Stilling Basins.Question 41 and Report 81 in 11th ICOLD.Madrid(Spain):ICOLD,1973
    [9]刘沛清,高季章,李桂芬.五强溪水电站右消力池底板块失事分析.水利学报[J],1999,(1):8-15
    [10]孙建.高拱坝坝身泄洪和消能防冲[M].西安:西北工业大学出版社,2002,8
    [11]练继建,杨敏等.反拱型水垫塘底板结构的稳定性研究.水利水电技术[J],2001,32(12):24-26
    [12]艾克明.拱坝泄洪与消能的水力设计[M].北京:水利电力出版社,1987
    [13]潘家铮.西班牙的双曲拱坝建设[M].天津:天津大学,1980
    [14]朱伯芳,高季章.拱坝设计与研究[M].北京:中国水利水电出版社,2002
    [15]饶宏玲.二滩水电站水垫塘设计.水电站设计[J],1996,12(2):35-38
    [16]王继敏.湖南省凤凰县长潭岗水电站坝下水垫塘设计咨询报告[R].长沙:国家电力公司中南勘测设计研究院,1999
    [17]王继敏,王佩璜.长潭岗水电站反拱形水垫塘研究及应用.水利水电技术[J],2002,33(7):10-12
    [18]孙建.高拱坝坝身泄洪和消能防冲:博士毕业论文[D].北京:清华大学,2002.4
    [19]孙建,陈长植.反拱水垫塘拱端力变化规律的试验研究.水力发电学报[J],2002,(4):51-60
    [20]孙建,陈长植.反拱水垫塘底板块上举力变化规律的试验研究.清华大学学报[J],2004,43(11):31-36
    [21]孙建,陈长植.反拱水垫塘底板缝隙中动水压强特性的试验研究.水力发电学报[J],2002,(1):88-95
    [22]Sun Jian, and Cheng Changzhi. Experimental Research on Characteristics of Hydrodynamic Pressure Spreading in the Base Gap of Arch Inverted Plunge Pool. Journal of Hydrodynamics[J],
    Ser.B,4 (2003),24-30.
    [23]杨敏,练继建.水垫塘反拱形底板体型研究.水力发电学报[J],2002,(4):45-50
    [24]杨敏,彭新民.高坝水垫塘底板上举力特性与预测方法.水利水电技术[J],2003,34(9):29-31
    [25]彭新民,梁勇等.反拱型水垫塘底板的结构型式与等效荷载的试验研究.水利水电技术[J],2001,32(12):27-31
    [26]杨令强,·练继建.高拱坝水垫塘反拱底板衬砌结构的非线性静力分析.水利学报[J],2002,(9):77-81
    [27]安芸周一.关于拱坝中央溢流泄洪护坦上水垫效果的研究,国外科技增刊(1)[J],天津大学图书馆,1981.10,1-38
    [28]安芸周一.关于自由跌落水舌的水垫效果的研究.国外科技增刊(2)[J],天津大学图书馆,1981.10,39-58
    [29]刘沛清,高季章等.多层水股射流在水垫塘内的流动特征与动水垫效应分析.水利学报[J],1999,(3):1-7
    [30]刘沛清,李福田.高坝下游水垫塘内典型型流态演变问题探讨.水利学报[J],2001,(10):38-43
    [31]刘沛清,高季章,李忠义.水垫塘的水流特征及其综合评价指标.长江科学院院报[J],1997,14(1):1-6
    [32]刘沛清,高季章,李永梅.高坝下游水垫塘内淹没冲击射流试验.中国科学[J].1998,28(4):370-377
    [33]刘沛清,李福田.水垫塘内淹没冲击射流中的大尺度涡结构及其特征.水利学报[J],2000,(1):60-66
    [34]刘沛清,高季章等.平衡冲刷坑内水流结构的数值研究.水利学报[J],1997,12-10-20
    [35]Xu Weilin.Numerical Simulation of 3-D Flow Field in Arciform Plunge Pool.Journal of Hydrodynamics[J], Ser.B,3 (2002),106-110
    [36]许唯临,廖华胜,杨永全.溪洛渡水垫塘流场的数值计算.四川联合大学学报[J],1998,(9):34-38
    [37]许唯临,廖华胜等.水垫塘三元流态及消能特征的数值和实验研究.力学学报[J],1998,30(1):35-42
    [38]Liao Huasheng.Numerical Simulation of 3-D Turbulent Flows of Plunge Pool and Energy Dissipation Analysis.Journal of Hydrodynamics[J], Ser.B,1(1997)
    [39]许唯临,廖华胜,杨永全.水垫塘三维紊流数值模拟及消能分析.水动力学研究与进展[J],1996,11(5):561-569
    [40]Xu Weilin, Liao Huasheng, Yang Yongquan. Turbulent flow and energy dissipation in plunge poll of high arch dam. J of Hydraulic Research[J], IAHR,2002, (4):471-476
    [41]杨永全.水垫塘淹没射流的数值模拟.水动力学研究与进展[J],1991,6(4):36-44
    [42]戴光清,杨永全等.水垫塘多层淹没射流数值模拟及消能研究.水力学报[J],1996,1:13-19
    [43]戴光清,吴持恭,杨永全.多股射流水垫塘三元流动数值模拟及消能.中国科学(A辑)[J],1995,25(9):1002-1008
    [44]刁明军.高坝大流量泄洪消能数值模拟及实验研究:硕士毕业论文[D].成都:四川大学,2003
    [45]邓军,许唯临,张建民.向家坝水垫塘的实验研究与数值模拟.水力发电[J],2004,30(11):12-15
    [46]杨忠超,邓军,张建民,曲景学,杨永全.多股多层水平淹没射流水垫塘流场数值模拟.四川大学学报[J],2004,23(5):69-74
    [47]吕阳泉,董志勇等.高坝下游水垫塘冲击射流数模计算研究.长江科学院院报[J],2002,19(1):3-6
    [48]张春财.反拱水垫塘流场数值模拟及其底板块振动特性的试验研究:硕士毕业论文[D].西安:西安理工大学,2005,3
    [49]张春财,孙建等.高坝下游水垫塘中三种典型流态的数值模拟.长沙理工大学学报[J].2006,(4)
    [50]高季章.关于水垫塘底板受力控制标准的探讨.水力发电[J].1998,12:24-26
    [51]练继建.二元射流作用下边壁动水荷载极其应用:博士毕业论文[D].天津:天津大学,1987,12
    [52]崔广涛.关于急流脉动压力振幅取值问题的探讨.高速水流情报网第二界全国网大会论文集[C],1986年10月
    [53]林继镛.二元射流作用下点面脉动壁压力的幅值计算.水利学报[J],1988(12):34-40
    [54]林继镛.二元射流作用下点面脉动壁压力的幅值计算.水利学报[J],1988(12):34-40
    [55]廖华胜.多股水舌入射水垫塘底板脉动压力互相关特性及其灰色关联分析.水动力学研究与进展[J],1996,6:624-632
    [56]梁在朝.紊流相干结构与脉动壁压.水利学报[J],1985,(1)
    [57]董志勇,吴持恭等.掺气对射流冲击水垫塘底部脉动压强频谱特性的影响.成都科技大学学报[J],1994,(1):9-13
    [58]许多鸣,余常昭.平面水射流对槽底的冲击压强及其脉动特性的研究.水利学报[J],1983,(5)
    [59]洪益平.射流冲击下水垫塘边墙衬砌块受力的实验分析.清华大学学报[J],1997,37(11):73-76
    [60]黄种为,陈瑾.高拱坝泄洪与水垫塘底板动水压力问题的试验研究.水利学报[J],1992,11:50-56
    [61]廖华胜,许唯临,杨永全,吴持恭.多股射流入射水垫塘点面脉动压力特性.水力发电学报[J].1999,3(1):21-24
    [62]崔广涛.关于挑跌流对河床的动水压力及基岩的防护问题.天津大学学报[J].1982(2)
    [63]杨敏.高坝消力塘水动力特性与防护结构的安全研究:博士学位论文[D].天津:天津大学,2003年06月
    [64]GRehbinder, Slot cutting in rock with a high speed water jet.Rock Mech., Min. Sci.[J],1977, vol.14:229-234
    [65]G.Rehbinder, A theory about cutting rock with a water jet.Rock Mech. [J],1980, Vol.12:247-257
    [66]G.Rehbinder, Some aspects on the mechanism of erosion of rock with ahigh speed water jet[J].Proc. 3rd Int l. Symp. on jet cutting techn, paper E1 Chicago, May,1976
    [67]毛野.有关基岩冲刷机理的探讨.水利学报[J].1982,2
    [68]姜文超.应用紊流理论探讨脉动压力沿缝隙的传播规律.水利学报[J].1983,9
    [69]赵耀南,梁兴蓉.水流脉动压力沿缝隙的传播规律.天津大学学报[J],1988,第2期
    [70]梁兴蓉.挑流冲刷过程的压力谱场特性的随机分析.高速水流[J],1984,第2期
    [71]Fiorotto, V.and Rinaldo, A., Turbulent pressure fluctuations under hy-draulic jumps[J], Hydr. Res., IAHR,1992, Vol.30:No.4
    [72]Fiorotto, V. and Rinaldo, A.Fluctuating uplift and lining design in spillway stilling basins[J]. Hydr. Enging., ASCE,1992, Vol.118:No.4
    [73]杨敏,崔广涛.水垫塘底板稳定性控制指标的探讨.水利学报[J],2003,(8):6-10
    [74]崔广涛,练继建等.水流动力荷载与流固相互作用[M].北京:中国水利水电出版社,1999
    [75]刘沛清,刘心爱等.消力池底板块的失稳破坏机理及其防护措施.水利学报[J],2001,(9):1-9
    [76]刘沛清.挑跌流水垫塘消能形式的消能防护设计准则探讨.长江科学院院报[J],2003,20(1):3-6
    [77]刘沛清,冬俊瑞,余常昭.在岩缝中脉动压力传播机理探讨.水利学报[J],1994,12:31-36
    [78]刘沛清,李忠义,冬俊瑞.用二维瞬变流方程分析缝面层中脉动压力传播规律.水利学报[J],1996,4:27-32
    [79]刘沛清,高季章.超短型水垫塘底板块上脉动上举力试验研究.水利学报[J],1998,(4):1-6
    [80]刘沛清,冬俊瑞,李永祥,余常昭.在冲坑底部岩块上脉动上举力的试验研究.水利学报[J],1995,(12):59-66
    [81]刘沛清.在冲坑底部岩块上的脉动上举力.中国科学[J],1998,28(2):175-182
    [82]刘沛清.白山水电站水垫塘底板块上举力试验研究.水利学报[J],2002,8:101-106
    [83]张廷芳等.射流冲击作用下护坦板块失稳的机理分析.水动力学进展[J],1992,(6)
    [84]崔莉,张廷芳.射流冲击作用下护坦板失稳机理的随机分析.水动力学研究与进展[J],1992,(2):212-218
    [85]唐建华等.“八五”国家重点科技攻关项目.高水头大流量泄洪消能研究小湾水垫塘保护形式及衬砌结构稳定性研究[R].电工业部昆明勘测设计研究院科学研究所
    [86]张声鸣,陈建.水垫塘底板稳定研究.长江科学院院报[J],1997,(9):5-18
    [87]张建民,杨永全等.水垫塘底板失稳区脉动压力的实验研究.水力发电学报[J],2000,(3):49-54
    [88]张建民,杨永全等.高拱坝挑跌流泄洪消能水垫塘底板块稳定性的研究.四川大学学报[J],2000,32(2):18-21
    [89]张建民,杨永全等.水垫塘底板缝隙中脉动压力传播特性.四川大学学报[J],2000,32(3):5-8
    [90]张建民,杨永全,王玉蓉,许唯临等.水垫塘底板上举力的数值研究.水动力学研究与进展[J],
    2003,18(1):63-67
    [91]孙建,陈长植.平底水垫塘底板块失稳的数值模拟.水利学报[J],2002,(11):84-88
    [92]孙建,李玉柱.高坝挑流掺气水舌对水垫塘动水压强的缩尺影响.水动力学研究与进展[J],2002,17(5):624-630
    [93](前苏联)尤季茨基Γ.A.跌落水流对节理岩块的动水压力作用和基岩的破坏条件.全苏水工研究所通报.第22卷.见:华东水利学院.水工水力学译文集(基岩冲刷专辑)[C].南京:华东水利学院,1979
    [94](前苏联)尤季茨基Γ.A.等.水流动水压力对溢流坝挑流鼻坎下游河床影响的模型试验和原型观测.高速水流译文集[C],长科院译,水利电力出版社,1979
    [95]天津大学水资源与港湾工程系.“八五”国家重点科技攻关项目:高水头大流量泄洪消能澜沧江小湾拱坝水电站反拱形底板稳定性研究[R].天津:天津大学水利系,1995(6)
    [96]Xu Weilin.Hydrodynamic Uplift Force and Stability of Arciform Plunge PoolJournal of Hydrodynamics[J], Ser.B,3 (2002),8-12
    [97]史军,杨敏等.水垫塘反拱形底板稳定性的块体弹簧元分析.水力发电学报[J],2004,23(2):73-78
    [98]杨敏,安刚.反拱水垫塘底板整体稳定性试验研究[C].2002
    [99]张建民.挑流消能水垫塘底板冲刷稳定机理研究:博士学位论文[D].四川:四川大学,2000
    [100]张建民.射流冲击下水垫塘底板失稳的模糊随机分析.水利学报[J],2000,12
    [101]刘沛清,侯建国.高坝下游水垫塘混凝土底板块的稳定性分析.水利学报[J],1998,(7):5-12
    [102]刘沛清.高拱坝下游水垫塘底板块稳定性设计.水利学报[J],1999,2:5-12
    [103]林继镛,彭新民.挑跌流作用下底板稳定性试验研究.水力水电系统应用概率统计学术讨论会论文集[C],1985,11
    [104]崔广涛,杨敏.肋形溢流坝与挑流水垫塘研究.水利水电技术[J],9(34):32-35
    [105]陈长植,黄继汤.溪洛渡拱坝水垫塘底板稳定性模型试验研究[R].北京:清华大学,2002.3
    [106]杨敏,练继建.水垫塘反拱形底板体型研究.水力发电学报[J],2002,(4):45-50
    [107]练继建,杨敏等.水垫塘反拱形底板局部稳定性分析[C].2002
    [108]杨令强,练继建.高拱坝水垫塘反拱底板衬砌结构的非线性静力分析.水利学报[J],2002,(9):77-81
    [109]P Moin, K Mahesh. Direct numerical simulation:a tool in turbulence research. [J]. Ann Rev Fluid Mech,199830:39-78
    [110]J. G. Wissink. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes[J]. International Journal of Heat and Fluid Flow,2003,24 (4):626-635
    [111]V. Michelassi, J. G. Wissink, W. Rodi, Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier-Stokes simulation of periodic unsteady flow in a low-pressure turbine cascade[J]:A comparison. Journal of Power and Energy,217(4):403 - 412,2003
    [112]V. Stephane, Local mesh refinement and penalty methods dedicated to the Direct Numerical Simulation of incompressible multiphase flows[C]. Proceedings of the ASME/JSME Joint Fluids Engineering Conference,2003:1299-1305
    [113]J. C. Li. Large eddy simulation of complex turbulent flow:Physical aspects and research trends[J]. Acta mechanica Sinaca,2001, 17(4):289-301
    [114]D. G. E. Grigoriadis, J. G. Bartzis, A. Goulas. Efficient treatment of complex geometries for large eddy simulations of turbulent flows. Computers and fluids,2004,33(2):201-222
    [115]P. Rollet-Miet, D. Laurence, J. Ferziger. LES and RANS of turbulent flow in tube bundles. International Journal of Heat and Fluid Flow[J],1999. vol.20 (3):241-254
    [116]Chou P Y. On the velocity correlations and the equations of turbulent fluctuation[J], Quart J Appl Math,1945,3(1):38-54
    [117]J O Hinze,Turbulence[M]. McGraw-Hill, New York,1975
    [118]Kolmogorov A N. Turbulent flow equations of in compressible fluid. Bulletin of Academic of Science of Soviet Union[R], Physics Series,1942,6:56-58(In Russian).
    [119]Johns W P and Launder B E. The prediction of laminarization with a two-eqaution model of turbulence [J]. Int J. Heat mass transfer,1972,15:301-311.
    [120]Spalding D B. The prediction of two-dimensional steady turbulent flows[M]. Imperial college, Heat transfer section Rep., EF/TN/A/16,1969.
    [121]Launder B E and Spalding D B. Lectures in mathematical models of turbulence[M]. London: Academic Press,1972,78-115.
    [122]Yakhot V, Orzag S A. Renormalization group analysis of turbulence:Basic theory[J]. J Science Comput,1986,1:3-11
    [123]Shih T H, Liou W W, Shabbir A, Yang Z G. A new eddy viscosity model for high Reynolds number turbulent flows[J]. Comput. Fluids 1995,24(3):227-238.
    [124]Speziale C G. On nonlinear κ-ι and κ-εnodels of turbulence[J]. J Fluid mechanics,1987, 178:459-475.
    [125]Nisizima S, Yoshizawa A. Turbulent channel and Couette flows using anisotropic k-ε model[J]. AIAA J,1987,25(3):414-420.
    [126]Rubinstein R, Barton J M. Nonlinaer Reynolds stress models and the renormalization group[J]. Phys fluids A,1990,2(8):1472-1476.
    [127]Zeidan E, Djilali N. Multiple-time scale turbulence model:computations of flow over a square rib[J]. AIAA J,1996,34(5):626-629.
    [128]Kim S W and Chen C P. A multi-time-scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum. Numerical heat Transfer, Part B.1989.16:193-211.
    [129]Schiestel R. Multi-time-scale modeling of turbulent flow in one point closures[J]. Phys fluid, 1987,30(3):722-731.
    [130]Chen C J Jaw S-Y. Fundamentals of turbulence modeling[M]. Washington DC:Taylor & Francis, 1998.
    [131]Speziale C G. Analytical methods for the development of Reynolds-stress closure in turbulence[J]. Ann Rev Fluid Mech,1991,23:107-157.
    [132]Rodi W. The prediction of free boundary layers by use of a 2-eqaution model of turbulence[D]. London:Faculty of Engineering, University of London 1972.
    [133]Rodi W. A new algebraic relation for calculating the Reynolds stress. ZAMM.1976.56:219-221
    [134]Gibson M M and Launder B E. Ground effects of pressure fluctuation in atmospheric boundary [J]. J Fluid Mech,1978,86:491
    [135]Smith G D. Numerical solutions of partial differential equations (finite difference methods) [M].3nd ed. Oxford:Clarendon Press,1985
    [136]Richtmyer R D. Morton K W. Difference methods for initial problems[M].2nd ed. New York: Interscience Publishers,1967
    [137]Manole D M. Lage J L. Nonunifrom grid accuracy test applied to the natural convection flow within a porous medium cavity. Numer Heat Transfer. Rart B[J],1993. vol.23:351-368
    [138]谭维炎著.计算浅水动力学[M].北京:清华大学出版社,1998.(3)
    [139]陶文栓著.数值传热学(第2版)[M].西安:西安交通大学出版社.2001.(5)
    [140]S. V. Patanker, D.B. Spalding. A calculation processure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer[J],1972. vol.15:1787-1806
    [141]R. I. Issa. Solution of the implicitly discretised fluid equations by operator-splitting. J. Comput. Phys[J],1986. vol.62:40-65
    [142]Van Doormal J P, Raithby G D. Enhancement of the SIMPLE method for predicting in compressible fluid flow[J]. Numerical heat transfer,1984,7:147-163
    [143]Patankar C. Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation[M]. New york:Taylor Francis Group,1985
    [144]Rhie C M, Chow W L. A numerical study of turbulent flow past an isolated airfoil with trailing edge separation[J]. AIAA J,1983,21:1525-1552.
    [145]王志东.三维自由面湍流场数值模拟及其在水利工程中的应用:[博士学位论文][D].南京:河海大学,2004(3)
    [146]Harlow F H and Welch J E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[J]. The Physics of Fluids,1965,8:2182-2189.
    [147]Hirt C W and Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. J. Comput. Phys.1981,39:201-225
    [148]Osher S and Sethain J A. Fronts Propagating with Curvature-Dependent Speed:Algorithms Based on Hamilton-Jacobi Formulations[J]. J of Comp Phys,1988,79:12-49
    [149]魏文礼.泄水建筑物反弧紊流数值计算及抗蚀体型研究:[博士学位论文][D].南京:河海大学,1996
    [150]陈永灿,许协庆.挑流冲刷坑内水流特性的数值模拟.水利学报[J],1993,(4)
    [151]吕阳泉.水垫塘的水流特征和消能规律研究:[硕士学位论文][D].北京:清华大学,1997(5):37-50
    [152]苑明顺,陈长植.溪洛渡水电站枢纽整体水工模型试验研究(双曲拱坝XA15方案)[R].数值计算阶段成果,96-221-05-02-02.北京:清华大学水利水电工程系,1998(5)
    [153]N. Ahmed, K. R. R.Orthogonal transforms for digital signal processing[M],1975,中译本,人民邮电出版社,1979年
    [154]小湾水电站高拱坝大流量泄洪关键技术研究.小湾工程水垫塘优化布置动床模型试验研究.清华大学水利水电工程系,1999(9).
    [155]陈长植.溪洛渡水电站高拱坝大流量泄洪消能关键技术研究[R].溪洛渡水电站水垫塘优化布置与底板稳定性试验研究子题科研成果报告,96-221-05-02-02.北京:清华大学水利水电工程系,1999(12)
    [156]茆诗松,周纪梦.概率论与数理统计[M].北京:中国统计出版社.110-140
    [157]张春财,孙建.反拱水垫塘单底板块振动特性的理论分析与试验研究.西安理工大学学报[J].2006,(1)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700