用户名: 密码: 验证码:
基于移/转动Jacobian矩阵的少自由度并联机构性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
和传统的6自由度并联机器人相比,少自由度并联机器人具有驱动件少、控制简单方便、制造容易、价格低廉等特点。近年来,少自由度并联机构成为国际机构学和机器人领域的研究热点,少自由度并联机构的性质研究包括运动学、奇异位形和工作空间等等。
     运动学是机构分析的重要组成部分,Jacobian矩阵在并联机构的运动学分析当中占有十分重要的位置。传统意义的少自由度并联机构的Jacobian矩阵不是方阵,即机构的输入和输出之间不满足一一对应关系。这种现象出现的本质原因是动平台的各个输出速度分量并不是独立的。本文用移动Jacobian矩阵和转动Jacobian矩阵分别表示动平台的线速度和角速度与机构独立输出速度矢量之间的关系。通过移动和转动Jacobian矩阵,得到了n自由度并联机构(n<6)的n×n型Jacobian方阵并对其速度进行了分析;在移动和转动Jacobian矩阵的基础上,得到了表示动平台的线加速度和角加速度与机构的独立输出加速度矢量之间关系的移动和转动Hessian矩阵,进而对少自由度并联机构的加速度进行了分析。
     少自由度并联机器人总体上具有比6自由度并联机器人更复杂的运动特性,特别是动平台的运动受到约束后会表现出很多特殊的性质,这使得少自由度并联机器人机型匮乏,与实际应用中的广泛要求相距甚远。本文综合出了几种3、4自由度并联机构,包括含约束分支的并联机构,驱动分支数小于自由度数的并联机构以及含非直线分支的并联机构等。以移动和转动Jacobian矩阵为基础,对所综合出来的机构进行了详细的运动学分析。
     并联机构的奇异位形是并联机器人设计、应用和分析中的一个重要问题。Jacobian代数法是研究并联机构奇异位形最一般、最通用的方法。本文通过移动和转动Jacobian矩阵以及由这两个矩阵所得到的n×n型Jacobian方阵,对少自由度并联机构,特别是具有不同运动形式的3、4自由度并联机构的奇异位形进行了分析,包括三维移动并联机构,三维转动并联机构,具有混合运动的3自由度并联机构,三移一转4自由度并联机构,三转一移4自由度并联机构,以及移动和转动耦合的4自由度并联机构等等。
     对于一种新型机构,能够准确、方便地分析其工作空间对于评定该机构的实际应用价值是十分有帮助的。本文介绍了求解少自由度并联机构工作空间的步骤,并以3、4自由度并联机构为重点详细阐述了其工作空间的构造过程。定义了描述工作空间的参数,讨论了运动副的布置对少自由度并联机构特别是3自由度并联机构工作空间的影响。
Comparing with the traditional 6-DOF (Degree of Freedom) parallel robot, a limited-DOF parallel robot has many advantages such as having less driving limbs, being simple in control, easy in manufacture, low in cost and so on. Recently, limited-DOF parallel manipulator has become a focus among the international mechanics and robotics fields. The main study of the limited-DOF parallel manipulator character includes the kinematics, singularity configurations, workspaces and so on.
     Kinematics is an important part of mechanism analysis, and Jacobian matrix plays an important role in the kinematics analysis of parallel manipulators. The traditional Jacobian matrix of the limited-DOF parallel manipulator is not a square matrix, that is, the corresponding relationship between manipulator’s input and output is not satisfied. The essential reason for this phenomenon is that the elements of the moving platform output velocity are not independent. In this paper, the translational Jacobian matrix was used to denote the relationship between the linear velocity of the moving platform and the independent output velocity vector of the manipulator, while the rotational Jacobian matrix was used to denote the relationship between the angular velocity of the moving platform and the independent output velocity vector of the manipulator. Through the translational and rotational Jacobian matrices, an n×n square Jacobian matrix of n DOF (n<6) parallel manipulator was obtained, and the manipulator velocity was analyzed. On the basis of the translational and rotational Jacobian matrices, the translational and rotational Hessian matrices were obtained, which denoted the relationship between the linear and angular acceleration of the moving platform and the independent output acceleration vector of the manipulator, respectively. The acceleration of the limited-DOF parallel manipulator was further analyzed.
     As a whole, a limited-DOF parallel robot has more complex kinematic characters than a 6-DOF parallel robot. Many special characters may show up because of the moving platform constraint, which leads to the lack of the limited-DOF parallel prototype and dissatisfaction of the practical wide requirement. Some 3-DOF and 4-DOF parallel manipulators were synthesized in this paper, including the parallel manipulator with a constrained limb, the limited-DOF parallel manipulator with less limbs and the parallel manipulator with a non-linear limb and so on. On the basis of the translational and rotational Jacobian matrices, the kinematics of these parallel manipulators was analyzed in detail.
     Singularity configuration of the parallel manipulator is an important issue in the design, application and analysis of parallel robots. Jacobian algebra method is the most general and common method to study the parallel manipulator singularity configuration. According to the translational and rotational Jacobian matrices and the n×n square Jacobian matrix received from these two matrices, the limited-DOF parallel manipulators, especially the 3-DOF and 4-DOF parallel manipulators with different movement types were analyzed in this paper. The involved manipulators were the three-dimension translation parallel manipulator, the three-dimension rotation parallel manipulator, the 3-DOF parallel manipulator with mixed movement, the three-dimension translation and one-dimension rotation 4-DOF parallel manipulator, the three-rotation and one-dimension translation 4-DOF parallel manipulator, and the 4-DOF parallel manipulator with coupling translation and rotation.
     Accurate and convenient workspace analysis is greatly helpful for the evaluation of a new manipulator. The general limited-DOF parallel manipulator workspace was solved; 3-DOF and 4-DOF parallel manipulators were used as examples to explain the detailed process. Parameters were defined to describe the workspace, the influence of joint distribution to limited-DOF parallel manipulators, especially to the 3-DOF parallel manipulator workspace was discussed.
引文
1谢仑,王志良,李华俊,等.双足步行机器人制作技术.北京:机械工业出版社, 2008:1-2
    2黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社, 1997:1-118
    3 L. Bonev. The True Origins of Parallel Robots. http://www.parallemic.org/Reviews
    4 J. E. Gwinnett. Amusement Devices. US Patent No. 1,789,680, January 20, 1931
    5 K. L. Cappel. Motion Simulator. US Patent No. 3,295,224, January 3, 1967
    6 D. Stewart. A Platform with Six Degrees of Freedom. Proceedings of Institute of Mechanical Engineering, 1965, 180(15):371-386
    7 K. H. Hunt. Kinematic Geoemtry of Mechanisms. Oxford, Great Britain: Claredon Press, 1978:304-320
    8 B. A. Robert. Hexapods: Hot or Ho Hum. Manufacturing Engineering, 1997, (10):60-67
    9杨斌久,蔡光起,罗继曼,等.少自由度并联机器人的研究现状.机床与液压, 2006, (5): 202-205
    10 D. J. Cox. The Dynamic Modeling and Command Signal Formulation for Parallel Multi-Parameter Robotic Deviced. The Thesis Presented to the University of Florida, 1981:1-10
    11 K. H. Hunt. Structural Kinematics of in-Parallel-Actuated Robot Arms. Transmissions and Automation in Design, 1983, 105(4):705-712
    12 H. Asada, C. Granito. Kinematic and Static Characterization of Wrist Joints and Their Optimal Design. IEEE Conference on Robotics and Automation, 1985:244-250
    13 C. Gosselin, J. Angeles. The Optimum Kinematic Design of a Spherical Three-Degree-of- Freedom Parallel Manipulator. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1989, 111(2):202-207
    14 R. Clavel. DELTA, a Fast Robot with Parallel Geometry. Proceedings of 8th International Symposium on Industrial Robots, 1988:91-100
    15 L. W. Tsai, G. C. Walsh, R. E. Stamper. Kinematics of a Novel Three DOF Translational Platform. Proceedings of the IEEE International Conference on Robotics and Automation, 1996:3446-3451
    16 L. W. Tsai, S. Joshi. Kinematics and Optimization of a Spatial 3-UPU Parallel Manipulator. ASME, Journal of Mechanical Design, 2000, 122(4):439-446
    17 R. D. Gregorio, P. C. Vincenzo. Mobility Analysis of the 3-UPU Parallel Mechanism Assembled for a Pure Translational Motion. ASME, Journal of Mechanical Design, 2002, 124(2):259-264
    18 P. Ji, H. T. Wu. Kinematics Analysis of an Offset 3-UPU Translational Parallel Robotic Manipulator. Robotics and Autonomous Systems, 2003, 42(2):117-123
    19 Z. Huang, S. H. Li, R. G. Zuo. Feasible Instantaneous Motions and Kinematic Characteristics of a Special 3-DOF 3-UPU Parallel Manipulator. Mechanism and Machine Theory, 2004, 39(9):957-970
    20 S. M. Varedi, H. M. Daniali, D. D. Ganji. Kinematics of an Offset 3-UPU Translational Parallel Manipulator by the Homotopy Continuation Method. Nonlinear Analysis: Real World Applications, 2009, 10(3):1767-1774
    21 X. J. Liu, J. S. Wang, G. Pritschow. A New Family of Spatial 3-DoF Fully-Parallel Manipulators with High Rotational Capability. Mechanism and Machine Theory, 2005, 40(4):475-494
    22 D. S. Milutinovic, M. Glavonjic, V. Kvrgic, et al. A New 3-DOF Spatial Parallel Mechanism for Milling Machines with Long X Travel. CIRP Annals-Manufacturing Technology, 2005, 54(1):345-348
    23 P. L. Richard, C. M. Gosselin, X. W. Kong. Kinematic Analysis and Prototyping of a Partially Decoupled 4-DOF 3T1R Parallel Manipulator. ASME, Journal of Mechanical Design, 2007, 129(6):611-616
    24 Z. Huang, S. J. Zhu. Kinematic Analyses of 5-DOF 3-RCRR Parallel Mechanism. ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2005:993-999
    25 S. J. Zhu, Z. Huang, M. Y. Zhao. Singularity Analysis for Six Practicable 5-DoF Fully-Symmetrical Parallel Manipulators. Mechanism and Machine Theory, 2009, 44(4):710-725
    26 Force Dimension-3-DOF Omega. http://www.4vyz.com/Intro/020397.html
    27蔡光起,胡明,郭成,等.一种三自由度并联机器人机构.中国发明专利,公开号: CN2309932
    28胡明.三杆并联平动机器人运动学、力学及误差的若干研究. [东北大学博士学位论文]. 1999:107-108
    29 Q. Jin, T. L. Yang. Theory for Topology Synthesis of Parallel Manipulators and Its Applicationto Three-Dimension-Translation Parallel Manipulators. ASME, Journal of Mechanical Design, 2004, 126(4):625-639
    30 H. P. Shen, T. L. Yang, S. B. Tao, et al. Structure and Displacement Analysis of a Novel Three-Translation Parallel Mechanism. Mechanism and Machine Theory, 2005, 40(10):1181-1194
    31马履中,郭宗和,马晓丽,等.三平移弱耦合并联机器人机构机型及位置精度分析.中国机械工程, 2006, 17(15):1541-1545
    32 Y. M. Li, Q. S. Xu. Stiffness Analysis for a 3-PUU Parallel Kinematic Machine. Mechanism and Machine Theory, 2008, 43(2):186-200
    33 D. X. Zeng, Z. Huang, W. J. Lu. Performance Analysis and Optimal Design of a 3-DOF 3-PRUR Parallel Mechanism. ASME, Journal of Mechanical Design, 2008, 130:042307-1-9
    34王坚,胡挺,胡旭东,等. 3-3R球面并联喷胶装置控制系统设计.工业仪表与自动化装置, 2008, (4):26-28
    35梁伟文.纯转动型3-UPU并联机构工作空间分析.机械科学与技术, 2006, 25(7):836-839
    36 R. David. The VMS Motion Base. http://www.simlabs.arc.nasa.gov/vms/motionb.html
    37 J. Wang, C. M. Gosselin. Singularity Loci of a Special Class of Spherical 3-DOF Parallel Mechanisms with Prismatic Actuators. ASME, Journal of Mechanical Design, 2004, 126(2):319-326
    38赵云峰,程丽,赵永生. 3-UPS/S并联机构运动学分析及机构优化设计.机械设计, 2009, 26(1):46-49
    39 G. Alici, B. Shirinzadeh. Topology Optimization and Singularity Analysis of a 3-SPS Parallel Manipulator with a Passive Constraining Spherical Joint. Mechanism and Machine Theory, 2004, 39(2):215-235
    40杭鲁滨,王彦,吴俊.基于单开链的纯转动三自由度并联机器人机型设计方法.中国机械工程, 2005, 16(9):819-822
    41 M. Karouia, J. M. Hervé. Asymmetrical 3-dof Spherical Parallel Mechanisms. European Journal of Mechanics A/Solids, 2005, 24(1):47-57
    42 Q. C. Li, Q. H. Chen, C. Y. Wu, et al. Two Novel Spherical 3-DOF Parallel Manipulators with Circular Prismatic Pairs. ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2006:325-328
    43罗友高,郑相周,宾鸿赞.转动型3-UPU并联机构的奇异构形分析.华中科技大学学报(自然科学版), 2007, 35(3):74-76
    44 K. E. Neumarm. Robot. US Patent No. 4,732,525, March 22, 1988
    45吴振勇,王玉茹,黄田. Tricept机器人的尺度综合方法研究.机械工程学报, 2003, 39(6):22-30
    46 T. Huang, M. Li, X. M. Zhao, et al. Conceptual Design and Dimensional Synthesis for a 3-DOF Module of the TriVariant—A Novel 5-DOF Reconfigurable Hybrid Robot. IEEE Transactions on Robotics, 2005, 21(3):449-456
    47 M. Li, T. Huang, J. P. Mei, et al. Dynamic Formulation and Performance Comparison of the 3-DOF Modules of Two Reconfigurable PKM—the Tricept and the TriVariant. ASME, Journal of Mechanical Design, 2005, 127(6):1129-1136
    48 L. D. Maloney. Two strong robots. http://article.designnews.com.cn/2009-03/2009324032359
    49 S. Refaat, J. M. Hervé, S. Nahavandi, et al. Asymmetrical Three-DOFs Rotational-Translational Parallel-Kinematics Mechanisms Based on Lie Group Theory. European Journal of Mechanics A/Solids, 2006, 25(3):550-558
    50 G. A. Jaime, J. M. Rico-Martínez, G. Alici. Kinematics and Singularity Analyses of a 4-dof Parallel Manipulator Using Screw Theory. Mechanism and Machine Theory, 2006, 41(9):1048-1061
    51 S. Briot, V. Arakelian, S. Guégan. Design and Prototyping of a Partially Decoupled 4-DOF 3T1R Parallel Manipulator With High-Load Carrying Capacity. ASME, Journal of Mechanical Design, 2008, 130:122303-1-7
    52李兵,胡颖,于洪健,等.实现两维移动两维转动的并联机器人机构.中国发明专利,公开号: CN200988220
    53张广玉,赖一楠,杨乐民,等.五自由度对接缓冲试验台三维转动实现的研究.南京理工大学学报, 2004, 28(5):494-497
    54杨强,孙志礼,闫明,等.一种新型五自由度并联机构运动学分析与仿真.东北大学学报(自然科学版), 2008, 29(1):117-120
    55赵辉,高峰,张建军,等.新型五自由度并联机构静力学分析.机械设计, 2004, 21(6):54-57
    56张克涛,方跃法,郭盛.新型3自由度并联机构的设计与分析.机械工程学报, 2009, 45(1): 68-72
    57赵永生,郑魁敬,李秦川,等. 5-UPS/PRPU5自由度并联机床运动学分析.机械工程学报, 2004, 40(2):12-16
    58李艳文,黄真,王鲁敏,等.新型4自由度并联机器人运动学分析.机械工程学报, 2008, 44(10):66-71
    59金琼,杨廷力,刘安心,等.基于单开链单元的三平移一转动并联机器人机构型综合及分类.中国机械工程, 2001, 12(9):1038-1043
    60杭鲁滨,王彦,杨廷力.一种新型三平移一转动解耦并联机构分析.中国机械工程, 2004, 15(12):1035-1041
    61马晓丽,马履中,汪建平.新型三平移一转动并联机构及运动学分析.中国机械工程, 2006, 17(2):191-195
    62孔宪文,黄真. 3-RPS控制位置用并联机器人机构的位置反解.机械科学与技术, 1999, 18(3):424-426
    63黄真,孔宪文.具有冗余自由度的空间并联多环机构的运动分析.机械工程学报, l995, 31(3):44-50
    64黄真,李秦川.少自由度并联机器人机构的型综合原理.中国科学(E辑), 2003, 33(9): 813-819
    65王晶,焦有晖,黄真.欠秩三自由度3-RPS三维卡当机构的工作空间分析.机械传动, 1999, 23(3): 1
    66 Z. Huang, Y. F. Fang. Motion Characteristics and Rotational Axis Analysis of Three DOF Parallel Robot Mechanisms. IEEE International Conference on Systems, Man and Cybernetics, 1995:67-71
    67 M. S. Tsai, T. N. Shiau, Y. J. Tsai, et al. Direct Kinematic Analysis of a 3-PRS Parallel Mechanism. Mechanism and Machine Theory, 2003, 38(1):71-83
    68赵铁石.空间少自由度并联机器人机构分析与综合的理论研究. [燕山大学工学博士学位论文]. 2000:24
    69 Y. Lu, Y. H. Zhao. Position and Workspace Analyses of 3-SPR and 3-RPS Parallel Manipulators. Proceedings of IDETC/CIE, 2005:957-962
    70 C. Han, Ji Kim, Jo Kim, et al. Kinematic Sensitivity Analysis of the 3-UPU Parallel Mechanism. Mechanism and Machine Theory, 2002, 37(8):787-798
    71 Y. Lu, B. Hu. Analyzing Kinematics and Solving Active/Constrained Forces of a 3SPU+UPRParallel Manipulator. Mechanism and Machine Theory, 2007, 42(10):1298-1313
    72 D. Zhang, C. M. Gosselin. Kinetostatic Modeling of N-DOF Parallel Mechanisms with a Passive Constraining Leg and Prismatic Actuators. ASME Journal of Mechanical Design, 2001, 123(3):375-384
    73 F. Pierrot, O. Company. H4: A New Family of 4-DOF Parallel Robots. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 1999:508-513
    74 L. Rolland. Manta and the Kanuk Novel 4-DOF Parallel Mechanisms for Industrial Handling. ASME Dynamic Systems and Control Division of IMECE Conference, 1999:831-844
    75赵铁石,黄真.欠秩空间并联机器人输入选取的理论和应用.机械工程学报, 2000, 36(10): 81-85
    76 M. Zoppi, D. Zlatanov, C. M. Gosselin. Analytical Kinematics Models and Special Geometries of a Class of 4-DOF Parallel Mechanisms. IEEE Transactions on Robotics, 2005, 21(6):1046-1055
    77 W. J. Chen, J. P. Zhou, M. Y. Zhao, et al. A 2T-2R 4-DOF Parallel Manipulator. ASME Design Engineering Technical Conferences, 2002:881-885
    78 J. S. Dai, Z. Huang, L. Harvey. Mobility of Over Constrained Parallel Mechanisms. ASME Journal of Mechanical Design, 2006, 128(1):220-229
    79 X. W. Kong, C. M. Gosselin. Type Synthesis of 3T1R 4-DOF Parallel Manipulators Based on Screw Theory. IEEE Transactions on Robotics and Automation, 2004, 20(2):181-190
    80 X. W. Kong, C. M. Gosselin. Type Synthesis of 4-DOF SP-Equivalent Parallel Manipulators: A Virtual Chain Approach. Mechanism and Machine Theory, 2006, 41(11):1306-1319
    81 M. G. Mohamed, J. Duffy. Direct Determination of the Instantaneous Kinematics of Fully Parallel Robot Manipulators. Design Engineering Technology Conference, 1984:84-DET-114
    82李秦川.对称少自由度并联机器人型综合理论及新机型综合. [燕山大学工学博士学位论文]. 2003:61
    83黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社, 2006:158-267
    84 F. Gao, W. M. Li, X. C. Zhao, et al. New Kinematic Structures for 2-, 3-, 4-, and 5-DOF Parallel Manipulator Designs. Mechanism and Machine Theory, 2002, 37(11):1395-1411
    85 X. J. Liu, J. Kim. A New Three-Degree-of-Freedom Parallel Manipulator. IEEE International Conference on Robotics and Automation, 2002:1155-1160
    86杨廷力.机器人机构拓扑结构学.北京:机械工业出版社, 2004:55-82
    87 Y. S. Zhao, Q. C. Li, K. J. Zheng. A Novel 5-Axis Parallel Machine Tool Family. 11th World Congress in Mechanism and Machine Science, 2004:1588-1591
    88邹慧君,高峰.现代机构学进展.北京:高等教育出版社, 2007:163-165
    89戴巍. 6自由度并联机器人运动学分析. [东华大学硕士学位论文]. 2006:9
    90孙立宁,于晖,祝宇虹,等.机构影响系数和并联机器人雅克比矩阵的研究.哈尔滨工业大学学报, 2002, 34(6):810-814
    91 S. A. Joshi, L. W. Tsai. Jacobian Analysis of Limited-DOF Parallel Manipulators. ASME Journal of Mechanical Design, 2002, 124(2):254-258
    92 Y. Lu, B. Hu. Unified Solving Jacobian/Hessian Matrices of Some Parallel Manipulators with n SPS Active Legs and a Constrained Leg. ASME Journal of Mechanical Design, 2007, 129(11):1161-1169
    93 Y. Lu, B. Hu. Unification and Simplification of Velocity/Acceleration of Limited-dof Parallel Manipulators with Linear Active Legs. Mechanism and Machine Theory, 2008, 43(9):1112-1128
    94李秦川,胡旭东,陈巧红,等.对称4自由度3R1T并联机构雅可比分析.机械工程学报, 2009, 45(4):50-55
    95朱思俊.少自由度并联机构运动学及五自由度并联机构的相关理论. [燕山大学工学博士学位论文]. 2007:20-26
    96郑魁敬.新型五自由度并联机床机构学分析与控制系统开发. [燕山大学工学博士学位论文]. 2004:31-36
    97 J. P. Merlet. Parallel Manipulators Part 2: Singular Configurations and Grassmann Geometry. Technology report. INRIA, Sophia Antipols, France, 1988:66-70
    98 J. P. Merlet. Singular Configurations and Direct Kinematics of a New Parallel Manipulator. Proceeding of IEEE International Conference on Robics and Automation, Nice, France, 1992:320-325
    99 J. P. Merlet. Singular Configurations of Parallel Manipulators and Grassmann Geometry. Journal of Robotic Research, 1989, 8(5):45-56
    100 J. P. Merlet. On the Infinitesimal Motion of a Parallel Manipulator in Singular Configuration. Proceeding of IEEE International Conference on Robics and Automation, Nice, France, 1992:338-343
    101 Z. Huang, Y. S. Zhao, J. Wang. Kinematic Principle and Geometrical Condition of General-Linear-Complex Special Configuration of Parallel Manipulators. Mechanism and Machine Theory, 1999, 34(8):1171-1186
    102 Z. Huang, L. H. Chen. Singularity Principle and Distribution of 6-3 Stewart Parallel Manipulator. Proceedings of ASME Design Engineering Technical Conferences, Montreal, Quebec, Canada, 2002:2127-2132
    103 Z. Huang, L. H. Chen, Y. W. Li. The Singularity Principle and Property of Stewart Parallel Manipulator. Journal of Robotic System, 2003, 20(4):163-176
    104李艳文.几类空间并联机器人的奇异研究. [燕山大学工学博士学位论文]. 2005:48-53
    105曹毅.六自由度并联机器人奇异位形的研究. [燕山大学工学博士学位论文]. 2005:14-15
    106 M. A. Uchiyama. Study of Computer Control of Motion of a Mechanical Arm. Bull. JSME, 1979, 22(2):173-177
    107 E. F. Fichter. A Stewart Platform-Based Manipulator: General Theory and Practical Construction. International Joural of Robotic Research, 1986, 5(2):157-182
    108黄真,曲义远.空间并联多环机构的特殊位形分析.第五届全国机构学学术讨论会论文集,庐山, 1987:1-7
    109曲义远.并联机器人特殊位形及位置分析. [燕山大学工学硕士学位论文]. 1988:88-90
    110 C. L. Collins, J. M. Mecarthy. Singularity Loci of Two Triangular Parallel Manipulators. Proceedings of the 8th International Conference on Advanced Robotics, Monterey, USA, 1997:473-478
    111 Y. X. Su, B. Y. Duan, B. Peng et al. Singularity Analysis of Fine-Tuning Stewart Platform for Large Radio Telescope Using Genetic Algorithm. Mechatronics, 2003, 13(5):413-425
    112 C. M. Gosselin, J. Angeles. Singularity Analysis of Closed-Loop Kinematic Chains. IEEE Transactions on Robotics and Automation, 1990, 6(3):281-290
    113 J. Sefrioui, C. M. Gosselin. On the Quadratic Nature of the Singularity Curves of Planar Three-Degree-of-Freedom Parallel Manipulators. Mechanism and Machine Theory, 1995, 30(4):533-551
    114 C. M. Gosselin, J. G. Wang. Singularity Loci of Planar Parallel Manipulators with Revolute Actuators. Robotics and Autonomous System, 1997, (21):377-398
    115 B. M. Stonge, C. M. Gosselin. Singularity Analysis and Represention of the GeneralGough-Stewart Platform. International Joural of Robotic Research, 2000, 19(3):271-288
    116 A. Wolf, E. Qttaviano, M. Shoham et al. Application of Line Geometry and Linear Complex Approximation to Singularity Analysis of the 3-DOF CaPaMan Parallel Manipulator. Mechanism and Machine Theory, 2004, 39(1):75-95
    117 I. A. Bonev, D. Zlatanov, C. M. Gosselin. Singularity Analysis of 3-DOF Planar Parallel Mechanisms via Screw Theory. ASME Journal of Mechanical Design, 2003, 125(3):573-581
    118 J. S. Zhao, Z. J. Feng, K. Zhou et al. Analysis of the Singularity of Spatial Parallel Manipulator with Terminal Constraints. Mechanism and Machine Theory, 2005, 40(3):275-284
    119 J. G. Alvarado, J. M. Rico, G. Alici. Kinematics and Singularity Analyses of a 4-dof Parallel Manipulator Using Screw Theory. Mechanism and Machine Theory, 2006, 41(9):1048-1061
    120 Y. F. Fang, L. W. Tsai. Inverse Velocity and Singularity Analysis of Low-DOF Several Manipulator. Journal of Robotics, 2003, 20(4):177-188
    121 J. Wang, C. M. Gosselin. Kinematic Analysis and Singularity Loci of Spatial Four-Degree-of-Freedom Parallel Manipulators Using a Vector Formulation. ASME Journal of Mechanical Design, 1998, 120(4):555-558
    122 C. M. Gosselin, J. Angeles. The Optimum Kinematic Design of a Planar 3-DOF Parallel Manipulator [J]. ASME Journal of Mechanisms, Translation and Automation in Design, 1988, 110(1): 35-41
    123 F. Gao, X. Q. Zhang, Y. S. Zhao, et al. Distribution of Some Properties in Physical Model of the Solution Space of 2-DOF Parallel Planar Manipulators. Mechanism and Machine Theory, 1995, 30(6):811-817
    124 F. Gao, X. Q. Zhang. A Physical Model of the Solution Space and the Atlases of the Reachable Workspaces for 2-DOF Parallel Plane Wrists. Mechanism and Machine Theory, 1996, 31(2):173-184
    125 F. Gao, Y. S. Zhao, Z. H. Zhan. Physical Model of the Solution Space for 3-DOF Parallel Planar Manipulators. Mechanism and Machine Theory, 1996, 31(2):161-171
    126 F. Gao, F. Guy, W. A. Gruver. Criteria Based Analysis and Design of Three- Degree-of-Freedom Plane Robotic Wrist. International Conference on Robotics and Automation, 1997:468-473
    127 F. Gao, X. J. Liu, W. A. Gruver. Performance Evaluation of Two-Degree-of-Freedom Planar Parallel Robots. Mechanism and Machine Theory, 1998, 33(6):661-668
    128赵新华.并联机器人运动学理论研究. [天津大学博士学位论文]. 2000:5-7
    129 K. Cleary, T. Arai. A Prototype Parallel Manipulator: Kinematics Construction, Software, Workspace Results and Singularity Analysis. IEEE International Conference on Robotics and Automation, Sacramento, 1991:566-571
    130 C. M. Gosselin. Determination of the Workspace of 6-DOF Parallel Manipulators. ASME Journal of Mechanical Design, 1990, 112(3):331-336
    131 T. Huang, J. S. Wang, D. J. Whitehouse. Closed Form Solution to the Position Workspace of Stewart Parallel Manipulators. Science China Series E Technological Sciences, 1998, 41(4):393-403
    132 O. Masory, J. Wang. On the Accuracy of a Stewart Platform. Part II. Kinematic Calibration and Compensation. IEEE International Conference on Robotics and Automation, 1993:725-731
    133田小静.新型五自由度并联机床的运动学设计及工作空间分析. [燕山大学工学硕士学位论文]. 2003:65
    134吴展.新型三自由度并联机床机构运动学及其工作空间分析. [南京航空航天大学硕士学位论文]. 2000:56-57
    135刘辛军,汪劲松,李剑锋,等.一种新型空间3自由度并联机构的正反解及工作空间分析.机械工程学报, 2001, 37(10):36-39
    136 J. S. Zhao, M. Chen, K. Zhou, et al. Workspace of Parallel Manipulators with Symmetric Identical Kinematic Chains. Mechanism and Machine Theory, 2006, 41(6):632-645
    137 Y. Lu. Using CAD Functionalities for the Kinematics Analysis of Spatial Parallel Manipulators with 3-, 4-, 5-, 6- Linearly Driven Limbs. Mechanism and Machine Theory, 2004, 39(1):41-60
    138 Y. Lu, T. Leinenon. Computer-Aided Geometric and Analytic Solving Workspace, Velocity, and Acceleration of 3-UPU Parallel Manipulator. 21th Working Meeting of the IFToMM Permanent Commission for Standardization of Terminology, 2005:23-36
    139 Y. Lu. Using CAD Variation Geometry and Analytic Approach for Solving Kinematics of a Novel 3-SPU/3-SPU Parallel Manipulator. ASME Journal of Mechanical Design, 2006, 128(3):574-580
    140 Y. Lu. Using CAD Variation Geometry for Solving Velocity and Acceleration of Parallel Manipulators With 3-, 4-, 5- Linearly Driving Limbs. ASME Journal of Mechanical Design, 2006, 128(4):738-746
    141李贯成.运动副配置对并联机器人工作空间影响的研究. [南昌大学硕士学位论文]. 2006:65-66
    142 Z. Huang, Q. C. Li. Construction and Kinematic Properties of 3-UPU Parallel Mechanisms. ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2002:1027-1033
    143 Z. Huang, J. Wang. Kinematics of 3-DOF Pyramid Manipulator by Principal Screws. Chinese Journal of Mechanical Engineering (English Edition), 2001, 14(2):116-120
    144洪嘉振.计算多体系统动力学.北京:高等教育出版社, 1999
    145 Y. Lu, B. Hu. Solving Kinematics and Active Forces of Some Parallel Manipulators by a Block Diagram Modeling System. Proceedings of ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Las Vegas, Nevada, USA, 2007:1495-1501
    146 Z. Huang, Q. C. Li. Mobility Analysis of a Novel 3-5R Parallel Mechanism Family. ASME Journal of Mechanical Design, 2004, 126(1):79-82
    147 V. K. Chan, I. Ebert-Uphold. Investigation of the Deficiencies of Parallel Manipulators in Singular Configurations through the Jacobian Nullspace. Proceedings of IEEE International Conference on Robotics and Automation, Seoul, 2001,(2):1313-1320
    148 D. G. Raffaele. Forward Problem Singularities of Manipulators Which Become PS-2RS or 2PS-RS Structures When the Actuators Are Locked. Proceedings of the ASME Design Engineering Technical Conference, Chicago, United States, 2003,(2B):1117-1123
    149沈辉,吴学忠,刘冠峰,等.并联机构中奇异位形的分类与判定.机械工程学报, 2004, 40(4):26-31
    150 Y. Lu, B. Hu, Y. Shi. Kinematics Analysis and Statics of a 2SPS+UPR Parallel Manipulator. Multibody System Dynamics, 2007, 18(4):619-636
    151 Y. Lu, J. Y. Xu. Simulation of 3D Free-Form Surface Normal Machining by 3SPS+RRPU and 2SPS+RRPRR Parallel Machine Tools. Proceedings of the Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture, 2008, 222(4):484-492
    152路懿.可调式3, 4, 5-SPS型并联机构实验平台.中国发明专利,公开号: CN1861328A
    153路懿.可调式具有被动约束分支3自由度并联机器人机构.中国发明专利,公开号: CN1647890A

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700