用户名: 密码: 验证码:
假设位移拟协调有限元及其在精确几何分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有限元是一种重要的数值仿真分析方法,在工业领域中的设计、校核和生命周期检测等多个方面发挥巨大作用,深刻地改变了工业领域的方法和思想。拟协调有限元是有限元中十分重要的一种方法,其特点是同时弱化平衡方程和几何方程,与传统有限元相比更加灵活、有效。拟协调单元广泛应用于多个工业领域,在结构分析,尤其是板壳结构分析中发挥着巨大的作用。因此,对拟协调有限元的研究具有重要的理论研究和工程应用价值。
     本文以拟协调有限元为研究对象,从单元构造和算法理论等方面进行了研究,主要工作可分为两部分。第一部分结合弹性力学平面问题和板壳问题对拟协调元进行了研究,完善了拟协调有限元的列式框架,建立了系统的单元构造理论和单元性能分析方法,构造了一系列有效的单元,应用到工业领域分析中。通过对拟协调有限元的研究,提出了几何方程中微分算子的弱导数和“泰勒展开校核”收敛性检验方法,强调了有限元中基函数的作用,深化了有限元中“协调性”要求的理解。第二部分,将拟协调有限元推广到精确几何分析领域,提出精确几何拟协调分析方法。该方法不再需要传统的有限元网格,可以由几何模型数据直接进行分析,为下一代的几何设计-有限元分析一体化的仿真分析系统提供有效算法。自主开发了基于几何数据的分析框架,并构造了一系列有效的单元。精确几何拟协调分析从变分原理和逼近空间两个角度,区别于以等几何分析为代表的精确几何分析方法。
     本文对拟协调元的单元构造方法进行了系统的研究。完善了拟协调有限元中位移场和应变场试探函数的选取规则,强化了位移场和应变场的联系,解决了拟协调有限元中位移形函数的计算问题,便于单元一致质量阵和一致载荷阵的计算,使单元稳定性增强,具有更好的收敛性能。本文对算法理论进行了研究,提出几何方程中微分算子的弱导数,针对有限元中重要的收敛性问题,提出了单元应变的泰勒展开校核方法,可以有效地检查单元的收敛速度。打破了传统有限元中“协调性”等诸多列式禁区,提供了一个统一的、有效的列式准则。将其总结为“假设位移拟协调有限元”方法。
     按照假设位移拟协调有限元方法,本文构造了一系列结构分析单元,为工业领域应用提供了分析工具。本文构造的平面四边形单元在直角坐标系下直接列式,解决了有限元中长期存在的三角形单元和四边形单元列式理论不统一的问题。该单元不需要借助于等参坐标和数值积分,具有显式的刚度矩阵,是一个简单、高效的单元。本文将其应用到板材件的一步逆成形分析中,得到比传统四节点等参单元精度更好、效率更高的结果。本文构造的四边形板壳单元具有很好的收敛性,在大量标准算例中与其它著名单元结果进行了对比,证实了其具有较好的实用价值。
     “精确几何分析”是指利用计算机辅助设计中的几何模型(CAD模型)直接进行仿真分析。精确几何分析中不需要将几何模型转化为有限元网格模型的步骤,相对传统有限元仿真分析,其明显优势在于避免网格划分,融合现有的计算机辅助设计(CAD)和仿真分析(CAE),极大地简化工业设计/分析流程。同时,精确几何分析可以保证分析模型中的几何是精确的,对壳体屈曲分析、飞行器周围流体分析等几何敏感的问题,具有先天的相对传统有限元分析的优势。
     利用假设位移拟协调有限元,研究精确几何分析问题,提出“精确几何拟协调分析”方法。与等几何分析等其它的精确几何分析方法相比,本方法打破了“等参”的分析框架,采用多项式基函数逼近物理场,充分利用多项式简洁、便于计算的特性。同时仍然采用非均匀有理B样条函数精确地表示几何场,适应精确几何分析要求。利用假设位移拟协调有限元框架,采用应变弱化技术,对位移场和应变场同时进行逼近,并选用完备的逼近函数,提高了单元的精度。
     利用ACIS几何造型引擎,自主开发了精确几何分析程序框架,可以输入、修改并输出标准的几何模型数据。基于精确几何拟协调分析,实现了一维柱、梁单元,二维平面单元、平板单元等一系列分析模块。精确几何拟协调分析发展了拟协调元的算法理论,为精确几何分析引入了新的技术手段。
     本文从单元构造框架和单元算法理论等方面发展了拟协调有限元,提出了“假设位移拟协调有限元”和“精确几何拟协调分析”方法,构造了一系列有效的单元并将其应用到工业实践中。本文在单元算法理论、单元构造框架等基础理论问题的研究是对有限元理论的发展,本文在“精确几何分析”方面的工作适应几何设计-仿真分析一体化的要求,具有重要的学术和工业应用价值。
Finite element method is the most important numerical analysis method, which plays great role in design, analysis and the life circle monitoring of industry products. The design method and concept of industry are deeply influenced by the finite element method. Quasi-conforming finite element method is an important and characteristic paradigm in finite element method. In quasi-conforming finite element method, the strain-displacement relationships are weakened along with the equilibrium equations; as a result the method is flexible and practicable, which can unify the conforming and non-conforming frame. The elements formulated with quasi-conforming are widely used in multiple industry areas, especially in the analysis of structure. Therefore, the research in quasi-conforming finite element method is import for its great science as well as the industry application value.
     This thesis is on the research of quasi-conforming finite element method. The work is composed of two parts. First, the assumed displacement quasi-conforming finite element framework is proposed based on the research of elastic plane and plate/shell problems. The element construction and performance analysis of quasi-conforming finite element method is improved. In the second part, the exact-geometry based analysis is introduced to quasi-conforming framework. A new method, the exact geometry based quasi-conforming analysis is proposed. With this method, the mesh is not needed for the analysis process. The method provides an important algorithm for the next generation analysis system which can unify the geometry design and analysis.
     In the first part of this thesis, the element construction method and algorithm theory are researched. The assumed displacement method is proposed to improve the selection rule for displacement and strain trial functions. With this method, the connection between displacement and strain fields are strengthened, which qualify the elements with better robustness and convergence performance. The calculation for shape function of displacement field is implemented in the quasi-conforming method, which is important for calculation for consistent mass matrix and load vector. The general derivative of the strain-displacement relation is proposed. For the convergence problem, the Taylor expansion test is introduced which can check the convergence rate of element formulation. This part of work is summarized as the "assumed displacement quasi-conforming finite element method"
     With assumed displacement quasi-conforming finite element method, a series of structural analysis elements are formulated which are applicable for industrial analysis. A four-node element for plane problem is directly formulated in rectangular coordinate system, and the isoparametric transformation and numerical analysis which is essential for traditional finite element method is avoidable. The element is simple and efficient with explicit stiffness matrix. The formulation is used in the inverse analysis of panel stamping and the performance is better than4-node isoparametric element with great efficiency. The plant and shell elements are formulated with assumed displacement quasi-conforming method. The elements have great performance in convergence rate and extensive tests are carried out for the complex structural analysis. The results by present plate and shell elements are compared with results from commercial analysis software package and the analytical solution, which shows that present elements are precise and applicable.
     Exact geometry based analysis is a new method which apply the geometry model directly for analysis and the process for generating finite element mesh from geometry model is avoided. The advantagement of exact geometry based analysis compared with traditional finite element method is that the computer aided design and analysis can be unified and the industry design and analysis processes are greatly improved. For problems which are sensitive of the geometry appearance, such as the buckling analysis of shell and the fluid analysis around the aircraft, exact geometry based analysis is especially suitable and can improve the precision.
     In the second part of this thesis, the exact geometry concept is applied in quasi-conforming finite element method and the exact geometry based quasi-conforming analyisis is proposed. In this method the isoparametric framework is broken and the polynomial basis functions are used to simulate the physical fields and non-uniform rational B spline for precise geometry model. The strain-displacement equations are softened and the complete set of basis functions are used to simulate the physical fields. With exact geometry based quasi-conforming method the precision of analysis is improved, which provides an alterate technique choise for exact geometry based analysis.
     With the geometry modeling core "ACIS", an exact geometry based analysis software framework is constructed, which is able to input, modify and output the standard geometry models. With exact geometry based quasi-conforming analysis, the one dimensional column element, beam element, two dimensional plane element and plate element are developed.
     This thesis is the inheritance and development for quasi-conforming finite element method. The formulation framework and theory of quasi-conforming are improved, and a set of efficient elements are formulated. The exact geometry concept is implemented in quasi-conforming method and a new method is proposed. The work of this thesis provides both theory basis and also technique storage for numerical analysis.
引文
[1]President' s information technology advisory committee. Computational Science: Ensuring America's Competitiveness [Rj.Reprot to the President, 2005.
    [2]HU P, GONG K, BAO Y. Physical value mapping algorithm of mesh in fine CAE analysis of automobile body structure[J]. Chinese Journal of Mechanical Engineering (English Edition), 2005, 18(3): 338-34 1.
    [3]唐立民,陈万吉,刘迎曦.有限元分析中的拟协调元[J].大连工学院学报,1980,19(2):19-:35.
    [4]TANG L, CHEN W, LIU V, String net function approximation and quasi-conforming element technique, in: S. N. Atluri, R. H. Gallagher and 0.C. Zienkiewicz (Eds.) Hybrid and Mixed Finite Element Methods, John Wiley & Sons, Ltd, 1983, pp. 96-111.
    [5]胡平,夏阳.拟协调元研究综述[J].力学进展,2012, 42(6): 686-701.
    [6]HUGHES T J R, COTTRELL J A, BAZILEVS Y. isogeometric analysis: CAD, finite elements NURBS, exact geometry and mesh refinement [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39-41):4135-4195.
    [7]唐立民.有限元分析的若干基本问题[J].大连工学院学报,1979,(02):1-15.
    [8]陈万吉,刘迎曦,唐立民.拟协调元列式[J].大连工学院学报,1980,19(2):37-50.
    [9]唐立民,刘迎曦.拟协调罚有限元法[J].计算结构力学及其应用,1984,1(03):1-9.
    [10]TANG I., LU Y. Quasi conforming element techniques for penalty finite element methods[J].Finite Elements in Analysis and Design, 1985, 1(1):25-33
    [11]唐立民,刘迎曦.多变量拟协调元方法与罚函数近不可压缩单元[J].合肥工业大学学报,1984, (02):16-27.
    [12]陈万吉,唐立民.等参拟协调元[J].大连工学院学报,1981,20(1):63-74.
    [13]陈万吉.一个高精度八结点六面体单元[J].力学学报,1982, (03):262-271.
    [14]王家林.薄壁杆系结构有限元的新算法[J].机械强度,1984,8(04):68-73.
    [15]王家林.车辆结构力学分析程序JJD与4~9节点过渡型板壳单元[J].吉林工业大学学报,1983,(04):13-19.
    [16]肖为民,刘传义.四结点等参拟协调薄板元[J].浙江工学院学报,1988,(01):44-52.
    [17]许焕然,王家林.拟协调4节点等参板单元[J].吉林工业大学学报,1982, (02):1-15.
    [18]QIN Q H. Geomemically nonlinear analysis of shells by the variational approach and an efficient finite element formulation[J]. Computers & Structures, 1995, 55(4):727-733.
    [19]陈万吉,陈伦元,杨健.拟协调奇异元[J].固体力学学报,1984,(03):351-366.
    [20]汪小洪,霍洪举,金巨年.表面裂纹拟协调有限元分析[J].压力容器,1988,(04):46-51.
    [21]汪小洪,霍洪举,金巨年.拉弯复合应力下表面裂纹疲劳扩展规律研究[J].压力容器,1990,7(03):25-29.
    [22]姚敬之.奇应变拟协调元[J].河海大学学报,1988,16(04):72-83.
    [23]姚敬之.关于奇应变拟协调元的一点注记[J].河海大学学报,1991,19(04):127-129.
    [24]周建清,高仁良.三维奇性单元[J].计算结构力学及其应用,1993,10(01):78-84.
    [25]唐立民,刘迎曦.多变量拟协调元法解流函数形式的两维Navier-Stokes方程[J].大连工学院学报,1987,26(01):1-7.
    [26]刘迎曦,尚选钰,唐立民.用惩罚拟协调元法分析二维N-S问题[J].大连理工大学学报,1989,29(05):511-518.
    [27]刘迎曦,赵振峰,王鸣,李忠,唐立民.Stokos方程四节点有限单元的构造及其收敛性研究[J].水动力学研究与进展(A辑),1993,8(02):176-183.
    [28]吴时强,丁道扬,刘金培.三维对流问题的拟协调六面体单元解法[J].力学学报,2000,32(06):676-685.
    [29]LIU Y, TANG L A triangular quasi-conform ing finite element for transient dynamic analysis[J]. Acta Mech Sinica, 1990, 6(1): 59-63
    [30]陈铁云,周义先.随机拟协调有限元[J].计算结构力学及其应用,1990,7(01):17-24.
    [31]LU H, TANG L, WANG X. The upper bound on the collapse load of plate bending by using a quasi-conform ing element and the Monte-Carlomethod [J]. Finite Elements in Analysis and Design, 1993, 13(1) :65-73.
    [32]吕和祥.关于“拟协调元”的若干问题及在构造拱单元上的应用[J].固体力学学报,1981,(04):531-536.
    [33]LOMBOY G R, SUTHASUPRADIT S, KIM K D, ONATE E. Nonlinear Formulations of a Four-Node Quasi-Conforming Shell Element[J]. Archives of Computational Methods in Engineering, 2009, 16(2):189-250.
    [34]陈万吉,刘迎曦.拟协调元与广义变分原理[J].大连工学院学报,1980,19(03):71-80.
    [35]陈万吉.杂交位移模型的实施及其与拟协调元的关系[J].大连工学院学报,1982,21(04):61-70.
    [36]TONG P. New displacement hybrid finite element models for solid continua[J]. International Journal for Numerical Methods in Engineering, 1970, 2(1):73-83.
    [37]陈万吉.再论拟协调元与广义变分原理[J].固体力学学报,1983,(01):129-135.
    [38]TANG L, CHEN W, LIU Y. Formulation of Quasi Conforming element and Hu-Washizu principle[J]. Computers & Structures, 1984, 19(1-2):247-250.
    [39]唐立民,齐朝晖,丁克伟,田中旭,何东升.弹性力学弱形式广义基本方程的建立和应用[J].大连理工大学学报,2001,41(1):1-8.
    [40]丁克伟.拟协调有限元与弱形式广义方程[J].合肥工业大学学报(自然科学版),2000,32(12):1870-1879.
    [41]张鸿庆.多套函数的广义分片检验与十二参拟协调元[J].大连工学院学报,1982,21(03):11-19.
    [42]唐立民,陈万吉,刘迎曦.薄板弯曲分析中的拟协调元[J].建筑结构学报,1981,(02):10-22.
    [43]张鸿庆,王鸣.多套函数有限元逼近与拟协调板元[J].应用数学和力学,1985,(01):41-52.
    [44]张鸿庆,王鸣.拟协调元空间的紧致性和拟协调元法的收敛性[J].应用数学和力学,1986,7(05):409-423.
    [45]王鸣,张鸿庆.有限元空间的嵌入性质和紧致性[J] .应用数学和力学,1988,9(02):127- 1:34.
    [46]WANG M. L∞ CONVFRGFNCE OF QUASI-CONFORMING FINITE ELEMENTS FOR THE BIHARMONIC EQUATION[J].Journal of Computational Mathematirs,1995,13(02):108- 122.
    [47]石钟慈,陈绍春.九参拟协调元的直接分析[J].计算数学,1990,12(01):76-84.
    [48]陈绍春.拟协调元的双参数法分析[J]. 高等学校计算数学学报,1990,12(02):188-194.
    [49]石东洋,陈绍春.拟协调元的精度分析[J].高校应用数学学报A辑,2002, 17(1):121-124.
    [50]吕和祥.唐立民,刘秀兰.元和它的收敛率[J].应用数学和力学,1989,10(06):487-498.
    [51]刘迎曦,石广玉,唐立民.拟协调厚薄通用梁、板单元[J].大连工学院学报,1984,23(3):79-85.
    [52]吴敬东.关于悬索问题的拟协调元分析[J].沈阳化工学院学报,1996, 10(04):307-313.
    [3]唐立民,陈万吉,周建清.多变量拟协调平面四边元[J].计算结构力学及其应用,1988,5(01):1-6.
    [54]刘铁林,朱祎国,吕和祥.解析拟协调平面四边形单元[J].计算力学学报,1998,15(3):324-328.
    [55]吕和祥,刘振华,唐立民.极坐标中的拟协调环形单元[J].计算结构力学及其应用,1991,8(01):58-66.
    [56]刘传义,肖为民.拟协调九参数三角形板单元刚度[J].重庆建筑工程学院学报,1985,(01):34-52.
    [57]蒋和洋.用拟协调元法推导高精度三角形板弯曲单元[J].大连工学院学报,1981,(S2):21-28.
    [58]吕和祥,徐苏宁,唐立民.一个有效的任意四边形薄板弯曲单元[J].计算结构力学及其应用,1989,6(01):147-158.
    [59]ZHAO Z, CHEN W. New finite element model for analysis of Kirchhoff plate[J]. International Jonrnal for Numerical Methods in Engineering, 1995, 38(7):1201-1214.
    [60]SHI G, VOYIADJIS G Z. A Simple CO quadrilateral thick/thin shell element based on the refined shell theory and the assumed strain fields [J]. International Journal of Solids and Structures, 1991, 27(3):283-298.
    [61]SHI G,VOYIADJIS G Z. Efficient and accurate four-node quadrilateral plate bending element based on assumed strain fields[J]. International Journal for Numerical Methods in Engineering, 1991, 32(5):1041-1055.
    [62]孙建刚.一个简单、有效的四节点板弯曲单元[J].工程力学,1989,6(04):24-33.
    [63]孙建刚.拟协调四节点板弯曲单元在薄板振动分析中的应用[J].地震工程与工程振动,1995,15(03):69-72.
    [64]仝立勇,唐立民.四节点四边形拟协调Mindlin板单元[J].应用力学学报,1989,6(02):69-75+129.
    [65]朱菊芬,陈万吉.一种有效的厚薄板壳单元[J].固体力学学报,1997,18(04):323-328.
    [66]唐立民,刘迎曦,刘燕景.九参数拟协调离散Kirchhoff薄板单元[J].大连理工大学学报,1990,30(03):263-268+296.
    [67]刘燕景,刘迎曦.新型拟协调模式的离散kirchhoff薄板单元(LDKT—9)[J].大庆石油学院学报,1992,16(01):45-52.
    [68]金吾根.拟协调曲边旋转壳元[J].大连工学院学报,1981,(S2):29-36.
    [69]朱菊芬,郭兆璞.复合材料旋转壳的大变形有限元分析[J].大连工学院学报,1983,22(04):138-148.
    [70]刘迎曦,吕和祥,唐立民.拟协调圆柱壳单元[J].大连工学院学报,1981,20(02):23-30.
    [71]陈铁云,吴水云.圆柱薄壳结构的弹-塑性有限元分析[J].力学学报,1986,(S2):264-275+261.
    [72]吴水云,陈铁云.近海平台管状接头弹一塑性有限元分析[J].上海交通大学学报,1987,21(05):1-12+121.
    [73]吴连元,胡刚义.板壳结构弹塑性稳定性的有限元分析[J].应用力学学报,1993,10(01):106-110+140.
    [74]吕和祥,刘迎曦.有限元中的拟协调元及在构造双曲壳单元上的应用[J].大连工学院学报,1981,20(01):75-87.
    [75]魏钢,赵超燮.拟协调大变形矩形扁壳元及其应用[J].计算结构力学及其应用,1990,7(01):37-44.
    [76]刘红,陈万吉.拟协调SemiLoof和Loof扁壳元[J].固体力学学报,1992,1:(03):259-263.
    [77]吴连元,纪多辙,陈文良.板壳作线性屈曲的拟协调元分析[J].上海交通大学学报,1992,26(04):51-58.
    [78]罗蜀榕,吴连元.板壳弹塑性屈曲的有限元分析[J].固体力学学报,1993, 14 (03) :237-240.
    [79]邓可顺,陈建云.拟协调等腰梯形薄板弯曲元和薄壳元[J].大连理工大学学报,1995,35(01):17-24.
    [80]邓可顺,陈健云.拟协调等腰梯形壳元显式几何刚度阵及屈曲分析[J].计算结构力学及其应用,1995,12(02):160-169.
    [81]VOYIADJ1S G, SHI G. Nonlinear postbuckling analysis of plates and shells by fonr-noded strain element[J]. AIAA Journal, 1992, 30(4): 1110-1116.
    [82]朱菊芬,陈亮,郑罡.带旋转自由度拟协调三角形板壳单元[J].大连理工大学学报,2001,41(01):38-41.
    [83]KIM K D, LOMBOY G R, VOYIADJIS G Z. A 4 node assumed strain quasi-conforming shell element with 6 degrees of freedom[J]. International Journal for Numerical Methods in Engineering, 2003,58(14):2177 2200.
    [84]HU P,XIA Y, TANG L. A Four Node Reissuer Mindlin Shell with Assumed Displacement Quasi-Conforming Method[J]. Cmes-Computer Modeling in Engineering & Sciences, 2011, 73(2):103-135.
    [85]GUAN Y, TANG L. A quasi conforming nine node degenerated shell finite element[J]. Finite Elemeuts in Analysis and Design,1992,11 (2): 165- 176.
    [86]GUAN Y,TANG L. Nonlinear quasi-conforming finite element method[J]. Acta Medianica Sinica, 1993, 9(3):269-276.
    [87]GUAN Y, TANG L. A geometrically non-linear quasi conforming nine-node quadrilateral degenerated solid shell element[J]. International Journal for Numerical Methods in Engineering, 1995, 38(6):927-942.
    [88]关玉璞,唐立民.拟协调九结点四边形层合板壳有限元[J].南京航空航天大学学报,1994,26(2):278-282.
    [89]关玉璞,张宗科.拟协调轴对称三结点退化壳单元[J].上海交通大学学报,1998,32(11).
    [90]蒋和洋.Quasi conforming Mode Nonlinear Finite Element and Others[D]. DaLian:Dalian Institute of Technology, 1984.
    [91]蒋和洋.拟协调模式非线性有限元[J].计算结构力学及其应用,1984,1(02):49-60.
    [92]蒋和洋,唐立民.用拟协调元进行壳体非线性稳定分析[J].工程力学,1985,2(03):12-19.
    [93]蒋和洋.有初始缺陷的板壳的大挠度分析[J].上海力学,1987, 8(01):10-17.
    [94]蒋和洋.拟协调模式大变形板壳单元的变分基础[J].大连理工大学学报,1988,28(03):23-28.
    [95]邹贵平.拟协调非线性任意四边形薄板单元[Jl.沈阳建筑工程学院学报,1989,5(04):23-32.
    [96]关玉璞.多变量拟协调退化壳有限元研究[D].大连:大连理工大学,1991.
    [97]关玉璞,唐立民.一个非线性拟协调退化壳有限元[J].航空学报,1993,14(09):475-482.
    [98]关玉璞,唐立民,高德平.非线性拟协调元与杂交/混合元:Ⅰ.关于Hell inger — Re issuer变分原理[J].计算结构力学及其应用,1994,11(04):387-391.
    [99]关玉璞,唐立民,高德平.非线性拟协调元与杂交/混合元:Ⅱ.关于Hu—Washizu变分原理[J].计算结构力学及其应用,1995,12(01):47-52.
    [100]SHI G, VOYIADJIS G Z. Geometrically nonlinear analysis of plates by assumed strain element with explicit tangent stiffness matrix[J]. Computers & Structures, 1991, 41(4):757-763.
    [101]WEGMULLER A W. Elastic-plastic finite element analysis of plates[jl. Archive of Applied Mechanics, 1975, 44(2) :63-77.
    [102]SHI G, VOYIADJIS G Z. A simple non layered finite element for the elasto plastie analysis of shear flexible plates[J]. International Journal for Numerical Methods in Engineering, 1992, 33(1):85-99.
    [103]SHI G, VOVIADJIS G Z. A computal ional model for FE ductile plastic damage analysis of plate bendingl[J]. Journal of Applied Mechanics, 1993, 60(3):749-758.
    [104]UEDA Y, VAO T. The plaslic node method: A new method of plastic analysis[J]. Computer Methods in Applied Mechanics and Engineering, 1982, 34(1-3):1089-1104.
    [105]SHI G, ATLURI S N. Elasto-plastic large deformation analysis of space-frames: A plastic-hinge and stress-based explicit derivation of tangent stiffnesses[J]. International Journal for Numerical Methods in Engineering, 1988, 26(3):589-615.
    [106]WANG X,JIANG H Y,LEE L H N. Finite deformation formulation of a shell element for problems of sheet metal forming[J]. Computational Mechanics, 1991, 7(5):397-411.
    [107]WANG X, LEE L H N. Postbifurcation behavior of wrinkles in square metal sheets under Yoshida Test[J]. International Journal of Plasticity, 1993, 9(1):1-19.
    [108]KIM K D, LOMBOY G R. A co-rotational quasi-conforming 4-node resultant shell element for large deformation elasto-plastic analysis[J]. Computer Methods irr Applied Mechanics and Engineering, 2006, 195(44-47):6502-6522.
    [109]KIM K D, LOMBOY G R, HAN S C. Geometrically non-linear analysis of functionally graded material (FGM) plates and shells using a four-node quasi-conforming shell element [J]. Journal of Composite Materials, 2008, 42(5):485-511.
    [110]HAN S C, LOMBOY G R, KIM K D. Mechanical vibration and buckling analysis of FGM plates and shells using a four-node quasi-conforming shell element[J]. International Journal of Structural Stability and Dynamics, 2008, 8(2):203-229.
    [111]VOYIADJIS G Z, WOELKE P. General non-linear finite element analysis of thick plates and shells[J]. International Journal of Solids and Structures, 2006, 43(7-8):2209-2242.
    [112]WOELKE P, VOYIADJIS G Z, PERZYNA P. Elasto-plastic finite element analysis of shells with damage due to microvoids [J]. International Journal for Numerical Methods in Engineering, 2006, 68(3):338-380.
    [113]陈浩然,衣翃,温玄玲.复合材料层合板壳通用单元和等网格加筋板壳的局部稳定性[J].航空学报,1988,9(03):177-183.
    [114]朱菊芬,汪海.大挠度层合板的拟协调罚单元[J].复合材料学报,1989, 6(04) : 39-47+108.
    [115]HUANG B Z,SHENOY V B, ATLURI S N. A quasi conforming triangular laminated composite shell element based on a refined first order theory[J]. Computational Mechanics, 1994, 13(4):295 314.
    [116]II1ANG B Z, AI'LURI S N. A simpLe method to follow post buckling paths in finite element analysis[J]. Computers & Structures, 1995, 57(3):477-189.
    [117]杨刚,张爱锋,黄宝宗.层合壁板的二次屈曲[J].沈阳建筑工程学院学报(自然科学版),2001,17(04):249-251.
    [118]PARK T Y, KIM K D, HAN S C. Linear static and dynamic analysis of laminated compositc plates and shells using a 4 node quasi-conforming shell element[J]. Composites Part B Engineering, 2006, 37(2 3):237-248.
    [119]陈浩然,衣翃.复合材料层板的拟协罚单元[J].复合材料学报,1987, 4(01):67-72+102.
    [120]朱菊芬,汪海.层合板的压剪稳定性及其后屈曲性态研究[J].大连理工大学学报,1989,29(05):519-526.
    [121]朱菊芬,周承芳.加筋板壳稳定性分析中一种简单的有限元模式[J].应用力学学报,1993,10(04):113-117+130.
    [122]郭兆璞,弓俊寿.复合材料加筋板的动力分析[J].复合材料学报,1990,7(03):75-81.
    [123]PIAN T H H. State-of-the-art development of hybrid/mixed finite element method [J]. Finite Elements in Analysis and Design, 1995, 21(1-2):5-20.
    [124]ZHANG Z Q, LIU G R. An edge-based smoothed finite element method (ES FEM) using 3-nocle triangular elements for 3D non-linear analysis of spatial membrane structures[J]. International Journal for Numerical Methods in Engineering, 2011, 86(2):135-154.
    [125]ZHANG Z Q, LIU G R. Upper and lower bounds for natural frequencies: A property of the smoothed finite element methods[J]. International Journal for Numerical Methods in Engineering, 2010, 84(2):149-178.
    [126]CHEN J S, WU C T, YOON S, YOU Y. A stabilized conforming nodal integration for Galerkin mesh-free methods[J]. International journal for Numerical Methods in Engineering, 2001, 50(2):435-466.
    [127]LIU G R, NGUYEN T T. Smoothed finite element methods [M].CRC Press, 2010.
    [128]CHEN J S, YOON S, WU C T. Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods[J]. International Journal for Numerical Methods in Engineering, 2002, 53(12):2587-2615.
    [129]龙驭球,龙志飞,岑松.新型有限元论[M].清华大学出版社,2004.
    [130]HOLLIG K. Finite element methods with B-splines [M]. Philadelphia: Society for Industrial and Applied Mathematics, 2003.
    [131]CHO M, ROM H Y. Development of geometrically exact new shell elements based on general curvilinear co-ordinates[J]. International Journal for Numerical Methods in Engineering, 2003, 56(1):81-115.
    [132]BAZILEVS Y, DA VE1GA L B, COTTRELL J A, HUGHES T J R, SANGALLI G. isogeometric analysis: Approximation, stability and error estimates for h-refined meshes[J]. Mathematical Models & Methods in Applied Sciences, 2006, 16(7):1031-1090.
    [133]COTTRELL J A, REALI A, BAZILEV'S Y, HUGHES T J R. Isogeometric analysis of structural vibrations[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41-43):5257-5296.
    [134]KIENDL J, BLETZINGER K U, LINTIARD J, WUCIINER R. Isogeometric shell analysis with Kirchlioff-Love elements [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(49 52):3902-3914.
    [135]BENSON D J, BAZILEVS Y, HSU M C, HUGHES T J R. Isogeometric shell analysis: The Reissner-Mindlin shell[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5-8):276-289.
    [136]BENSON D J, BAZILEVS Y, HSU M C, HUGHES T J R. A large deformation, rotation-free, isogeometric shell[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13-16):1367-1378.
    [137]THAI C H,NGUYEN-XUAN H, NGUYEN-THANH N, LE T H,NGUYEN-THOI T, RABCZUK T. Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach[J]. International journal for Numerical Methods in Engineering, 2012, 91(6):571-603.
    [138]BAZILEVS Y, CALO V M, ZHANG Y, HUGHES T J R. Isogeometric fluid-structure interaction analysis with applications to arterial blood flow[J]. Computational Mechanics, 2006, 38(4-5):310-322.
    [139]BAZILEVS Y, HSU M C, KIENDL J, BENSON D J. A computational procedure for prebending of wind turbine blades[J]. International Journal for Numerical Methods in Engineering, 2012, 89(3):323-336.
    [140]BALZER J, VIORWALD T. Isogeometric finite-elements methods and variational reconstruction tasks in vision A perfect match [J]. 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012:1624-1631.
    [141]BAZILEVS Y, ZHANG Y, CALO V M, GOSWAMI S, BAJAJ C L, HUGHES T J R. Isogeoinetric analysis of blood flow: A NURBS based approach [M]. 2007.
    [142]CALO V M, BRASHER N F, BAZILEV'S Y, HUGHES T J R. Mult iphysics model for blood flow and drug transport with application to patient-specific coronary artery flow [J]. Computational Mechanics, 2008, 43(1):161 177.
    [143]AKKERMAN I, BAZILEV'S Y, KEFS C E, FARTHING M W. Isogeometric analysis of free-surfae flow[J]. Journal of Computational Physics, 2011, 230(11):4137 4152.
    [144]COHEN E, MARTIN T, KIRBY R M, I.YCHE T, RTESENELD R F. Analysis aware modeling: Understanding quality considerations in uiodeLing for isogeometric analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5-8):334 356.
    [145]YANG P, QIAN X. A B spline-based approach to heterogeneous objects design and analysis[J]. Computer Aided Design, 2007, 39(2):95-111.
    [146]A1GNER M,HEINRICH C, J TTLER B, PILGERSTORFER E, SIMEON B, VUONG A, Swept Volume Parameterization for Isogeometrie Analysis Mathematics of Surfaces Ⅻ, in: Hancock E, Mart in R and Sabin M (Eds.), Springer Berlin, Heidelberg, 2009, pp. 19-41.
    [147]MARTIN T,COHEN E, KIRBY R M. Volumetric parameterization and trivariate B-spline fitting using harmonic functions[J]. Computer Aided Geometric Design, 2009, 26(6):648 664.
    [148]QIAN X, SIGMUND O. Isogeometric shape optimization of photonic crystals via Coons patches[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(25-28):2237-2255.
    [149]LI K,QIAN X. Isogeometric analysis and shape optimization via boundary integral[J]. Computer Aided Design, 2011, 43(11):1427-1437.
    [150]覃先云,张见明,李光耀,张正.边界面法分析三维实体线弹性问题[J].固体力学学报,2011,32(05):500-506.
    [151]SIMPSON R N, BORDAS S P A, TREVELYAN J, RABCZUK T. A two dimensional Lsogeoinetric Boundary Element Method for elastostatic analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 209-212:87-100.
    [152]ZHANG Y, Isogeometric analysis based on scaled boundary finite element method, in: 9th World Congress on Computational Mechanics and 4th Asian Pacific Congress on Computational Mechanics, WCCM/APCOM 2010 I0P Conference Series: Materials Science and Engineering, 2010, pp. 22-37.
    [153]BAZILEVS Y, CALO V M, COTTRELL J A, EVANS J A, HUGHES T J R, LIPTON S, SCOTT M A, SEDERBERG T W. Isogeometric analysis using T-splines[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5-8):229-263.
    [154]NGUYEN THANH N, K1ENDL J, NGUYEN XUAN H, W CHNER R, BLETZINGER K U, BAZILEVS Y, RABCZUK T. Rotation free isogeometric thin shell analysis using PHT splines[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47-48):3410-3424.
    [155]NGUYEN THANH N, NGUYEN XUAN H, BORDAS S P A, RABCZUK T. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids [J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(21-22):1892-1908.
    [156]BAZILEVS Y, HUGHES T J R. Weak imposition of Dirichlet boundary conditions in fluid mechanics[J]. Computers & Fluids, 2007, 36(1):12-26.
    [157]WANG D D, XUAN J C. An improved NURBS based isogeometric analysis with enhanced treatment of essential boundary conclitions [J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37-40):2425-2436.
    [158]轩军厂.基于改进边界条件施加方式和应变光滑子域积分的几何精确NURBS有限元分析[D].厦门:厦门大学,2010.
    [159]CHEN J S, WANG H P. New boundary coudition treatnients in meshfree computation of contact problems[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 187(34) :441-468.
    [160]EMBAR A, DOLBOW J,HARARI I. Imposing Uirichlet boundary conditions with Nitscho method and spline-based finite elements[J|. international Journal for Numerical Methods in Engineering, 2010, 83(7):877-898.
    [161]陈涛,莫蓉,万能,宫中伟.等几何分析中采用Nitsche法施加位移边界条件[J].力学学报,2012,44(02):369-381.
    [162]COTTRELL J A, HUGHES T J R, BAZILEVS Y. isogeometric Analysis: Toward Integration of CAD and FEA [M].New York: Wiley, 2009.
    [163]王敏中,王炜,武际可.弹性力学教程[M].北京:北京大学出版社,2002.
    [164]0. C. ZIENKIEWICZ, R. L TAYLOR. The Finite Element Method [M]. Fifth. Oxford: Butterworth Heinemann, 2006.
    [165]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [166]COOK R D, MALKUS D S, PLESHA M E, WITT R J. Concepts and applications of finite element analysis [M].4th. NewYork: Wiley&Sons, 2007.
    [167]IRONS B M. Engineering Applications of Numerical Integration in Stiffness Methods[J]. AIAA Journal, 1966, 4(11):2035-2037.
    [168]WILSON E L, TAYLOR R L, DOHERTY W P, GHABOISSI J, Incompatible displacement models, in: S. J. Fenves (Ed.) Numerical and Computer Methods in Structural Mechanics, Academic Press, 1973.
    [169]TAYLOR R, WILSON E, BERESFORD P. A non-conforming element for stress analysis[J]. International Journal for Numerical Methods in Engineering, 1976, 10(6):1211 1219.
    [170]吴长春,卞学鐄.非协调数值分析与杂交元方法[M].科学出版社,1997.
    [171]WL C, HUANG M, PTAN T. Consistency condition and convergence criteria of incompatible elements: general formulation of incompatible functions and its application[J]. Computers & Structures, 1987, 27(5):639-644.
    [172]田宗漱,卞学鐄.多变量变分原理与多变量有限元方法[M].北京:科学出版社,2011.
    [173]龙驭球,陈晓明.两个抗畸变的四边形膜元[J].清华大学学报(自然科学版),2003,43(010):1380-1385.
    [174]CHEN X-M, CEN S, Fli X-R, LONG V-Q. A now quadrilateral area coordinate method (QACM-II) for developing quadrilatoral finite element models[J]. International Journal for Numerical Methods in Engineering, 2008, 73(13):1911 1941.
    [175]刘红,唐立民,昌和祥.带旋转自由度的拟协调平面元[J].计算结构力学及其应用,1990,7(04):23-31.
    [176]夏阳,胡平,唐立民.用拟协调元直接构造平面任意四边形单元进入有限元的禁区[J].力学学报,2012,41(5):839-850.
    [177]CAIV C, PAIIK J K, AT LI RJ S N. A Triangular Plate Element with Dril1ing Degrees of Freedom, for Large Rotation Analyses of Built up Plate/Shell Struetures, Based on the Reissuer Variational Principle and the von Karman Nonlinear Theory in the Co rolational Reference Frame[J]. CMES: Computer Modeling in Engineering & Sciences, 2010, 61(3):273-312.
    [178]NGLYEN-VAN H, MAI-DUY N, TRAN CONG T. An Improved Quadrilateral Flat Element with Drilling Degrees of Freedom for Shell Structural Ana lysis [J]. CMES: Computer Modeling in Engineering & Sciences, 2009, 49(2):81-111.
    [179]GUO Y Q, BATOZ J L, DETRAUX J M, DLROLX P. Finite element procedures for strain estimations of sheet metal forming parts[J]. International Journal for Numerical Methods in Engineering, 1990, 30(8):1385-1401.
    [180]鲍益东.汽车车身部件一步逆成形有限元法与碰撞仿真研究[D].吉林大学,2004.
    [1811 ZLENKIEW1CZ 0 C, TAYLOR R L, ZHl J Z. The finite element method: its basis and fundamentals [M]. 6th. Elsevier Butterworth-Heineuiaun, 2005.
    [182]YANG H T Y, SAIGAL S, MASUD A, KAPANIA R K. A survey of recent shell finite elemeuts[J]. International Journal for Numerical Methods in Engineering, 2000, 47(1-3) :101-127.
    [183]GUANGYU S, VOYIADJIS G Z. A Sixth-Order Theory of Shear Deformable Beams With Variational Consistent Boundary Conditions[J]. Journal of Applied Mechanics, 2011, 78(2):10-19.
    [184]CHEN W, WANG J, ZHAO J. Functions for patch test in finite element analysis of the Mindlin plate and the thin cylindrical shell[J]. Science in China Series G: Physics Mechanics and Astronomy, 2009, 52(5):762-767.
    [185]AKSU OZKUL T, TURE U. The transition from thin plates to moderately thick plates by using finite element analysis and the shear locking problem[J]. Thin-Walled Structures, 2004, 42 (10):1405-1430.
    [186]SOH A K, CEN S, LONG Y Q, LONG Z F. A new twelve DOF quadrilateral element for analysis of thick and thin plates[J]. European Journal of Mechanics-A/Solids, 2001, 20(2):299-326.
    [187]TIMOSHENKOS, KRIEGERSW. Theory of plates and shells [M].2nd. McGraw Hill Book Company, 1959.
    [188]CHOI C K, LEE T Y. Efficient remedy for membrane locking of 4 node flat shell elements by non-conforming modes[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(16-18):1961-1971.
    [189]MORLEY L S D. Skew plates and structures [M].2nd. Oxford: Pergamon Press, 1963.
    [190]陶政国.拟协调九参数三角形板单元的性态分析[J].上海力学,1982,(04):65-74.
    [191]何东升,唐立民.拟协调元的位移函数及节点误差[J].应用数学和力学,2002,23((02):119-127.
    [192]刘迎曦,李宝元,唐立民.多变量拟协调E函数单元[J].计算结构力学及其应用,1987,4(04):35-43.
    [193]刘迎曦,石广玉,唐立民.关于有限元多余零能模式的讨论[J].大连工学院学报,1983,22(03):61-67.
    [194]姜礼尚,庞之垣.有限元方法及其理论基础[M].人民教育出版社,1979.
    [195]石钟慈,王鸣.有限元方法[M].北京:科学出版社,2010.
    [196]施法中.计算机辅助几何设计与非均匀有理13样条[M].北京:高等教育出版社,2001.
    [197]PIEGL L A, TILLER W. The NURBS Book [M].2nd Germany: Springer Verlag, 1997.
    [198]ANSI, US Product Data Association. The initial graphics exchange specifieation (IGES) Version 5.3[S]. 1996.
    [199]ISO Secretariat, National Institute of Standards and Technology. Standard for the exchange of product model data(STEP)[S]. MD:Gaithersburg:1994.
    [200]National Institute of Standards and Technology. Programmer' s Hierarchical Interactive Graphics System (PHIGS)[S]. MD: Gaithersburg:1992.
    [201]中国质量技术监督局,中华人民共和国国家标准.初始图形交换规范Initial graphics exchange specification, IGES 5. 3[S].北京:2001.
    [202]ZHANG X, LIU X, LU M W, CHEN Y. Imposition of essential boundary conditions by displacement constraint equations in meshless methods[J]. Communications in Numerical Methods in Engineering, 2001, 17(3):165-178.
    [203]ECHTER R, BISCHOFF M. Numerical efficiency, locking and unlocking of NURBS finite elements[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5 8):374-382.
    [204]LU J, ZHOU X L. Cylindrical element: Isogeometrie model of continuum rod[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(1 4):233 241.
    [205]张亚辉,林家浩.结构动力学基础[-1].大连:大连理工大学出版社,2007.
    [206]LIU G R. A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part Ⅱ applications to solid mechanics problems[J]. International Journal for Numerical Methods in Engineering, 2010, 81(9):1127-1156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700