用户名: 密码: 验证码:
沥青路面裂纹形成机理及扩展行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疲劳开裂是沥青路面主要的早期破损形式之一,由于交通荷载和低温应力的反复作用,沥青路面中的微裂纹不断扩展、增密并贯穿连通形成宏观裂纹,导致路面结构破坏。开展沥青路面裂纹形成机理及裂纹扩展行为的研究可以更加全面地评价路面的力学行为,明确裂纹扩展时的应力状态和扩展路径,进一步理解路面损伤与早期破损的机理,并为路面工程师提供沥青路面设计与养护指导。认识和理解沥青路面结构裂纹形成机理及扩展过程,对提高沥青路面结构抗裂性能,优选沥青混合料,改进现有的路面设计方法都是非常重要的。
     本文首先搜集回顾了大量国内外相关文献和研究成果,对沥青路面裂缝类早期破损的现象和机理识别进行了详细的研究和总结。鉴于影响沥青路面早期裂缝的因素多而复杂,给出了影响沥青路面裂缝的因素及其相互作用关系图帮助识别裂纹形成机理。基于线弹性断裂力学有限元方法和窗口移动技术,编写了能同时处理四边形8结点等参单元和三角形6结点奇异等参单元的二维沥青路面裂纹扩展路径模拟程序——APCPPS~(2D)(2-D Asphalt Pavement Crack Propagation Path Simulator), APCPPS~(2D)程序能同时考虑交通荷载和温度荷载的作用,能同时模拟多条裂纹的扩展行为。通过对3个有解析解和实验结果的算例的模拟分析,表明了APCPPS~(2D)程序能够较为准确地计算出裂纹尖端的Ⅰ型和Ⅱ型应力强度因子,能够较好地模拟Ⅰ型、Ⅱ型和Ⅰ-Ⅱ复合型裂纹的扩展行为。
     设计了模拟沥青混凝土复合型裂纹扩展行为的偏直裂纹三点弯曲梁试验,并对一系列三点弯曲梁中复合型裂纹的扩展路径进行了实验和数值模拟。结果表明,随着预制裂纹偏离梁中线距离的增加,裂纹的起裂角和峰值荷载都增大。裂纹扩展路径总体上遵循一定的规律,试验结果表明,由于沥青混凝土材料颗粒的不均匀性,裂纹扩展路径通常沿着集料颗粒边界扩展而很少切断颗粒。
     在国内首次通过网格显式地模拟了沥青路面结构中裂纹的扩展路径。应用APCPPS~(2D)程序分别模拟了两种路面开裂形式:一种是沥青路面表面存在一条表面裂纹的开裂路面;另一种是沥青路面表面有一条表面裂纹且基层底面有一条反射裂纹。在开裂路面的综合参数研究中详细评价了不同的交通荷载
    
    兰止乙一一‘一亘些巡支墅胜鲤丝
    与低温荷载组合、不同的路面结构组合、非均匀分布轮胎压力及超载和荷载
    谱(大小和相对裂纹的位置)的影响。荷载的位置连同沥青面层和基层刚度对
    裂纹的扩展有很大的影响,计算出了裂纹增长的方向且表明随着裂纹长度的
    增加其扩展方向会发生改变。正常路面结构表面裂纹的形成及进一步的扩展
    主要是由低温应力及低温疲劳应力引起的,其开裂方式主要是I型开裂。低温
    下交通载荷的重复作用也会加速路面裂纹的疲劳扩展。路面结构(厚度和刚度)
    的不同组合对沥青路面表面裂纹的扩展行为有较大的影响。基层底面裂纹的
    应力强度因子随着基层模量的增加而增加,随着面层模量的增加而减小;而
    表面裂纹的应力强度因子随着基层模量的增加而减小,随面层模量的增加而
    增加。水平荷载对表面裂纹复合型应力强度因子有较大的影响,而对基层底
    面裂纹复合型应力强度因子的影响较小。非均布轮胎压力对路面表面裂纹和
    基层底面裂纹应力强度因子的影响也较大。裂纹随着交通荷载作用位置的不
    同而表现出明显不同的裂纹扩展路径,表面裂纹呈现向下偏离荷载的曲线扩
    展路径,而基层底面裂纹表现为向上偏向荷载的曲线扩展路径。沥青面层和
    基层的弹性模量对表面裂纹和基层底面裂纹的扩展路径有较大的影响。
     通过沥青路面裂纹扩展行为的分析表明,裂纹扩展的机理主要是拉应力,
    无论荷载的位置如何,剪应力对控制裂纹的生长并不重要。虽然裂纹尖端处
    于I一11复合型应力状态下,但拉应力仍然是裂纹扩展的主要驱动力。
Fatigue cracking is one of the major modes of premature distresses in asphalt pavements. Cracks of asphalt pavements start as microcracks and later propagate, densify, and coalesce due to repeated traffic loading or low temperature thermal stresses or combinations of both to form macrocracks, and result in structural distresses of asphalt pavements. Research on initiation mechanism and propagation behavior of cracks in asphalt pavements is necessary for a sound evaluation of mechanistic behavior of pavements. It is a great help to us to knowledge the state of the stress field and crack propagation path, to improve understanding of the mechanism of pavement damage and premature failure, and to provide guidance for pavement engineers in designing and maintaining asphalt pavements. The knowledge and understanding of the mechanism of crack initiation and propagation processes are very important to enhance the resistance cracking performance of asphalt pavement structure, to select optimum asphalt mixtures and to
     improve the present design methods.
    Firstly, based on literature review of a large number of relevant domestic and international research findings, the mechanism of premature distresses and identification of cracks in asphalt pavements were investigated and summarized in detail. As there are many complicated factors that have influence on premature cracking of asphalt pavements, a schematic of influencing factors having interaction relationship is given to help identify crack initiation mechanism. Using linear elastic fracture mechanics and finite element method and window moving technique, a two-dimensional asphalt pavement crack propagation path simulator (APCPPS2D) program has been developed with a combination of 8-node quadrilateral isoparametric element and 6-node triangular collapsed singular isoparametric element. APCPPS2D program can consider traffic loading and temperature variance simultaneously, and can simulate the propagation paths of multiple cracks at the same time. Verification and validation studies were conducted and results
    were compared to three examples published in literature that have analytical solutions and experimental results. The results indicate that the
    
    
    program is capable of accurately calculating the stress intensity factor and modeling the propagation paths of mode I crack, mode II crack and mixed mode I-II crack.
    In order to model the mixed mode crack propagation behavior of asphalt concrete, a three point bending beam with mixed mode notched has been designed. A series of mixed mode three point bending beam tests and numerical simulations have been performed to simulate mixed mode crack initiation and growth. The results showed that the crack initiation angle and the peak load increased as the distance of the preexisting crack from the midpoint of the beam increased. The crack propagation path follows some regularity in general. The experimental results showed that the crack propagation path followed, mainly, the boundaries of the grains and rarely cut through the grains with differences attributed to the grain size effect in asphalt concrete.
    It is the fist time that crack propagation path in asphalt pavements is modeled explicitly by the mesh in domestic. Two kinds of cracked pavement structures have been simulated using APCPPS2D program. One is a cracked pavement with a near surface crack; another is a cracked pavement with a near surface crack and a reflective crack at the bottom of the base. A comprehensive parametric study of the cracked pavement has been performed to evaluate effects of various combinations of traffic load and low temperature load, effects of various combinations of pavement structure, effects of non-uniform distributed tire pressures and overload and load spectra (magnitude and positioning with respect to crack). Load positioning was shown to have the most influence on crack propagation, along with asphalt and base layer stiffness. The direction of crack growth was computed and was shown to change with increasing crack length. The near surface cra
引文
[1] 沙庆林.高速公路沥青路面早期破坏现象及预防.北京:人民交通出版社,2001:105-139
    [2] Burmister, D. M. Theory of Stresses and Displacements in Layered Systems. Proceedings of the Highway Research Board, 1943:127-148
    [3] Burmister, D. M. The General Theory of Stresses and Displacements in Layered Soil Systems. Journal of Applied Physics, 1945, 16(2): 89-96; 16(3):126-127; 16(5): 296-302
    [4] Huang, Y. H. Pavement Analysis and Design. Prentice-Hall, Inc., 1993
    [5] H. Ali, S. Tayabji. Evaluation of Mechanistic-Empirical Performance Models for Flexible Pavements, In 77th Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 1998
    [6] Newcomb, D. E., and Bruce A. Chadbourn. Mechanistic-Empirical Design Short Course. University of Minnesota, Department of Civil Engineering, 1996
    [7] D. Timm, B.Birgisson and D. Newcomb. Development of Mechanistic Empirical Pavement Design in Minnesota. In 77th Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 1998
    [8] Thompson, M. R. ILLI-PAVE Based Full-Depth Asphalt Concrete Pavement Design Procedure. In Proceedings, 6th International Conference on the Structural Design of Asphalt Pavements, The University of Michigan, Ann Arbor, Michigan, July 1987
    [9] Shook, J. F,, F. N. Finn, M. W. Witczak and C. L. Monismith. Thickness Design of Asphalt Pavements The Asphalt Institute Method. In Proceedings, 5th International Conference on the Structural Design of Asphalt Pavements, The Delft University of Technology, The Netherlands, 1982
    [10] H. Ali, S. Tayabji, and F. L. Torre. Calibration of a Mechanistic-Empirical Rutting Model for In-Service Pavements, In 77th Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 1998
    [11] R. S. Hairchandran, N. Buch and G. Y. Baladi. Flexible Pavement Design in Michigan: Transition from Empirical to Mechanistic Methods. In 80th Annual
    
    Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2001. Paper No.01-2817
    [12] D. L. Smiley, N. J. Buch, G. Y. Baladi and A. Gurjar. Implementation Issues in Mechanistic Flexible Pavement Design: Michigan Experience. In 81st Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2002
    [13] Crince, J. E. and Baladi, G. Y. Field and Laboratory Characterization of Asphalt Mixes for the Design of Flexible Pavements. In 81st Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2002
    [14] Bruce A. Chadbourn. Development of a Quick Reliability Method for Mechanistic-Empirical Asphalt Pavement Design. In 81st Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2002
    [15] Jayawickrama, P. W. and R. L. Lytton. Methodology for Predicting Asphalt Concrete Overlay Life Against Reflective Cracking. Proceedings, 6th International Conference on the Structural Design of Asphalt Pavements, 1987:912-924
    [16] E. B. Owusu-Antwi, L. Khazanovich and L. Titus-Glover. A Mechanistic Based Model for Predicting Reflective Cracking in AC Overlaid Pavements. In 77th Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 1998
    [17] D. V. Ramsamooj. Reflective Cracking Resistance of Asphalt Concrete Overlays on Rigid Pavements. In 77th Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 1998
    [18] Reddy, S., Reddy, K., Pandey, B. Cracking in Bituminous Layers Placed Over Cracked Pavements. In 78th Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 1999
    [19] Bemanian, S. Cost-Effective Rehabilitation of Portland Cement Concrete Pavements in Nevada. In 78th Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 1999
    [20] A. Gibney, G. Lohan and V. Moore. Laboratory Study of the Resistance of Bituminous Overlays to Reflective Cracking. In 81st Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2002
    [21] J. B. Sousa, J. C. Pais, R. Saim, G. B. Way and R. N. Stubstad. Development of a Mechanistic-Empirical Based Overlay Design Method for Reflective Cracking. In 81st Annual Meeting (CD-ROM), TRB, National Research Council, Washington,
    
    D.C., 2002
    [22] Yoder, E. and M. Witczak. Principles of Pavement Design. John Wiley and Sons, Inc., New York, 1975
    [23] Center for Research and Contract Standardization in Civil and Traffic Engineering (CROW). Surface Cracking in Asphalt Layers. Report of the Working Group, Record 4, The Netherlands, 1990
    [24] Paris, P. C., and Erdogan, F. A Critical Analysis of Crack Propagation Laws, Transactions of the ASME, Journal of Basic Engineering, Series D, 1963, 85(3):528-534
    [25] Majidzadeh, K., L. O. Talbert and M. Karakouzian. Development and Field Verification of A Mechanistic Structural Design System in Ohio. Proceedings, 4th International Conference Structural Design of Asphalt Pavements, The University of Michigan, Ann Arbor, Michigan, 1977:402-408
    [26] R. A. Schapery. A Theory of Crack Growth in Visco-Elastic Media. Report MM 2764-73-1, Mechanics and Materials Research Center, Texas A&M University, 1973
    [27] R. A. Schapery. A Theory of Crack Initiation and Growth in Visco-Elastic Media, Part Ⅰ: Theoretical Development, Part Ⅱ: Approximate Methods of Analysis, Part Ⅲ: Analysis of Continuous Growth. International Journal of Fracture, 1975, 11(1): 141-159; 11(3): 369-388; 11(4): 549-562
    [28] R. A. Schapery. A Method for Predicting Crack Growth in Nonhomogeneous Visco-Elastic Media. International Journal of Fracture, 1978, 14(3): 293-309
    [29] M. M. J. Jacobs. Crack Growth in Asphaltic Mixes. Ph.D. Dissertation, Faculty of Civil Engineering, Delft University of Technology, Delft, 1995
    [30] Molenaar A. A. A. Structural Performance and Design of Flexible Pavements and Asphalt Concrete Overlays. Ph.D. Dissertation, Faculty of Civil Engineering, Delft University of Technology, Delft, 1983
    [31] Lytton, R. L., Shanmugham, U. and Garrett, B.D. Design of Asphalt Pavements for Thermal Fatigue Cracking. Report FHWA/TX-83-284-4, Texas Transportation Institute, Texas A&M University, 1983
    [32] Lytton, R. L., Uzan, J., Fernando, E. G., Roque, R., Hiltunen, D. and S. M. Stoffels. Development and Validation of Performance Prediction Models and Specifications for Asphalt Binders and Paving Mixes. Report No. SHRP-A-357,
    
    Strategic Highway Research Program (SHRP), National Research Council, Washington, D.C., 1993
    [33] T. W. Hsu and K. H. Tseng. Effect of Rest Periods on Fatigue Response of Asphalt Concrete Mixtures. Journal of Transportation Engineering, ASCE, 1996, 122(4): 316-322
    [34] Tayebali, A. A., Deacon, J. A., Coplantz, J. S., Harvey, J. T., Finn, F. N. and C. L. Monismith. Fatigue Response of Asphalt-aggregate Mixes. Report No. SHRP-A-404, Strategic Highway Research Program (SHRP), National Research Council, Washington, D.C., 1994
    [35] Mobasher, B., Mamlouk, M. S., and H-M, Lin. Evaluation of Crack Propagation Properties of Asphalt Mixtures, Journal of Transportation Engineering, ASCE, 1997, 123(5): 405-413
    [36] R. A. Schapery. Correspondence Principles and a Generalized J-integral for Large Deformation and Fracture Analysis of Viscoelastic Media. International Journal of Fracture, 1984, 25(1): 195-223
    [37] Kim, Y. R. and D. N. Little. One-dimensional Constitutive Modeling of Asphalt Concrete. Journal of Engineering Mechanics, ASCE, 1990, 116(4):751-772
    [38] Kim, Y. R., Lee, Y. and H. J. Lee. Correspondence Principle for Characterization of Asphalt Concrete. Journal of Materials in Civil Engineering, ASCE, 1995, 7(1): 59-68
    [39] Lee, H. J., and Y. R. Kim. A Viscoelastic Constitutive Model for Asphalt Concrete under Cyclic Loading. Journal of Engineering Mechanics, ASCE, 1998, 124(1): 32-40
    [40] R. A. Schapery. A Micromechanical Model for Nonlinear Viscoelastic Behavior of Particle-reinforced Rubber with Distributed Damage. Engineering Fracture Mechanics, 1986, 25(5-6): 845-867
    [41] R. A. Schapery. A Theory of Mechanical Behavior of Elastic Media with Growing Damage and Other Changes in Structure. Journal of the Mechanics and Physics of Solids, 1990, 38(2): 215-253
    [42] S. W. Park, Y. R. Kim and R. A. Schapery. A Viscoelastic Continuum Damage Model and its Application to Uniaxial Behavior of Asphalt Concrete. Mechanics of Materials, 1996, 24:241-255
    
    
    [43] S. W. Park and R. A. Schapery. A Viscoelastic Constitutive Model for Particulate Composites with Growing Damage. International Journal of Solids and Structures, 1997, 34(8): 931-947
    [44] K. Ha and R. A. Schapery. A Three-dimensional Viscoelastic Constitutive Model for Particulate Composites with Growing Damage and Its Experimental Validation. International Journal of Solids and Structures, 1998, 35(26-27):3497-3517
    [45] R. A. Schapery. Nonlinear Viscoelastic and Viscoplastic Constitutive equations with Growing Damage. International Journal of Fracture, 1999, 97(1):33-66
    [46] Kim, Y. R., Lee, H. J., and D. N. Little. Fatigue Characterization of Asphalt Concrete Using Viscoelasticity and Continuum Damage Theory. Journal of the Association of Asphalt Paving Technologists, 1997, 66:520-569
    [47] Lee, H. J., and Kim, Y. R. Viscoelastic Continuum Damage Model of Asphalt Concrete with Healing. Journal of Engineering Mechanics, ASCE, 1998, 124(11):1224-1232
    [48] Si, Z., D. N. Little, and R. L. Lytton. Characterization of Microdamage and Healing of Asphalt Concrete. Journal of Materials in Civil Engineering, ASCE,2001
    [49] Si, Z., D. N. Little, and R. L. Lytton. Evaluation of Fatigue Healing Effect of Asphalt Concrete by Pseudo Stiffness. In 81St Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2002
    [50] D. X. Cheng, D. N. Little, R. L. Lytton and J. C. Holste. Surface Energy Measurement of Asphalt and its Application to Predicting Fatigue and Healing in Asphalt Mixtures. In 81st Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2002
    [51] Chang, K. G. and Meegoda, J. N. Micro-mechanics Simulation of Hot Mix Asphalt. Journal of Engineering Mechanics, ASCE, 1997, 123(5): 495-503
    [52] Chang, K. G. and Meegoda, J. N. Micro-mechanics Simulation of Hot Mix Asphalt. In 78th Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 1999
    [53] W. Uddin. A Micromechanical Model for Prediction of Creep Compliance and Viscoelastic Analysis of Asphalt Pavements. In 78th Annual Meeting (CD-ROM),
    
    TRB, National Research Council, Washington, D.C., 1999
    [54] E. Schlangen and Van Mier. Experimental and Numerical Analysis of Micromechanics of Fracture of Cement-based Composites. Cement and Concrete Composites, 1992, 14(2):105-118
    [55] B. Chiaia, A. Vervuurt and J. G. M. Van Mier. Lattice Model Evaluation of Progressive Failure in Disordered Particle Composites. Engineering Fracture Mechanics, 1997, 57(2-3): 301-318
    [56] E. Schlangen and E. J. Graboczi. Fracture Simulations of Concrete Using Lattice Models: Computational Aspects. Engineering Fracture Mechanics, 1997,57(2-3): 319-332
    [57] Murthy N. Guddati, Zhen Feng, and Kim, Y. R. Towards a Micromechanics Based Procedure to Characterize Fatigue Performance of Asphalt Concrete. In 81st Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C.,2002
    [58] E. Masad, N. Somadevan, H. Bahia and S. Kose. Modeling and Experimental Measurement of Localized Strain Distribution in Asphalt Mixes. Journal of Transportation Engineering, ASCE, 2001, 127(6): 477-485
    [59] E. Masad and N. Somadevan. Microstructural Finite-Element Analysis of Influence of Localized Strain Distribution on Asphalt Mix Properties. Journal of Engineering Mechanics, ASCE, 2002, 128(10): 1105-1114
    [60] Ramsamooj, D. Fracture of Highway and Airport Pavements. Journal of Engineering Fracture Mechanics. 1993, 44(4): 609-626
    [61] Roque, R., Zhang, Z., and B. Sankar. Determination of Crack Growth Rate Parameters of Asphalt Mixtures Using the Superpave IDT. Journal of the Association of Asphalt Paving Technologists, 1999, 68:404-433
    [62] Tinggang Zhang and Lutfi Raad. Numerical Methodology in Fatigue Analysis: Basic Formulation. Journal of Transportation Engineering, ASCE, 1999, 125(6):552-559
    [63] Tinggang Zhang and Lutfi Raad. Numerical Methodology in Fatigue Analysis: Applications. Journal of Transportation Engineering, ASCE, 2001, 127(1): 59-66
    [64] Jacob Uzan, Arich Sides and Mordechai Perl. Viscoelasoplatic Model for Predicting Performance of Asphaltic Mixtures. In Transportation Research Record 1043, TRB, National Research Council, Washingtion, D.C., 1985:78-88
    
    
    [65] Dauzats, M. and Rampal, A. Mechanism of Surface Cracking in Wearing Courses, Proceedings, 6th International Conference on the Structural Design of Asphalt Pavements, The University of Michigan, Ann Arbor, Michigan, July 1987:232-247
    [66] M. A. Castell, A. R. Ingraffea, and L. H. Irwin. Fatigue Crack Growth in Pavements. Journal of Transportation Engineering, ASCE, 2000, 126(4): 283-290
    [67] Myers, L. A., R. Roque, and B. Birgisson. Propagation Mechanisms for Surface-Initiated Longitudinal Wheel Path Cracks. In 80th Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2001, Paper No.01-0433
    [68] B. Birgisson, B. Sangpetngam and R. Roque. Prediction of the Viscoelastic Response and Crack Growth in Asphalt Mixtures using the Boundary Element Method. In 81st Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2002
    [69] Yang Lu, and P. J. Wright. Temperature Related Visco-Elastoplstic Properties of Asphalt Mixtures. Journal of Transportation Engineering, ASCE. 2000, 126(1):58-65
    [70] A. C. Collop and D. Cebon. Stiffness Reductions of Flexible Pavements due to Cumulative Fatigue Damage. Journal of Transportation Engineering, ASCE,1996, 122(2): 131-139
    [71] H. D. Cheng, Jingli Wang, Y. G. Hu, and C. Glazier. A Novel Approach to Pavement Cracking Detection Based on Neural Network. In 80th Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2001, Paper No.01-3089
    [72] M. Wasantha Kumara, M. Gunaratne, J. J. Lu, and B. Dietrich. A Probabilistic Model for Prediction of Asphalt Pavement Crack Depths. In 81st Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2001
    [73] Uhlmeyer, J. S., K. Willoughby, L. M. Pierce and J. P. Mahoney. Top-Down Cracking in Washington State Asphalt Concrete Wearing Courses. In 79th Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2000, Paper No.00-0405
    [74] T. Svasdisant, M. Schorsch, G. Y. Baladi, and S. Pinyosunun. Mechanistic Analysis of Top-Down Cracks in Asphalt Pavements. In 81st Annual Meeting
    
    (CD-ROM), TRB, National Research Council, Washington, D.C., 2002
    [75] Gerritsen, A. H., van Gurp, C. A. P. M., van der Heide, J. P. J. Molenaar, A. A. A., and A. C. Pronk. Prediction and Prevention of Surface Cracking in Asphaltic Pavement. Proceedings, 6th International Conference on the Structural Design of Asphalt Pavements, The University of Michigan, Ann Arbor, Michigan, July 1987:378-391
    [76] Matsuno, S., and Nishizawa, T. Mechanism of Longitudinal Surface Cracking in Asphalt Pavement. Proceedings, 7th International Conference on Asphalt Pavements, The University of Nottingham, 1992:277-291
    [77] Myers, L., R. Roque, and B. E. Ruth. Mechanisms of Surface-Initiated Longitudinal Wheel Path Cracks in High-Type Bituminous Pavements. Journal of the Association of Asphalt Paving Technologists, 1998, 67:401-432
    [78] de Beer, M., C. Fisher, and F. Jooste. Determination of Pneumatic Tyre/Pavement Interface Contact Stresses Under Moving Loads and Some Effects on Pavements With Thin Asphalt Surfacing Layers. Proceedings, 8th International Conference on Asphalt Pavements, Seattle, Washington, D. C., 1997:179-226
    [79] Himeno, K., Ikeda, T., Kamijima, T., and Abe, T. Distribution of Tire Contact Pressure of Vehicles and Its Influence on Pavement Distress. Proceedings, 8th International Conference on Asphalt Pavements, Seattle, Washington, D. C., 1997:129-139
    [80] Myers, L., Roque, R., Ruth, B., and C. Drakos. Measurment of Contact Stresses for Different Truck Tire Types to Evaluate Their Influence on Near-Surface Cracking and Rutting. In Transportation Research Record 1655, TRB, National Research Council, Washington, D. C., 1999:175-184
    [81] Myers, L., Roque, R., Ruth, B., and C. Drakos. Measurment of Contact Stresses for Different Truck Tire Types to Evaluate Their Influence on Near-Surface Cracking and Rutting. In 78th Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 1999
    [82] Raj V. Siddharthan, Jian Yao and Peter E. Sebaaly. Pavement Strain From Moving Dynamic 3D Load Distribution. Journal of Transportation Engineering, ASCE, 1998, 124(6): 557-566
    [83] Raj V. Siddharthan and Peter E. Sebaaly. Investigation of AC Layer Strains from Wide-Base Tires. In 78th Annual Meeting (CD-ROM), TRB, National
    
    Research Council, Washington, D.C., 1999
    [84] Raj V. Siddharthan, N. Krishnamenon, Mohey EI-Mously and Peter E. Sebaaly. Investigation of Tire Contact Stress Distributions on Pavement Response. Journal of Transportation Engineering, ASCE, 2002, 128(2): 136-144
    [85] Roque, R., L. A. Myers and B. Birgisson. Evaluating Measured Tire Contact Stresses to Predict Pavement Response and Performance. In Transportation Research Record 1716, TRB, National Research Council, Washington, D. C., 2000:73-81
    [86] Roque, R., L. A. Myers and B. Birgisson. Evaluation of Measured Tire Contact Stresses for the Prediction of Pavement Response and Performance. In 79th Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2000, Paper No.00-1264
    [87] Craus, J., Chen, A., Sousa, J., and Monismith, C. Development of Failure Curves and Investigation of Asphalt Concrete Pavement Cracking From Super-Overloaded Vehicles, Report to Division of New Technology, Materials, and Research, California Department of Transportation, August 1994
    [88] Nuun, M. Design of Long-Life Roads for Heavy Traffic, Proceedings, Industry Conference, Australian Asphalt Pavement Association, Surfers Paradise, Queensland, Australia
    [89] Komoriya, K., T. Yoshida, and H. Nitta. "WA-DA-CHI-WA-RE" Surface Longitudinal Cracks on Asphalt Concrete Pavement. In 80th Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2001, Paper No.01-0432
    [90] Wambura, J. H. G., J. Maina and H. R. Smith. Kenya Bituminous Materials Study. In Transportation Research Record 1681, TRB, National Research Council, Washington, D.C., 1999:129-137
    [91] Wambura, J. H. G., J. Maina and H. R. Smith. Kenya Asphaltic Materials Study. In 79th Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2000
    [92] Sha Qing-Lin. The Cracking of Bituminous Surfacing on Semi-Rigid Roadbase in China. Australian Road Research, 1988, 18(2): 97-106
    [93] 周富杰.防治反射裂缝的措施及其分析.同济大学博士学位论文,1998.
    [94] 曹东伟,胡长顺.旧水泥混凝土路面沥青加铺层力学分析.西安公路交
    
    通大学学报,2001,21(1):1-5
    [95] 刘益河,张起森,李志勇.沥青路面温度应力的光弹性研究.中国公路学报,1991,4(4):20-28
    [96] 张起森,郑健龙,刘益河.半刚性基层沥青路面的开裂机理.土木工程学报,1992,25(2):13-21
    [97] 张肖宁,王哲人,王端宜.计算沥青路面低温缩裂的能量判据及应用.中国公路学报,1990,3(3):11-17
    [98] 张肖宁,韩传岱,朱希岭.沥青混合料低温抗裂性能评价方法的研究.中国公路学报,1993,6(1):3-9
    [99] 吴赣昌.沥青路面温度应力场分析.中国公路学报,1992,5(4):14-24
    [100] 吴赣昌.沥青路面温度应力分析.中国公路学报,1993,6(4):1-9
    [101] 吴赣昌,张淦生.沥青路面温缩裂缝的应力强度分析.中国公路学报,1996,9(1):37-44
    [102] 吴赣昌,凌天清.半刚性基层温缩裂缝的扩展机理分析.中国公路学报,1998,11(1):21-28
    [103] 周志刚,李宇峙.气温和交通荷载对低温缩裂的影响.长沙交通学院学报,1996,12(1):34-39
    [104] 周志刚,张起森.结构层组合对路面裂缝扩展的影响.中国公路学报,1997,10(2):5-10
    [105] 罗睿,黄晓明,陆原,张望.基层对层间连续路面应力强度因子影响的研究.东南大学学报,2001,31(3):61-64
    [106] 罗睿,黄晓明.沥青路面表面裂缝应力强度因子计算方法研究.公路交通科技,2002,19(1):12-15
    [107] 陆辉.轮载作用下沥青路面结构三维非线性有限元分析方法的研究.同济大学博士学位论文,2001
    [108] 孙立军,张宏超,刘黎萍,胡小弟.沥青路面初期损坏特点和机理分析.同济大学学报,2002,30(4):416-421
    [109] 田小革.沥青混合料的低温低频疲劳特性研究.同济大学博士学位论文,2001
    [110] 郑健龙,张起森.半刚性基层沥青路面表面裂缝的热效应分析.长沙交通学院学报,1992,8(2):1-11
    [111] 郑健龙.Burgers粘弹性模型在沥青混合料疲劳特性分析中的应用.长沙交通学院学报,1995,11(3):32-42
    
    
    [112] 郑健龙,应荣华,张起森.沥青混合料热粘弹性断裂参数研究.中国公路学报,1996,9(3):20-28
    [113] 郑健龙,周志刚,应荣华.沥青路面温度应力数值分析.长沙交通学院学报,2001,17(1):29-32
    [114] 关宏信,郑健龙.沥青路面结构的粘弹性有限元方法.长沙交通学院学报,2001,17(1):51-56
    [115] 郑健龙.沥青路面温度收缩开裂的热粘弹特性研究.长安大学博士学位论文,2001
    [116] 邓敏姿,唐丛一,周升平.沥青混凝土低温粘弹性破坏准则.中外公路,2001,21(5):64-66
    [117] 郝培文,张登良,胡西宁.沥青混合料低温抗裂性能评价指标.西安公路交通大学学报,2000,20(3):1-5
    [118] 彭达仁,张起森.含垂直界面有限裂纹层状介质的断裂分析.长沙交通学院学报,1997,13(2):45-53
    [119] 彭妙娟,张登良,夏永旭.半刚性基层沥青路面的断裂力学计算方法及其应用.中国公路学报,1998,11(2):30-38
    [120] B. Sangpetngam, B. Birgisson and R. Roque. Development of an Efficient Hot Mix Asphalt Fracture Mechanics-Based Crack Growth Simulator. In 82nd Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C.,2003
    [121] Lim, I. L., Johnston, I. W. and S. K. Choi. A Numerical Model for Simulation of Fracture Propagation in Rock. Edit by Li Huai-heng. Application of Computer Methods in Rock Mechanics. Proceedings of International Symposium on Application of Computer Methods in Rock Mechanics and Engineering, Xi'an, China, may 24-28, 1993:397-404
    [122] 李云鹏,王芝银.岩体裂隙扩展过程的数值模拟.工程地质学报,1995,3(4):48-53
    [123] 吴枝根.裂隙扩展过程的有限元仿真及动态跟踪技术.西安矿业学院硕士学位论文,1997
    [124] 杨庆生,杨卫.断裂过程的有限元模拟.计算力学学报,1997,14(4):407-412
    [125] 杨庆生,孙艳丰.裂纹扩展过程的数值模拟.铁道学报,1997,19(5):116-120
    
    
    [126] 杨庆生,杨卫.界面裂纹的路径选择与数值模拟.力学学报,1997,29(3):355-358
    [127] 寇晓东,周维垣.应用无单元法追踪裂纹扩展.岩石力学与工程学报,2000,19(1):18-23
    [128] 李卧东,王元汉,陈晓波.无网格法在断裂力学中的应用.岩石力学与工程学报,2001,20(4):462-466
    [129] 袁振,李子然,吴长春.无网格法模拟复合型疲劳裂纹的扩展.工程力学,2002,19(1):25-28
    [130] 杨强,程勇刚,张浩.基于格构模型的岩石类材料开裂数值模拟.工程力学,2003,20(1):117-120
    [131] 沙庆林.中国路面技术的发展和现状.国外公路,1998,18(2):1-8
    [132] 沙庆林.高等级公路半刚性基层沥青路面.北京:人民交通出版社,1998:360-494
    [133] 中华人民共和国行业标准.公路沥青路面设计规范(JTJ 014-97).北京:人民交通出版社,1997
    [134] Strategic Highway Research Program. Distress Identification Manual for the Long-Term Pavement Performance Project. Report No.SHRP-P-338. Strategic Highway Research Program (SHRP), National Research Council, Washington,D.C. 1993
    [135] 中华人民共和国行业标准.公路路基路面现场测试规程(JTJ 059-95).北京:人民交通出版社,1995
    [136] 中华人民共和国行业标准.公路沥青路面养护技术规范(JTJ 073.2-2001).北京:人民交通出版社,2001
    [137] 沈金安.沥青及沥青混合料路用性能.北京:人民交通出版社,2001:263-414
    [138] Rowe, G. M., Brown, S. F. Fatigue Life Prediction Using Visco-elastic Analysis. Proceedings, 8th International Conference on Asphalt Pavements, Seattle,1997
    [139] Brown, S. F. Achievements and Challenges in Asphalt Pavement Engineering. Proceedings, 8th International Conference on Asphalt Pavements,Seattle, 1997
    [140] Schorsch, M., Chang, C-M., and G. Y. Baladi. Effects of Segregation on the Initiation and Propagation of Top-Down Cracks. In 82nd Annual Meeting
    
    (CD-ROM), TRB, National Research Council, Washington, D.C., 2003
    [141] 吴赣昌.半刚性路面温度应力分析.北京:科学出版社,1995
    [142] D.H. Jung and T.S. Vinson. Low-Temperature Cracking: Binder Validation. Report No. SHRP-A-399, Strategic Highway Research Program (SHRP), National Research Council, Washington, D.C., 1994
    [143] 中华人民共和国行业标准.公路沥青路面施工技术规范(JTJ 032-94).北京:人民交通出版社,1994
    [144] 林绣贤.半刚性基层沥青路面的研究.中国公路学报,1990,3(4):1-13
    [145] 李灏,陈树坚.断裂理论基础.四川:四川人民出版社,1983:37-109
    [146] M.F.Kanninen and C.H.Popelar.高等断裂力学.洪其麟,郑光华,郑祺选,饶寿期,李石,戴羿译.北京:北京航空学院出版社,1987:98-125
    [147] 沈成康.断裂力学.上海:同济大学出版社,1996:8-181
    [148] Erdogan, F., and G. C. Sih. On the Crack Extension in Plates under Plane Loading and Transverse Shear. Journal of Basic Engineering, 1963, 85D(4):519-527
    [149] G. C. Sih. Some Basic Problems in Fracture Mechanics and New Concepts. Engineering Fracture Mechanics, 1973, 5:365-377
    [150] Hussain, M. A., S. L. Pu, and J. Underwood. Strain-Energy-Release Rate for a Crack under Combined Mode Ⅰ and Mode Ⅱ. ASTM-STP-560, 1974:2-28
    [151] S. Valliappan and V. Murti. Automatic Remeshing Technique in Quasi-Static and Dynamic Crack Propagation. Proceedings of the NUMETA'85 Conference,Swansea, 1985
    [152] J. Rosier, etc. Mixed Mode Fatigue Crack Propagation in Pavements Structures under Traffic Load. Reflective Cracking in Pavements. London, 1996
    [153] 郑健龙,周志刚,张起森.沥青路面抗裂设计理论与方法.北京:人民交通出版社,2002:39-52
    [154] E. Byskov. The Calculation of Stress Intensity Factors Using the Finite Element Method with Cracked Elements. International Journal of Fracture Mechanics, 1970, 6:159-167
    [155] D. M. Tracey Finite Elements for Determination of Crack Tip Elastic Stress Intensity Factors. Engineering Fracture Mechanics, 1971, 3:255-265
    [156] Barsoum, R. S. On the Use of Isoparametric Finite Elements in Linear Fracture Mechanics. International Journal for Numerical Methods in Engineering,
    
    1976, 10:25-37
    [157] Henshell, R. D., and Shaw, K. G. Crack Tip Finite Elements are Unnecessary. International Journal for Numerical Methods in Engineering, 1975, 9:495-507
    [158] Barsoum, R. S. Triangular Quarter-Point Elements as Elastic and Perfectly-Plastic Crack Tip Elements. International Journal for Numerical Methods in Engineering, 1977, 11:85-98
    [159] 朱伯芳.有限单元法原理与应用(第二版).北京:中国水利水电出版社,1998:400-423
    [160] Chan, S. K., Tuba, I. S. and W. K. Wilson. On the Finite Element Method in Linear Fracture Mechanics. Engineering Fracture Mechanics, 1970, 2:1-17
    [161] 张双寅.三角形等参奇异元.力学与实践,1986,8(5):25-27
    [162] H. Anderson. A Finite Element Representation of Stable Crack Growth. Journal of the Mechanics and Physics of Solids, 1973, 21:337-356
    [163] Mark A. James. A Plane Stress Finite Element Model for Elastic-Plastic Mode Ⅰ/Ⅱ Crack Growth. Ph.D. Dissertation, Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, 1998
    [164] ABAQUS Theory Manual, Version 6.3, Hibbit, Karlsson & Sorenson, Inc., Pawtucket, USA, 2002
    [165] ABAQUS Standard User's Manual, Version 6.3, Hibbit, Karlsson & Sorenson, Inc., Pawtucket, USA, 2002
    [166] 王水林,葛修润.流形元方法在模拟裂纹扩展中的应用.岩石力学与工程学报,1997,16(5):405-410
    [167] 王水林,葛修润,章光.受压状态下裂纹扩展的数值分析.岩石力学与工程学报,1999,18(6):671-675
    [168] 冯耀霖.Microsoft Fortran PowerStation V4.0入门.西安:西安电子科技大学出版社,1999
    [169] 杨晓辉.Fortran PowerStation 4.0程序员指南.长沙:湖南科学技术出版社,1999
    [170] 李云鹏,王芝银编著.固体力学有限单元法及程序设计.西安:西安地图出版社,1994:245-264
    [171] Owen,D.R.J.and E.Hinton.塑性力学有限元——理论与应用.曾国平,刘忠,徐家礼译.北京:兵器工业出版社,1989:112-247
    [172] J. G. Rots and R. de. Borst. Analysis of Mixed-Mode Fracture in Concrete.
    
    Journal of Engineering Mechanics, ASCE, 1987, 113(11):1739-1758
    [173] Majidzadeh, K., Kauffman, E. M. and Ramsamooj, D. V. Application of Fracture Mechanics in Analysis of Pavement Fatigue. Proceedings Association of Asphalt Paving Technologists, 1971, 40:227-246
    [174] Monismith, C. L. and Salam, Y. M. Distress Characteristics of Asphalt Concrete Mixtures. Proceedings Association of Asphalt Paving Technologists,1973, 42:320-350
    [175] Ted S. Vinson, Vincent C. Janoo and Ralph C.G. Haas. Low Temperature and Thermal Fatigue Cracking. Report No. SHRP-A-306, Strategic Highway Research Program (SHRP), National Research Council, Washington, D.C., 1989
    [176] S. C. S. Rao, Tangella, J. Craus, J. A. Deacon and C. L. Monismith. Summary Report On Fatigue Response Of Asphalt Mixtures. Report No.SHRP-A-312, Strategic Highway Research Program (SHRP), National Research Council, Washington, D.C. 1990
    [177] Matthews, J. M., Monismith, C. L., and J. Craus. Investigation of Laboratory Fatigue Testing Procedures for Asphalt Aggregate Mixtures. Journal of Transportation Engineering, ASCE, 1993, 119(4): 634-654
    [178] 张登良.沥青路面.北京:人民交通出版社,1998:35-108
    [179] 中华人民共和国行业标准.公路工程沥青及沥青混合料试验规程(JTJ 052-2000).北京:人民交通出版社,2000
    [180] Underwood, B. S. and Y. R. Kim. Determination of Depth of Surface Cracks in Asphalt Pavements. In 82nd. Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700