用户名: 密码: 验证码:
电磁弹性固体辛对偶体系及虚边界元数值方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本博士学位论文对横观各向同性电磁弹性固体进行了解析分析和数值计算。将辛对偶体系的方法论引入到电磁弹性固体平面问题,提出了该问题的一个新的解析求解方法。在数值计算方面,提出电磁弹性固体平面和三维问题的虚边界元法。主要工作如下:
     在解析解方面,利用电磁弹性固体广义变分原理,将平面电磁弹性固体矩形域问题导入到哈密顿体系。在由原变量—位移、电势和磁势以及它们的对偶变量—纵向应力、电位移和磁感应强度组成的辛几何空间中,形成辛对偶方程组。应用有效的分离变量法求出全部零本征值对应的本征解,这些解具有明确的物理意义,并且是构成圣维南问题的基本解。然后求出非零本征值对应的本征解,它们是局部效应的解,其影响随距离迅速衰减,是圣维南原理所覆盖的部分。这样采用辛本征解展开法就可以得到问题的完备解,最后通过具体算例给出了几个问题的解析解。
     在数值解方面,基于平面电磁弹性固体问题的基本解,利用弹性力学虚边界元法的基本思想,提出了平面电磁弹性固体问题的虚边界元等额配点法。这种方法除了具有传统边界元法的优点外,成功地避免了传统边界元法遇到的奇异积分问题。然而等额配点法具有不恰当的配点影响计算结果和预先选定的孤立点上的虚载荷可能不完备的缺点。为了弥补以上不足,本文进一步提出了平面电磁弹性固体问题的虚边界元最小二乘配点法和单积分等额配点法,其中后者在虚边界上采用的是连续分布的虚载荷。具体算例的数值计算表明,虚边界元的数值结果和已有的解析解能很好地吻合,该方法具有较高的计算精度。最后提出电磁弹性固体更具一般性的三维问题的虚边界元等额配点法。该方法完全不需要划分网格,也不用进行积分计算,具有易于理解,易于编程实现的优点。具体算例验证了虚边界元法是计算电磁弹性固体三维问题的一种有效的数值方法。
The analytical and numerical solutions for the magnetoelectroelastic solids are obtained in this doctoral dissertation. The symplectic duality system methodology is introduced to plane problems for magnetoelectroelastic solids as well as a new analytical approach is constructed. On the other hand, the doctoral dissertation presents a set of virtual boundary element method(VBEM) for numerical analyse of plane and three dimensional magnetoelectroelastic solids.
     For the analytical solutions, the plane problem of magnetoelectroelastic solids in rectangular domain is derived into the Hamiltonian system by means of the generalized variable principle of the magnetoelectroelastic solids. In symplectic geometry space with the origin variables--displacements, electric potential and magnetic potential, as well as their duality variables--lengthways stress, electric displacement and magnetic induction, symplectic dual equations are employed. So the effective method of separation of variables can be applied to solve the symplectic dual equations, and all the eigensolutions of zero-eigenvalue are obtained, which have their specific physical interpretation and are the basic solutions of plane Saint-Venant problem. Then the eigen-solutions of nonzero-eigenvalues are also obtained, which are the solutions having the local effect, decay drastically with respect to distance and are covered in the Saint-Venant principle. So the complete solution of the problem is given out by the symplectic eigen-solutions expansion. Finally, a few examples are selected and their analytical solutions are presented.
     For the numerical solutions, a virtual boundary element-equivalent collocation method is proposed, which based on the fundamental solutions of the plane magnetoelectroelastic solids and the basic idea of the virtual boundary element method for elasticity. With using collocation points on virtual and real boundaries, this method avoids the computation of singular integral on the boundary, besides shares all the advantages of the conventional boundary element method(BEM) over domain discretization methods. However, the virtual boundary element-equivalent collocation method has some shortcoming, such as the inappropriate collocation points on the boundaries affect the validity of result and the virtual loads at the preassigned isolated points on the virtual boundary maybe not complete. To avoid these defects, the virtual boundary element-least square collocation method and virtual boundary element-integral collocation method are proposed in the following contents, where the latter applies the virtual continuous load on the virtual boundaries. Several numerical examples are selected to demonstrate the performance of those methods, and the results show that they agree well with the exact solutions and have a higher accuracy. The methods are the efficient numerical one to analyze magnetoelectroelastic solids. Lastly, a virtual boundary element-equivalent collocation method for the three-dimensional problems in magnetoelectroelastic solids is presented. The method merely applies collocations technology on real and virtual boundary, so is meshless and integrate-free. At the same time, it is comprehensible and legible, and is easy to implement by program. Also several numerical examples are performed to demonstrate that the method is the effective numerical one to analyze three dimensional problems of the magnetoelectroelastic solids.
引文
[1]钟万勰.弹性力学求解新体系.大连:大连理工大学出版社,1995.
    [2]孙焕纯,张立洲,许强等.无奇异边界元法.大连:大连理工大学出版社,1999.
    [3]Van Suchtelen J. Product properties: a new application of composite materials. Philips Research Reports, 1972, 27(1):28-37.
    [4]Van Den Boomgaard J, Terrell D R, Born R A J, et al. An in situ grown eutectic magnetoelectric composite material: Part Ⅰ Composition and unidirectional solidification. Journal of Materials Science, 1974, 9(10):1705-1709.
    [5]Van Run A M J G, Terrell D R, Scholing J H. An in situ grown eutectic magnetoelectric composite material: Part Ⅱ Physical properties. Journal of Materials Science, 1974, 9(10):1710-1714.
    [6]Harshe G, Dougherty J P, Newnham R E. Theoretical modeling of 3-0/0-3 magnetoelectric composites. International Journal of Applied Electromagnetics in Materials, 1993, 4(1):161-171.
    [7]Avellaneda M, Harshe G. Magnetoelectric effect in piezoelectric/magnetostrictive multilayer(2-2) composites. Journal of Intelligent Material Systems and Structures, 1994, 5(4):501-513.
    [8]Nan C W. Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Physical Review B, 1994, 50(9):6082-6088.
    [9]Benveniste J. Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Physical Review B, 1995, 51(22):16424-16427.
    [10]Huang J H, Liu H K, Dai W H. The optimized fiber volume fraction for magnetoelectric coupling effect in piezoelectric-piezomagnetic continuous fiber reinforced composites. International Journal of Engineering Science, 2000, 38(11):1207-1217.
    [11]Ryu Jungho, Priya Shashank, Uchino Kenji, et al. Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. Journal of Electroceramics, 2002, 8(2):107-119.
    [12]Wang X M, Shen Y P. The conservation laws and path-independent integrals with an application for linear electro-magneto-elastic media. International Journal of Solids and Structures, 1996, 33(6):865-878.
    [13]Li J Y, Dunn M L. Micromechanics of magnetoelectroelastic composite materials: average fields and effective behaviour. Journal of Intelligent Material Systems and Structures, 1998, 9(6):404-416.
    [14]Pan E. Exact solution for simply supported and multilayered magneto-electro-elastic plates. Journal of Applied Mechanics, 2001, 68(6):608-618.
    [15]Pan E, Heyliger P R. Free vibrations of simply supported and multilayered magneto-electro-elastic plates. Journal of Sound and Vibration, 2002, 252(3):429-442.
    [16]Pan E, Heyliger P R. Exact solutions for magneto-electro-elastic laminates in cylindrical bending. International Journal of Solids and Structures, 2003, 40(24):6859-6876.
    [17]Pan E, Hart F. Exact solution for functionally graded and layered magneto-electro-elastic plates. International Journal of Engineering Science, 2005, 43(3-4):321-339.
    [18]Wang X, Shen Y P. The general solution of three-dimensional problems in magnetoelectroelastic media. International Journal of Engineering Science, 2002, 40(10):1069-1080.
    [19]刘金喜,王祥琴,王彪.横观各向同性电磁弹性固体耦合方程的一般解.应用数学和力学,2003,24(7):684-690.
    [20]Wang X, Zhong Z. The general solution of spherically isotropic magnetoelectroelastic media and its applications. European Journal of Mechanics A/Solids, 2003, 22(6):953-969.
    [21]胡海昌.横观各向同性体的弹性力学的空间问题.物理学报,1953,9(2):130-144.
    [22]Ding H J, Chen B, Liang J. General solutions for coupled equations for piezoelectric media. International Journal of Solids and Structures, 1996, 33(16):2283-2298.
    [23]Chen W Q. Problems of radially polarized piezoelastic bodies. International Journal of Solids and Structures, 1999, 36(28):4317-4332.
    [24]丁皓江,陈江瑛,侯鹏飞.磁电弹性圆锥顶端作用集中荷载的解析解.力学季刊,2003,24(3):292-298.
    [25]陈江瑛,丁皓江,侯鹏飞.磁电弹性旋转圆环(圆盘)的三维分析.浙江大学学报,2003,37(4):440-444.
    [26]Wang J G, Chen L F, Fang S S. State vector approach to analysis of multilayered magneto-electro-elastic plates. International Journal of Solids and Structures, 2003, 40(7):1669-1680.
    [27]Wang X, Zhong Z. A finitely long circular cylindrical shell of piezoelectric piezomagnetic composite under pressuring and temperature change. International Journal of Engineering Science, 2003, 41(20):2.429-2445.
    [28]Wang X, Zhong Z. A circular tube or bar of cylindrically anisotropic magnetoelectroelastic material under pressuring loading. International Journal of Engineering Science, 2003, 41(18):2143-2159.
    [29]姚伟岸.电磁弹性固体三维问题的广义变分原理.计算力学学报,2003,20(4):487-489.
    [30]姚伟岸.电磁弹性固体反平面问题辛求解体系及圣维南原理.大连理工大学学报,2004,44(5):630-633.
    [31]Chen W Q, Lee K Y. Alternative state space formulations for magnetoelectric thermoelasticity with transverse isotropy and the application to bending analysis of nonhomogeneous plates. International Journal of Solids and Structures, 2003, 40(21):5689-5705.
    [32]Chen W Q, Lee K Y, Ding H J. General solution for transversely isotropic magneto-electro-thermo-elasticity and the potential theory method. International Journal of Engineering Science, 2004, 42(13-14):1361-1379.
    [33]Chen W Q, Lee K Y, Ding H J. On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates. Journal of Sound and Vibration, 2005, 279(1-2):237-251.
    [34]关群,何顺荣.压电、压磁弹性体平面问题的通解.上海交通大学学报,2004,38(8):1417-1422.
    [35]Guan Q, He S R. Two-dimensional analysis of piezoelectric/piezomagnetic and elastic media. Composite Structures, 2005, 69(2):229-237.
    [36]关群,何顺荣.压电、压磁弹性体的空间问题研究.哈尔滨工业大学学报,2005,37(5):709-712.
    [37]关群,何顺荣.压电、压磁耦合弹性介质圆板的自由振动.哈尔滨工业大学学报,2005,37(3):418-422.
    [38]江爱民,林定远,邱洪林.均布荷载作用下悬臂磁电弹性梁的解析解.应用力学学报,2004,21(4):106-109.
    [39]江爱民,邱洪林,林定远.均布荷载作用下简支磁电弹性梁的解析解.浙江工业大学学报,2004,32(2):239-244.
    [40]卿光辉,邱家俊,刘艳红.磁电弹性体修正后的H-R混合变分原理和状态向量方程.应用数学和力学,2005,26(6):665-670.
    [41]卿光辉,邱家俊,刘艳红.磁电圆柱壳修正后的H-R变分原理及其正则方程.天津大学学报,2006,39(1):78-82.
    [42]朱小鹏,梁伟,麦汉超.电磁复合材料层合板自由振动的三维解.复合材料学报,2005,22(6):130-134.
    [43]魏建萍,苏先樾.圆柱状压电压磁复合材料中波的传播和能量输送.北京大学学报(自然科学版),2006,42(3):310-314.
    [44]肖俊华,蒋持平.反平面剪切下电磁弹性纤维增强复合材料界面相效应研究.固体力学学报,2006,27(3):255-260.
    [45]Chen J Y, Pan E, Chen H L. Wave propagation in magneto-electro-elastic multilayered plates. International Journal of Solids and Structures, 2007, 44(3-4):1073-1085.
    [46]朱保兵,王建国,李国强.状态空间法求解层状压电压磁非轴对称问题.统计大学学报,2007,35(2):222-227.
    [47]Sue W C, Liou J Y, Sung J C. Investigation of the stress singularity of a magnetoelectroelastic bonded antiplane wedge. Applied Mathematical Modelling, 2007, 31(10):2313-2331.
    [48]Weller Thibaut, Licht Christian. Modeling of linearly electromagneto-elastic thin plates. Comptes Rendus Mecanique, 2007, 335(4):201-206.
    [49]Huang J H, Kuo W S. The analysis of piezoelectric/piezomagnetic composite materials conta/ning ellipsoidal inclusions. Journal of Applied Physics 1997, 81(3):1378-1386.
    [50]Huang J H, Chiu Y H, Liu H K. Magneto-electro-elastic eshelby tensors for a piezoelectric-piezomagnetic composite reinforced by ellipsoidal inclusions. Journal of Applied Mechanics, 1998, 83(10):5364-5370.
    [51]Nan C W. Comment on "The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions". Journal of Applied Mechanics, 1997, 82(10):5268-5269.
    [52]Li J Y. Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials. International Journal of Engineering Science, 2000, 38(18):1993-2011.
    [53]姜稚清,刘金喜.含椭圆夹杂二维各向异性电磁弹性介质的耦合问题.应用数学和力学,2000,21(10):1093-1099.
    [54]张敬周,王旭,仲政.电磁弹性复合材料双圆柱夹杂问题.力学季刊,2002,23(3):373-379.
    [55]Wang X, Shen Y P. Inclusions of arbitrary shape in magnetoelectroelastic composite materials. International Journal of Engineering Science, 2003, 41(1):85-102.
    [56]Hou P F, Leung A Y T. A spheroidal inclusion in an infinite magneto-electro-elastic material. International Journal of Engineering Science, 2004, 42(11-12):1255-1273.
    [57]刘金喜,姜稚清.压电、压磁和电磁各向异性弹性介质二维问题的Green函数.工程力学,2001,18(1):41-46.
    [58]Liu J X, Liu X L, Zhao Y B. Green's functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. International Journal of Engineering Science, 2001, 39(12):1405-1418.
    [59]Li J Y. Magnetoelectric Green's functions and their application to the inclusion and inhomogeneity problems. International Journal of Solids and Structures, 2002, 39(16):4201-4213.
    [60]Pan E. Three-dimensional Green's functions in anisotropic magneto-electro-elastic bimaterials. Journal of Applied Mathematics and Physics, 2002, 53(5):815-838.
    [61]Ding H J, Jiang A M, Hou P F, et al. Green's functions for two-phase transversely isotropic magneto-electro-elastic media. Engineering Analysis with Boundary Elements, 2005, 29(6):551-561.
    [62]Qin Q H. 2D Green's functions of defective magnetoelectroelastic solids under thermal loading. Engineering Analysis with Boundary Elements, 2005, 29(6):577-585.
    [63]Zhao M H, Fan C Y, Liu T, et al. Extended displacement discontinuity Green's functions for three-dimensional transversely isotropic magneto-electro-elastic media and applications. Engineering Analysis with Boundary Elements, 2007, 31(6):547-558.
    [64]Hu K Q, Qin Q H, Kang Y L. Anti-plane shear crack in a magnetoelectroelastic layer sandwiched between dissimilar half spaces. Engineering Fracture Mechanics, 2007, 74(7): 1139-1147.
    [65]Wang B L, Hart J C. Multiple cracking of magnetoelectroelastic materials in coupling thermo-electro-magneto-mechanical loading environments. Computational Materials Science, 2007, 39(2):291-304.
    [66]Zhu B J, Qin T Y. Hypersingular integral equation method for a three-dimensional crack in anisotropic electro-magneto-elastic bimaterials. Theoretical and Applied Fracture Mechanics, 2007, 47(3):219-232.
    [67]Wang B L, Mai Y W. Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials. International Journal of Solids and Structures, 2007, 44(2):387-398.
    [68]Du J K, Shen Y P, Gao B. Scattering of anti-plane shear waves by a single crack in an unbounded trasversely isotropic electro-magneto-elastic medium. Applied Mathematics and Mechanics, 2004, 25(12):1344-1353.
    [69]Du J K, Shen Y P, Tian W P. Anti-plane shear waves scattering from a partially debonded magneto-electro-elastic circular cylindrical inhomogeneity. Acta Mechanica Solida Sinica, 2004, 17(1):1-11.
    [70]Feng W J, Su R K L, Liu Y O. Scattering of SH waves by an arc-shaped interface crack between a cylindrical magneto-electro-elastic inclusion and matrix with the symmetry of 6 mm. Acta Mechanica, 2006, 183(1-2):81-102.
    [71]Feng W J, Hao R J, Liu J X, et al. Scattering of SH waves by arc-shaped interface cracks between a cylindrical magneto-electro-elastic inclusion and matrix: near fields. Archive of Applied Mechanics, 2005, 74(10):649-663.
    [72]周振功,王彪.压电压磁复合材料中界面裂纹对弹性波的散射.应用数学和力学,2005,26(1):16-24.
    [73]周振功,王彪.压电压磁复合材料中一对平行裂纹对弹性波的散射.应用数学和力学,2006,27(5):519-526.
    [74]Buchanan G R. Free vibration of an infinite magneto-electro-elastic cylinder. Journal of Sound and Vibration, 2003, 268(2):413-426.
    [75]Buchanan G R. Layered versus multiphase magneto-electro-elastic composites. Composites Part B: Engineering, 2004, 35(5):413-420.
    [76]Lage R G, Soares C M M, Soares C A M, et al. Layerwise partial mixed finite element analysis of magneto-electro-elastic plates. Computers and Structures, 2004, 82(17-19):1293-1301.
    [77]Ding H J, Jiang A M. A boundary integral formulation and solution for 2D problems in magneto-electro-elastic media. Computers and Structures, 2004, 82(20-21):1599-1607.
    [78]Ding H J, Jiang A M. Fundamental solutions for transversely isotropic magneto-electro-elastic media and boundary integral formulation. Science in China(Series E), 2003, 46(6):607-619.
    [79]Ding H J, Wang H M. Numerical approach for a system of second kind Volterra integral equations in magneto-electro-elastic dynamic problems. Journal of Zhejiang University Science, 2005, 6(9):928-932.
    [80]陈江义,陈花玲.Love波在电磁弹性多层结构中的频散特性.复合材料学报,2006,23(3):181-184.
    [81]陈江义,陈花玲,陈柳.电磁弹性板中的Lamb波传播特性分析.中国机械工程,2007,18(3):328-331.
    [82]Bhangale R K, Ganesan N. Free vibration studies of simply supported non-homogeneous functionally graded magneto-electro-elastic finite cylindrical shells. Journal of Sound and Vibration, 2006, 294(4-5):1016-1038.
    [83]Bhangale R K, Ganesan N. Free vibration of simply supported functionally graded and layered magneto-electro-elastic plates by finite element method. Journal of Sound and Vibration, 2006, 294(4-5):1016-1038.
    [84]Bhangale R K, Ganesan N. Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates. International Journal of Solids and Structures, 2006, 43(10):3230-3253.
    [85]Annigeri A R, Ganesan N, Swarnamani S. Free vibration behaviour of multiphase and layered magneto-electro-elastic beam. Journal of Sound and Vibration, 2007, 299(1-2):44-63.
    [86]Annigeri A R, Ganesan N, Swarnamani S. Free vibrations of clamped-clamped magneto-electro-elastic cylindrical shells. Journal of Sound and Vibration, 2006, 292(1-2):300-314.
    [87]Ramirez F, Heyliger P R, Pan E. Free vibration response of two-dimensional magneto-electro-elastic laminated plates. Journal of Sound and Vibration, 2006, 292(3-5):626-644.
    [88]Garcia-Sanchez F, Rojas-Diaz R, Saez A, et al. Fracture of magnetoelectroelastic composite materials using boundary element method(BEM). Theoretical and Applied Fracture Mechanics, 2007, 47(3):192-204.
    [89]钟万勰,钟翔翔.计算结构力学、最优控制及偏微分方程半解析法.计算结构力学及其应用,1990,7(1):1-15.
    [90]钟万勰.分离变量法与哈密尔顿体系.计算结构力学及其应用,1991,8(3):229-240.
    [91]张鸿庆,阿拉坦仓,钟万勰.Hamilton体系与辛正交系的完备性.应用数学和力学,1997,18(3):217-221.
    [92]姚伟岸,钟万勰.辛弹性力学.北京:高等教育出版社,2002.
    [93]钟万勰.条形域平面弹性问题与哈密尔顿体系.大连理工大学学报,1991,31(4):373-384.
    [94]姚伟岸.平面各向异性哈密顿体系及圣维南问题的解析解.大连理工大学学报,1999,39(5):612-615.
    [95]邹贵平.薄板问题的Hamilton体系和辛几何方法.应用基础与工程科学学报,1996,4(4):335-343.
    [96]钟万勰,姚伟岸.板弯曲求解新体系及其应用.力学学报,1999,31(2):173-184.
    [97]Yao W A, Sui Y F. Symplectic solution system for reissner plate bending. Applied Mathematics and Mechanics, 2004, 25(2):178-185.
    [98]鲍四元,邓子辰.Mindlin中厚板的辛求解方法.固体力学学报,2005,26(1):102-106.
    [99]Zhong W X, Yao W A. The Saint Venant solutions of multi-layered composite plates. Advances in Structural. Engineering, 1997, 1(2):127-133.
    [100]Yao W A, Yang H T. Hamiltonian system based Saint Venant solutions for multi-layered composite plane anisotropic plates. International Journal of Solids and Structures, 2001, 38(32):5807-5817.
    [101]Xu X S, Zhong W X, Zhang H W. The Saint-Venant problem and principle in elasticity. International Journal of Solids and Structures, 1997, 34(22):2815-2827.
    [102]Xu X S, Zhang H W, Zhong W X. A direct method for the problem of the solid cylinder in elasticity. Chinese Quarterly Journal of Mathematics, 1998, 13(1):44-54.
    [103]徐新生,贾宏志,孙发明.横观各向同性弹性柱体中辛本征解方法.大连理工大学学报,2005,45(4):617-624.
    [104]Zhong W X. Plane elasticity in sectorial domain and the Hamiltonian system. Applied Mathematics and Mechanics, 1994, 15(12):1113-1123.
    [105]Yao W A, Zhong W X. New solution system for circular sector plate bending and its application. Acta Mechanics Solida Sinica, 1999, 12(4):307-315.
    [106]鲍四元,邓子辰.环扇形板弯曲问题中环向模拟为时间的辛体系.西北工业大学学报,2004,22(6):734-738.
    [107]徐新生,郑新广,张洪武等.哈密顿体系与弹性楔体问题.应用力学学报,1999,16(2):140-145.
    [108]钟万勰,徐新生,张洪武.弹性曲梁问题的直接法.工程力学,1996,13(4):1-8.
    [109]姚伟岸.极坐标哈密顿体系约当型与弹性楔的佯谬解.力学学报,2001,33(1):79-86.
    [110]姚伟岸,张兵茹.圆柱型正交各向异性弹性楔的佯谬解.固体力学学报,2004,25(2):155-158.
    [111]周建方,卓家寿.极坐标下弹性力学的一个新解答.力学学报,2001,33(6):839-846.
    [112]齐朝晖,唐立民.曲线坐标系下哈密顿体系的建立.大连理工大学学报,1997,37(4):376-380.
    [113]周建方,卓家寿,李典庆.Hamilton体系下弹性力学半解析法的一个守恒律.河海大学学报,2000,28(5):41-43.
    [114]唐立民,褚致中,邹贵平等.混合状态Hamiltonian元的半解析解和叠层板的计算.计算结构力学及其应用,1992,9(4):347-360.
    [115]邹贵平,唐立民,周哲玮.复合材料条形域问题混合状态Hamiltonian元的半解析解.应用力学学报,1995,12(3):1-7.
    [116]王治国,唐立民,朱德懋.圆柱坐标系中弹性力学的哈密顿正则方程及其哈密顿单元方法.计算结构力学及其应用,1995,12(1):53-59.
    [117]周建方,卓家寿,李典庆.基于Hamilton方法的有限元.河海大学常州分校学报,2000,14(3):1-6.
    [118]张洪武,李云鹏,钟万勰.双材料楔形结合点的奇性分析.大连理工大学学报,1995,35(6):776-782.
    [119]张洪武,徐新生,李云鹏等.多种材料楔形结合点的奇性分析.大连理工大学学报,1996,36(4):391-395.
    [120]Zhang H W, Zhong W X. Hamiltonian principle based stress singularity analysis near crack corners of multi-material junctions. International Journal of Solids and Structures, 2003, 40(2):493-510.
    [121]王承强,姚伟岸.哈密顿体系在断裂力学Dugdale模型中的应用.应用力学学报,2003,20(3):151-155.
    [122]江铁强,何雪法.哈密顿体系在Ⅲ型裂纹端部场求解中的应用.机械强度,2004,26(S):213-215.
    [123]张宝善,卢东强,戴世强等.非线性水波Hamilton系统理论与应用研究进展.力学进展,1998,28(4):521-531.
    [124]马坚伟,徐新生,杨慧珠等.平面粘性流体扰动与哈密顿体系.应用力学学报,2001,18(4):82-87.
    [125]马坚伟,徐新生,杨慧珠等.基于哈密顿体系求解空间粘性流体问题.工程力学,2002,19(3):1-6.
    [126]徐新生,王尕平.Stokes流问题中的辛本征解方法.力学学报,2006,38(5):682-687.
    [127]钟万勰.电磁波导的辛体系.大连理工大学学报,2001,41(4):379-387.
    [128]钟万勰.电磁波导的半解析辛分析.力学学报,2003,35(4):401-410.
    [129]孙雁,谢军.基于Hamilton体系的辛半解析法在各向异性电磁波导中的应用.计算力学学报,2005,22(6):690-693.
    [130]陈杰夫,郑长良,钟万勰.电磁波导的辛分析与对偶棱边元.物理学报,2006,55(5):2340-2347.
    [131]陈杰夫,郑长良,钟万勰.电磁波导的奇异元与对偶有限元分析.计算力学学报,2007,24(2):148-152.
    [132]Gu Q, Xu X S, Leung Y T. Application of Hamiltonian system for two-dimensional transversely isotropic piezoelectric media. Journal of Zhejiang University SCIENCE, 2005, 6A(6):915-921.
    [133]Xu X S, Gu Q, Leung Y T, et al. A symplectic eigensolution method in transversely isotropic piezoelectric cylindrical media. Journal of Zhejiang University SCIENCE, 2005, 6A(9):922-927.
    [134]徐新生,张维祥,李雪.粘弹性厚壁筒问题的辛本征解方法.计算力学学报,2007,24(2):153-158.
    [135]卿光辉,邱家俊,刘艳红.Hamilton等参元与智能叠层板的半解析法.应用数学和力学,2007,28(1):45-52.
    [136]许永林,唐锦春.域外奇点法及格林公式法解板弯曲问题.计算结构力学及其应用,1986,3(2):9-17.
    [137]Fairweather G, Karageorghis A. The method of fundamental solutions for elliptic boundary value problems. Advances in Computational Mathematics, 1998, 9(1-2):69-95.
    [138]Smyrlis Y S, Karageorghis A. A matrix decomposition MFS algorithm for axisymmetric potential problems. Engineering Analysis with Boundary Elements, 2004, 28(5):463-474.
    [139]Karageorghis A, Fairweather G. The method of fundamental solutions for axisymmetric elasticity problems. Computational Mechanics, 2000, 25(6):524-532.
    [140]Berger J R, Karageorghis A. The method of fundamental solutions for layered elastic materials. Engineering Analysis with Boundary Elements, 2001, 25(10):877-886.
    [141]Poullikkas A, Karageorghis A, Georgiou G. The method of fundamental solutions for three-dimensional elastostatics problems. Computers and Structures, 2002, 80(3-4):365-370.
    [142]Redekop D. Fundamental solutions for the collocation method in planar elastostatics. Applied Mathematical Modelling, 1982, 6(5):390-393.
    [143]Redekop D, Thompson J C. Use of fundamental solutions in the collocation method in axisymmetric elastostatics. Computers and Structures, 1983, 17(4):485-490.
    [144]Redekop D, Cheung R S W. Fundamental solutions for the collocation method in three-dimensional elastostatics. Computers and Structures, 1987, 26(4):703-707.
    [145]Burgues G, Mahajerin E. A comparison of the boundary element and superposition methods. Computers and Structures, 1984, 19(5-6):697-705.
    [146]Burgues G. Restrictions on the singularity method applied to elasticity. Computers and Structures, 1984, 19(5-6):839-841.
    [147]Wu B C, Altiero N J. A new numerical method for the analysis of anisotropic thin-plate bending problems. Computer Methods in Applied Mechanics and Engineering, 1981, 25(3):343-353.
    [148]Raamachandran J. Vibration of plates using charge simulation method. Computers and Structures, 1991, 38(2):247-249.
    [149]Raamachandran J. Bending of plates with varying thickness by charge simulation method. Engineering Analysis with Boundary Elements, 1992, 10(2):143-145.
    [150]Raamachandran J, Rajamohan C. Analysis of composite plates using charge simulation method. Engineering Analysis with Boundary Elements, 1996, 18(2):131-135.
    [151]云天铨.回转体扭转问题的一个积分方程解法.华中科技大学学报(自然科学版),1979,7(3):108-115.
    [152]云天铨.线载荷积分方程法的位移和应力场的唯一性定理.应用数学和力学,1985,6(3):219-223.
    [153]卢习林,杜庆华.无奇性边界元法解平板弯曲问题.清华大学学报(自然科学版),1988,28(2):12-22.
    [154]吴约,王左辉,王有成.全特解场边界点法.安徽建筑工业学院学报(自然科学版),1998,6(2):39-41.
    [155]王元淳.域外奇点法在弹性力学中的应用.应用力学学报,1988,5(4):97-103.
    [156]苏成,韩大建.弹性力学平面问题的虚边界元-边界子段法.华南理工大学学报(自然科学版),1998,216(3):22-26.
    [157]苏成,韩大建.弹性力学平面问题的分域虚边界元法.华南理工大学学报(自然科学版),1998,26(4):10-16.
    [158]Su C, Han D J. Multidomain SFBEM and its application in elastic plane problems. Journal of Engineering Mechanics, 2000, 126(10):1057-1063.
    [159]苏成,韩大建.正交各向异性弹性力学平面问题的样条虚边界元法.应用数学和力学,2002,23(4):400-406.
    [160]李庆斌,周鸿钧,林皋等.特解边界元法及其工程应用.北京:科学技术文献出版社,1992.
    [161]孙焕纯,杨海天,吴京宁等.虚边界元法的应用及其求解方法.应用力学学报,1994,11(1):28-37.
    [162]Sun H C, Yao W A. Virtual boundary element-linear complementary equations for solving the elastic obstacle problems of thin plate. Finite Elements in Analysis and Design, 1997, 27(2):153-161.
    [163]许强,朱金龙,赵智.薄板自由振动虚边界元解法.同济大学学报,2001,29(8):888-892.
    [164]张立洲,郑文明.两种材料契合弹性力学问题的虚边界元-配点法.力学与实践,1999,21(3):27-31.
    [165]姚伟岸,王辉.压电材料平面问题的虚边界元-等额配点解法.计算力学学报,2005,22(1):42-46.
    [166]Yao W A, Wang H. Virtual boundary element integral method for 2-D piezoelectric media. Finite Elements in Analysis and Design, 2005, 41(9-10):875-891.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700