用户名: 密码: 验证码:
用功能聚合物微球构建pH敏感及pH敏感—时滞双重型结肠定位释药体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们生活水平的提高,结肠癌和结肠炎的发病率也在不断升高。传统口服制药和注射制药到达结肠部位浓度低,药物生物利用度低,毒副作用大。为了提高结肠局部疾病的治疗效果,近年来人们大力发展研制口服结肠定位释药系统(OCDDS),该释药系统可避免药物在胃与小肠前端释放,而是将其定位于结、直肠部位释放,可大大提高病变部位的药物浓度,减少药剂用量,降低全身副作用,从而提高药物的有效性和安全性。利用药用高分子材料及药物的物理化学特性,通过分子设计的构思,构建与研发高效的OCDDS新剂型,是目前医药学领域中的重大研究课题。
     本研究以具有生物相容性的交联聚乙烯醇(CPVA)微球为基质,通过接枝聚合与分子表面印迹技术,构建pH敏感型和pH敏感-时滞双重型结肠定位释药系统,对于促进OCDDS的发展具有积极的促进作用,在药物的缓、控释研究领域,具有重大的科学价值。
     首先,采用铈盐-羟基氧化还原引发体系,在生物相容性微球CPVA表面引发接枝对苯乙烯磺酸钠(SSS),制得功能接枝微球CPVA-g-PSSS,并采用红外光谱、扫描电镜、Zeta电位测定对接枝微球进行了表征。实验结果表明,铈盐-羟基氧化还原引发体系可有效地引发SSS在CPVA微球表面的接枝聚合,在适宜的反应条件下,可制得PSSS接枝度为16.1g/100g的接枝微球CPVA-g-PSSS。在较大pH范围内,接枝微球CPVA-g-PSSS的Zeta电位为绝对值较高的负值,即微球表面携带有大量的负电荷。
     接着,考察研究了CPVA-g-PSSS对抗结肠癌药物5-氟尿嘧啶(5-FU)的吸附性能、吸附机理及体外释药特性。在酸性条件下,5-FU高度质子化,凭借静电相互作用,接枝微球CPVA-g-PSSS对5-FU表现出很强的吸附性能,吸附容量达到105mg/g,显示出良好的载药性能。随着介质pH增大,5-FU质子化减弱,静电相互作用减弱,接枝微球CPVA-g-PSSS对5-FU的吸附量减少;另外,CPVA-g-PSSS对5-FU的吸附容量随着温度的降低而增大,显示出物理吸附的特点;随离子强度的增大吸附容量下降。体外释药实验显示,载5-FU接枝微球CPVA-g-PSSS在模拟胃液(pH=1.0)中基本不释药,在模拟小肠液(pH=6.8)中有部分释药,而在模拟结肠液(pH=7.4)中有突释现象发生,表明载药微球释药具有明显的pH敏感性,是一种pH敏感型结肠定位释药系统。
     在上述研究的基础上,采用铈盐-羟基氧化还原引发体系,以生物相容性微球CPVA为基质,5-氟尿嘧啶为模板分子,SSS为功能单体,N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,在水溶液中实施了5-FU分子的表面印迹,制备了5-FU分子表面印迹聚合微球MIP-PSSS/CPVA。采用红外光谱(FTIR)和扫描电子显微镜(SEM)法,对印迹微球进行了表征,重点考察研究了MIP-PSSS/CPVA对5-FU的识别选择性、结合性能及体外释药行为。实验结果表明,基于本体系特殊的羟基-铈盐表面引发体系,可有效地实现5-FU分子的表面印迹,在微球CPVA表面形成分布有大量5-FU分子印迹空穴的聚合物层。MIP-PSSS/CPVA微球对5-FU具有优良的选择识别性和特异的结合亲和性,在酸性条件下,凭借静电相互作用,可实现对5-FU有效载药,结合量达到110mg/g,而印迹微球对5-FU结构类似物替加氟(TE)和尿甘(UR),结合量却很低。与上述的接枝载药微球CPVA-g-PSSS相比,印迹载药微球MIP-PSSS/CPVA不但具有pH敏感性,还具有明显的时滞性,印迹空穴对5-FU的束缚和静电相互作用的协同限制了药物的释放速度,因此导致载药印迹微球MIP-PSSS/CPVA在模拟胃液中不释药,小肠部位只有小量释药,结肠部位突释,达到了高效的结肠定位释药作用。因此,载药印迹微球MIP-PSSS/CPVA是一种新型高效的pH敏感-时滞双重型结肠定位释药系统。
     对于功能接枝微球CPVA-g-PSSS,本研究还深入考察了它对抗结肠炎药物甲硝唑的吸附性能、吸附机理及体外释药特点。实验结果表明,凭借强的静电相互作用,在酸性条件下,CPVA-g-PSSS对MTZ具有高的吸附容量,达到112mg/g,也显示出良好的载药性能。随着pH值得升高,MTZ质子化减弱,静电相互作用减弱,吸附容量降低。随着介质温度的升高和盐度的增大,吸附容量降低。体外释药实验表明,载MTZ的接枝微球CPVA-g-PSSS随着释放介质pH的升高,MTZ与PSSS之间的静电相互作用减弱,累积释放率增大,显示出释药的pH敏感性,是一种pH敏感型结肠定位释药系统。
     在上述研究的基础上,以生物相容性微球CPVA为基质,采用铈盐-羟基氧化还原引发体系,甲硝唑为模板分子,SSS为功能单体,N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,在水溶液中实施了MTZ的分子表面印迹,制备了MTZ分子表面印迹聚合微球MIP-PSSS/CPVA;重点考察研究了MIP-PSSS/CPVA对MTZ的识别选择性、结合性能及体外释药行为。实验结果表明,MIP-PSSS/CPVA对MTZ具有高的识别选择性和亲和性,而对结构类似物替硝唑(TNZ)和奥硝唑(ONZ)基本不识别、不结合。体外释药实验显示,MTZ印迹载药微球MIP-PSSS/CPVA与接枝载药微球CPVA-g-PSSS相比,印迹载药微球MIP-PSSS/CPVA不但具有pH敏感性,还具有明显的时滞性,印迹空穴对5-FU的束缚和静电相互作用协同限制了MTZ的释放速度,因此导致载药印迹微球MIP-PSSS/CPVA在模拟胃液中不释药,小肠部位只有小量释药,结肠部位突释,达到了高效的结肠定位释药作用。因此,载药印迹微球MIP-PSSS/CPVA是一种新型高效的pH敏感-时滞双重型结肠定位释药系统。
The incidence of colon cancer and colitis are rising as people living standard rise. Thetraditional oral preparation or injection to colon concentration is low, bioavailability of drugis small, and side effects are big. In order to improve treatment effect of the local colondisease, researchers develop the oral colon specific drug delivery system (OCDDS) in recentyears. The drug delivery system can avoid drug release in the stomach and small intestine, butrelease locating in colon and rectum. The targeted delivery to colon via oral route is intendedto improve the efficacy and safety of the drug therapy by exerting high drug concentrationstopically at the disease site, enhance the bioavailability of drugs, and reduce side-effects.According to the molecule design, building and developing high efficient OCDDS is animportant research subject in the field of medicine based on physical and chemical propertiesof pharmaceutical polymers and drugs.
     The pH sensitive and pH-delayed double sensitive colon specific drug release systemswere constructed by surface grafted polymerization and the molecular surface imprintingtechnology based on biocompatible crosslinked poly (vinyl alcohol)(CPVA) microspheres asthe matrix. The drug delivery systems can promote the development of OCDDS, and theyhave important scientific significance in sustained and controlled drug release research area.
     Firstly, the graft-polymerization of sodium4-styrene sulfonate (SSS) was performed onthe surfaces of CPVA microspheres by using cerium salt-hydroxyl group redox initiationsystem, and the grafted microspheres CPVA-g-PSSS was obtained. The chemical structureand physicochemistry characters of CPVA-g-PSSS microspheres were adequatelycharacterized with infrared spectrum (FTIR), scanning electron microscope (SEM) anddetermining zeta potential. The experimental results show that cerium salt-hydroxyl groupredox initiation system can effectively initiate the polymerization of SSS on CPVA microspheres, and under the suitable conditions, PSSS grafting degree can get up to16.1g/100g. Zeta potential shows the grafted CPVA-g-PSSS have low negative value in a wide pHrange, namely there are higher density of negative charge on the surface of theCPVA-g-PSSS.
     Then, the adsorption property of the grafted microspheres CPVA-g-PSSS for5-fluorouracil (5-FU), namely drug loading ability, was mainly investigated and theadsorption mechanism was explored. The in vitro release behavior of the drug-loadedmicrospheres was also examined. In the acidic medium, the amino groups in5-FU moleculewill be highly protonated, and a strong electrostatic interaction between CPVA-g-PSSS and5-FU molecule will be produced, resulting in high absorption capacity, reaching105mg/g,and displaying the high efficiency of drug loading. When pH value is increased, theprotonation degree of the amino groups in5-FU molecule decrease, and the electrostaticinteraction reduce, leading to low absorption capacity of grafted microspheres CPVA-g-PSSStowards5-FU. The adsorption capacity increases with temperature decreasing, showing thecharacteristic of physical absorption, and capacity reduce with the salinity rising. The in vitrorelease drug shows in the medium of pH=1, the drug does not be released, and in the mediumof pH=6.8, the part of drug is released, while in the medium of pH=7.4, the sudden deliveryphenomenon will be produced. The in vitro release behavior of the drug loading microspheresis highly pH-dependent and is a pH-sensitive drug delivery system.
     Surface imprinting of5-FU was performed on CPVA microspheres with sodium4-styrene sulfonate (SSS) as functional monomer,5-FU as template and withN,N’-Methylene bisacrylamide (MBA) as crosslinker in aqueous solution by using ceriumsalt-hydroxyl group redox initiation system, and5-FU-imprinted microspheresMIP-PSSS/CPVA, on which there exists a layer of molecular imprinting cavies, wereobtained. The chemical structure and morphology of MIP-PSSS/CPVA microspheres werecharacterized with infrared spectrum (FTIR) and scanning electron microscope (SEM). Thebinding and recognizing property of the imprinted microspheres MIP-PSSS/CPVA for5-fluorouracil (5-FU), namely drug loading ability, was mainly investigated and the binding mechanism was explored. The in vitro release behavior of the drug-loaded microspheres wasalso examined. The experimental results show that based on the special cerium salt-hydroxylgroup redox initiation system in this investigation, the5-FU surface imprinting can beeffectively realized, and a polymer layer, in which a lot of5-FU-imprinted cavies aredistributed, can be formed on the surfaces of CPVA microspheres. In the acidic medium, theimprinted microspheres MIP-PSSS/CPVA exhibit very strong binding ability for5-FU bydriving of electrostatic interaction, displaying the high efficiency of drug loading, andbinding capacity reaching110mg/g. However, for relative to5-FU, MIP-PSSS/CPVAmicrospheres have low binding capacity towards tegafur (TE) and Uridine (UR). Compare tothe above5-FU-loaded CPVA-g-PSSS, in vitro release of the drug loaded MIP-PSSS/CPVAmicrospheres is not only pH-sensitive, but also time-delayed. The synergistic effect of strongelectrostatic interaction and the spatial resistance of drug molecule diffused from imprintedcavies delay effectively the drug release process and resulting in the slower release rate from5-FU-loaded MIP-PSSS/CPVA microspheres. The drug does not be released in the simulatedstomach fluid (pH=1), in the simulated intestine fluid (pH=6.8), the drug release is small, andin the simulated colon fluid (pH=7.4), the sudden delivery phenomenon will be produced,displaying an excellent colon-specific drug delivery behavior. Therefore, drug-loadedMIP-PSSS/CPVA microspheres are a new-style and high-efficient pH-delayed doublesensitive colon specific drug release systems.
     The adsorption abilities and mechanism of the grafted microspheres CPVA-g-PSSS forMetronidazole (MTZ) were also studies. The in vitro release behavior of the MTZ-loadedmicrospheres was also examined. The experiment results show that CPVA-g-PSSSmicrospheres possess also very strong adsorption ability for MTZ by right of electrostaticinteraction, and the adsorption capacity reaches112mg/g. The protonation degree of theamino groups in MTZ molecule decreases when pH value increases, and the electrostaticinteraction weaken, resulting in low absorption capacity. The adsorption capacity decreaseswith the rise of temperature and this reveals the character of physical adsorption. And theincrease of salinity causes the decrease of the adsorption capacity. The in vitro release experiments show the release of the MTZ-loaded CPVA-g-PSSS microspheres increases withthe pH rises, and electrostatic interaction weakens, showing pH-sensitivity.
     Subsequently, MTZ surface imprinting was performed on CPVA with sodium4-styrenesulfonate (SSS) as functional monomer, MTZ as template and N, N’-Methylenebisacrylamide (MBA) as crosslinking agent in aqueous solution by using ceriumsalt-hydroxyl group redox initiation system, and obtaining MTZ surface imprintedmicrospheres MIP-PSSS/CPVA. The binding property of the imprinted microspheresMIP-PSSS/CPVA for MTZ, namely drug loading ability, was mainly investigated profoundlywith static method and the binding mechanism was explored. The in vitro release behavior ofthe drug-loaded microspheres was also examined. The experimental results show that in theacidic medium, the MIP-PSSS/CPVA microspheres exhibit very strong binding ability forMTZ by driving of electrostatic interaction while the binding ability is weak for Tinidazole(TNZ) and Ornidazole (ONZ). The in vitro release of the MTZ-loaded MIP-PSSS/CPVA isnot only pH-sensitive but also time-delayed in contrast to MTZ-loaded CPVA-g-PSSS. Thesynergistic effect of strong electrostatic interaction and the spatial resistance of drug moleculediffused from imprinted cavies delay effectively the drug release process and resulting in theslower release rate from MTZ-loaded MIP-PSSS/CPVA microspheres. The release behaviorshows in simulated gastric fluid (pH=1), the drug do not be released, and in the simulatedsmall intestine fluid (pH=6.8), the drug release is smaller, whereas, in the simulated colonfluid (pH=7.4), an abrupt release will be firstly produced and then sustained and slowedrelease occur, displaying an excellent pH-delayed double sensitive colon specific drug releasesystems.
引文
[1] Qiu Y.H., Chen Y.S., Geoff G.Z.Z., Liu. L.R., Rorter W. Developing Solid Oral DosageForms:Pharmaceutical Theory&Practice[M].Academic Press, San Diego.2009,469–499.
    [2]贾文娟,药物缓释微球的制备表征及性能研究.四川大学硕士学位论文[D].2007,1.
    [3] Vasilevska K, Djuric Z, Jovanovic M, et al. Preparation and dissolution characteristics ofcontrolled release diltiazem pellets [J]. Drug Development and Industrial Pharmacy,1992,18(15):1649-1661.
    [4] Shozo M., Wataru K.,David A.Oral sustained delivery of theophylline using in-situgelation of sodium alginate [J]. Journal of Controlled Release.2000,67(2–3):275–280.
    [5] Ghimire M., McInnes F. J., Watson D.G., Mullen A.B., Stevens H.N.E.. In-vitro/in-vivocorrelation of pulsatile drug release from press-coated tablet formulations: Apharmacoscintigraphic study in the beagle dog [J]. European Journal of Pharmaceuticsand Biopharmaceutics.2007,67(2):515–523.
    [6] Kadam V. D., Gattani S.G.. Development of colon targeted multiparticulate pulsatile drugdelivery system for treating nocturnal asthma [J]. Drug Delivery.2010,17(5):343–351.
    [7] Xu Y.M., Zhan C.Y., Fan L.H., Wang L., Zheng H. Preparation of dual crosslinkedalginate–chitosan blend gel beads and in vitro controlled release in oral site-specificdrug delivery system [J].International Journal of Pharmaceutics.2007,336(2):329–337.
    [8] Lin M. Z., Teitell M.A. Schiller G. J. The evolution of antiboies into versatile tumor-targeting agents [J]. Clinical Cancer Research.2005,11(1):129-138.
    [9] Qiao Z.Y., Zhang R., Du F.S., Liang D.H., Li Z.C. Multi-responsive nanogels containingmotifs of orthoester, oligo(ethylene glycol) and disulfide linkage as carriers ofhydrophobic anti-cancer drugs [J]. Journal of Controlled Release.2011,152(1):57-66
    [10] Maderuelo C.,Zarzuelo A.,Lanao J.M.Critical factors in the release of drugs fromsustained release hydrophilic matrices [J].Journal of Controlled Release.2011,154(1):2-19.
    [11] Kulkarni R.V, Mangond B.S, Mutalik S, et al. Interpenetrating polymer networkmicrocapsules of gellan gum and egg albumin entrapped with diltiazem-resin complexfor controlled release application[J]. Carbohydrate Polymers.2011,83(2):1001-1007.
    [12] Kumaravelrajana R, Narayananb N, Subac V, et al. Simultaneous delivery of Nifedipineand Metoprolol tartarate using sandwiched osmotic pump tablet system [J]. InternationalJournal of Pharmaceutics,2010,399(1-2):60-7127.
    [13] Sanchita M., Sanat K. B., Biswanath S. Ca2+ion cross-linked interpenetrating networkmatrix tablets of polyacrylamide-grafted-sodium alginate and sodium alginate forsustained release of diltiazem hydrochloride [J].Carbohydrate Polymers.2010,82(3):867–873.
    [14] Nokhodchi A.,Aliakbar R., Desai S.,Javadzadeh Y. Liquisolid compacts: The effect ofcosolvent and HPMC on theophylline release [J]. Colloids and Surfaces B:Biointerfaces.2010,79(1):262–269.
    [15] Kunihiko I.,Masayuki Y.,Akie T., Reina T., Shozo M.,Masatake D., Mitsuo T.,RyozoM.,David A. In situ gelling xyloglucan/pectin formulations for oral sustained drugdelivery [J]. International Journal of Pharmaceutics.2008,356(1–2):95–101.
    [16] Fan J.Y., Wang K., Liu M.,He Z.M. In vitro evaluations of konjac glucomannan andxanthan gum mixture as the sustained release material of matrix tablet [J]. CarbohydratePolymers.2008,73(2):241-247.
    [17] Streubel A., Siepmann J., Peppas N.A., Bodmeier R. Bimodal drug release achievedwith multi-layer matrix tablets: transport mechanisms and device design [J]. Journal ofControlled Release.2000,69(3):455-468.
    [18] Glaessl B., Siepmann F., Tucker I., Rades T., Siepmann J. Deeper insight into the drugrelease mechanisms in Eudragit RL-based delivery systems [J]. International Journal ofPharmaceutics.2010,389(1-2):139-146.
    [19] Sadeghi F., Ford J. L., Rajabi-Siahboomi A. The influence of drug type on the releaseprofiles from Surelease-coated pellets [J]. International Journal of Pharmaceutics.2003,254(2):123-135.
    [20] Prabakaran D., Singh P., Kanaujia P., Vyas S. P. Effect of hydrophilic polymers on therelease of diltiazem hydrochloride from elementary osmotic pumps [J]. InternationalJournal of Pharmaceutics.2003,259(1-2):173-179.
    [21] Ortiz S.G., Ma T., Epstein N.J., Smith R.L., Goodman S.B.Validation and quantificationof an in vitro model of continuous infusion of submicron-sized particles[J]. Journal ofBiomedical Materials Research Part B: Applied Biomaterials.2008,84B (2):328–333
    [22] Hill A.,Gei ler S.,Weigandt M., M der K. Controlled delivery of nanosuspensions fromosmotic pumps: Zero order and non-zero order kinetics [J]. Journal of ControlledRelease.2012,158(3):403-412.
    [23] Kearney A.S. Prodrugs and targeted drug delivery [J]. Advanced Drug Delivery Reviews,1996,19(2):225-239.
    [24] Stops F., Fell J. T., Collett J. H., Martini L.G.. Floating dosage forms to prolonggastro-retention-the characterisation of calcium alginate beads [J]. International Journalof Pharmaceutics.2008,350(1-2):301-311.
    [25] Longer M.A., Chng H.S., Robinson J.R. Bioadhesive polymers as platforms for oralcontrolled drug delivery Ⅲ: oral delivery of chlorothiazide using a bioadhesive polymer[J]. Journal of Pharmaceutical Sciences.1985,74(4):399-405.
    [26] Jiménez-Castellanos M.R., Zia H., Rhodes C.T.. Design and testing in vitro of abioadhesive and floating drug delivery system for oral application [J]. InternationalJournal of Pharmaceutics.1994,105(1):65-70.
    [27]郑小林,刘洪英,唐伟,皮喜田,侯文生,周承文.苦参碱遥控释药胶囊近端小肠定点释放的药代动力学研究[J].第三军医大学学报.2010,32(6):529-532.
    [28] Liu F., Lizio R., Meier C., Petereit H.U., Blakey P., Basit A.W. A novel concept inenteric coating: A double-coating system providing rapid drug release in the proximalsmall intestine [J]. Journal of Controlled Release.2009,133(2):119-124.
    [29]何绍雄.时辰药理学和时辰治疗学[M].第1版.天津:科学技术出版社,1998:98.
    [30] Ueda S.,Hata T.,Asakura S.,Yamaguchi H., KotaniM., Ueda Y.Development of a noveldrug release system,time controlled explosion system(TES).I.Concept and design[J],Journal Drug Target.1994,2(1):35-44.
    [31] Narisawa S., Nagata M., Hirakawa Y., Kobayashi M., Yoshino H.An organicacid-induced sigmoidal release system for oral controlled-releasepreparations.III.Elucidation of the anomalous drug release behavior through osmoticpumping mechanism[J]. International Journal of Pharmaceutics.1997,148(1):85-91.
    [32] Pazzi F., Furlani P.,Gazzaniga A.,et a1.The time clock system:a new oraldosage form forfast and complete release of drug after a predetermined lag time[J]. Journal ofControlled Release.1994,31(1):99-108.
    [33] Langer R. New methods of drug delivery [J]. Science,1990,249(4976):1527-1533.
    [34] Goldberg M.,Gomez-Orellana I. Challenges for the Oral delivery of macromolecules[J].Nature Reviews Drug Discovery,2003,2(4):289-295.
    [35] Duncan R. The dawning era of polymer therapeutics[J].Nature Reviews Drug Discovery.2003,2(5):347-360.
    [36] Still J. G. Development of oral insulin: progress and current status [J]. Diaietes/Metabolis and Research and Reviews.2002,18(1): S29-S37.
    [37] Barry B. W. Novel mechanisms and devices to enable successful transdermal drug[J].European Journal of Pharmaceutical Science.2001,14(2):101-114
    [38] El-Nabarawi M., Bendas E.,El Rehem R. T. A., Abary M. Y.S.Transdermal drugdelivery of paroxetine through lipid-vesicular formulation to augment its bioavailability[J]. International Journal of Pharmaceutics.2013,443(1-2):307–317
    [39] Wang Y., Su W.Y.,Li Q.,Li C.Y., Wang H.J.,Li Y.C.,Cao Y.,Chang J.,ZhangL.Y. Preparation and evaluation of lidocaine hydrochloride-loaded TAT-conjugatedpolymeric liposomes for transdermal delivery [J]. International Journal ofPharmaceutics.2013,441(1-2):748–756.
    [40] Guevara-Aguirre J., Guevara M., Saavedra J., Mihic M., MOdi P. Oral spray insulin intreatment of type2diabetes: a comparison of efficacy of the oral spray insulin (Oralin)with subcutaneous (SC) insulin injection, a proof of concept study [J].Diabetes/Metabolism Research and Reviews.2004,20:472-478.
    [41] Hearnden V., Sankar V., Hull K., Juras D.V., Greenberg M., Ross Kerr A., LockhartP.B., Patton L.L., Porter S., Thornhill M.H. New developments and opportunities in oralmucosal drug delivery for local and systemic disease [J]. Advanced Drug DeliveryReviews.2012,64(1):16-28.
    [42] Salamat-Miller N., Chittchang M., Johnston T.P. The use of mucoadhesive polymers inbuccal drug delivery [J]. Advanced Drug Delivery Reviews.2005,57(11):1666–1691.
    [43]施斌,方超,游美羡等.不同聚乙二醇相对分子质量对包载羟基喜树碱PEG-PHDCA纳米囊泡体外释放和体内药动学行为的影响[J].中国药学杂志.2005,40(21):1643-1646.
    [44] Jain KK, editor. Drug Delivery Systems[M]. USA.2008,217-243.
    [45] Simon G.L., Gorbach S.L. Intestinal flora in health and disease[J].Gastroenterology.1983,86(1):174-193.
    [46] Wakerly Z., John T.F.,David A.,David A.P.,In Vitro evaluation of pectin-based colonicdrug delivery systems [J].Internationa Journal of Pharaceutics.1996,129(1):73-77.
    [47] Steward BW, Kleihuses P, eds. Colorectal Cancer. In: World Cancer Report [M].Lyon:IARC Press,2003:198-202.
    [48] Russo MW, Wei JT, Thiny MT, et al. Digestive and liver diseases statistics [J].Gastroenterology.2004,126(5):1448-1453.
    [49]万德森,陈功.结直肠癌的流行病学及其危险因素研究近况[J],实用癌症杂志.2000,15(2):220-222.
    [50]李立弟,鲁凤珠,张思维,等.1990年-1992年中国恶性肿瘤死亡流行分布情况分析[J].中华肿瘤杂志,1996,18(6):403-407.
    [51]陈灏珠主编.实用内科学[M].第10版.北京.人民卫生出版社.1999,1619-1622.
    [52]张亚历,张振书,杨希山.大肠癌的基础与临床[M].上海.上海科学技术文献出版社.1999, ll.
    [53] Calvert PM,Frucht H. The genetics of coloreetal cancel [J]. Annals of Internal Medicine.2002,137(7):603-612.
    [54] Ries LA, Wingo PA, Miller DS, Howe HL, Weir HK, Rosenberg HM, et al.The annualreport to the nation on the status of cancer,1973-1997, with a special section oncolorectal cancer [J]. Cancer.2000,88(10):2398-2423.
    [55] Jie L., Ni H., Ahmad F., Soichi T., Hiroyuki K. Inhibition of autophagy augments5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model [J].European Journal of Cancer.2010,46(10):1900-1909.
    [56] Sneadr W. Drug Discovery [M], John Wiley&Sons,2005:255.
    [57] Rich T.A., Shepard R.C., Mosley S.T. Four decades of continuing innovation withfluorouracil: current and future approaches to fluorouracil chemoradiation therapy.[J].Journal of Clinical Oncology2004,22(11):2214-32.
    [58] Kaye S.B. New antimetabolites in cancer chemotherapy and their clinical impact [J].British Journal of Cancer.1998,78(3):1-7.
    [59]陈新谦,金有豫,汤光.新编药物学[M].第15版.北京:人民卫生出版社.2003,54.
    [60] Davis S.S.Studies on the gastrointestinal transit of dosage forms in human subjects usingthe technique of gamma scintigraphy[J]. STP Pharma Sciences.1986,2:1015-1022
    [61]门吉英,高保娇,陈志萍,么兰.5-氟尿嘧啶分子表面印迹微球MIP-PSSS/CPVA的制备及其体外结肠定位释药特性研究[J].化学学报.2012,70(21):2273-2280.
    [62] Gong Y., Zha Q.L., Li L.,Liu Y., Yang B., Liu L., Lu A.P., Lin Y.F., Jiang M. Efficacyand safety of Fufangkushen colon-coated capsule in the treatment of ulcerative colitiscompared with mesalazine: A double-blinded and randomized study[J]. Journal ofEthnopharmacology.2012;141(2):592-598.
    [63] Bharaniraja B, Jayaram K, Prasad C.M, et al. Modified Katira Gum for Colon TargetedDrug Delivery [J]. Journal of Applied Polymer Science,2011,119(5):2644-2651.
    [64] Girish N.,Gayatri C.,Ritesh B.,et al.Oral colon-specific drug delivery:an overview[J].Drug delivery technology.2006,6(7):62-63
    [65] Lamprecht A., Yamamoto H., Takeuchi H., Kawashima Y. pH-sensitive microspheredelivery increases oral bioavailability of calcitonin [J]. Journal of ControlledRelease.2004,98(1):1-9
    [66] Chan W.A.,Boswell C.D., Zhang Z.Comparison of the release profiles of a water solubledrug carried by Eudragit-coated capsules in different in-vitro dissolution liquids[J].Powder Technology.2001,19(1):26–32.
    [67] Subhash S. Vaghani,Madhabhai M. Patel,C.S. Satish. Synthesis and characterization ofpH-sensitive hydrogel composed of carboxymethyl chitosan for colon targeted deliveryof ornidazole[J]. Carbohydrate Research.2012,347(1):76-82.
    [68] Gupta P., Vermani K., Garg S. Hydrogels:from controlled release to pH-responsive drugDelivery[J].Drug Discovery Today.2002,7(10):569-579.
    [69] Dong L. C., Hoffman A. S. A novel approach for preparation of pH-sensitive hydrogelsfor enteric drug delivery [J]. Journal of Controlled Release.1991,15(2):141-143.
    [70] Chen L.G., Liu Z.L., Zhuo R.X. Synthesis and properties of degradable hydrogels ofkonjac glucomannan grafted acrylic acid for colon-specific drug delivery [J].Polymer.2005,46(16):6274-6281.
    [71] Torres-Lugo M., Gareia M., Record R. pH-Sensitive hydrogels as gastrointestinal tractabsorption enhancers:transport mechanisms ofsalmon calcitonin and other modelmolecules using the cell model [J]. Biotechnology Progress.2002,18(3):612-616.
    [72] Torres-Lugo M., Gareia M., Record R.Physicochemical behaviorand cytotoxic effects ofp(methacrylic acid-g-ethylene glycol)nanospheres for oral delivery of proteins[J].Journalof Control.Release.2002,80(1-3):197-205.
    [73] Jung J.Y., Arnold R. D., Wicker L. Pectin and charge modified pectin hydrogel beads asa colon-targeted drug delivery carrier [J]. Colloids and Surfaces B:Biointerfaces.2013,104:116–121.
    [74] Mura C., Náche A., Merino V., Merino-Sanjuán M., Manconi M.,Loy G., Fadda A.M.,Díez-Sales O. Design, characterization and in vitro evaluation of5-aminosalicylic acidloaded N-succinyl-chitosan microparticles for colon specific delivery [J]. Colloids andSurfaces B: Biointerfaces.2012,94(1):199–205
    [75] Jain D., Carvalho E., Banerjee R. Biodegradable hybrid polymeric membranes for oculardrug delivery [J].Acta Biomaterialia,2010,6(4):1370-1379.
    [76] Traynor M.J., Zhao Y.J., Brown M. B., Jones S. A. Vinyl polymer-coated lorazepamparticles for drug delivery to the airways [J].International Journal of Pharmaceutics.2011,410(1-2):9-16.
    [77] Salama R., Hoe S., Chan H.K., Traini D., Young P. M. Preparation and characterisationof controlled release co-spray dried drug–polymer microparticles for inhalation1:Influence of polymer concentration on physical and in vitro characteristics [J]. EuropeanJournal of Pharmaceutics and Biopharmaceutics.2008,69(2):486-495.
    [78] Cristescu R., Popescu C., Popescu A. C., Grigorescu S., Duta L., Mihailescu I. N.,Caraene G., Albulescu R., Albulescu L., Andronie A., Stamatin I., Ionescu A., MihaiescuD., Buruiana T., Chrisey D. B. Functionalized polyvinyl alcohol derivatives thin filmsfor controlled drug release and targeting systems: MAPLE deposition and morphological,chemical and in vitro characterization [J].Applied Surface Science.2009,255(10):5600-5604.
    [79] Rodr guez M., Vila-Jatto J. L., Torres D. Design of a new multiparticulate system forpotential site-specific and controlled drug delivery to the colonic region [J].Journal ofControlled Release.1998,55(1):67-77.
    [80]齐美玲,吴德政.结肠给药系统的体内评价[J].中国临床药理学杂志.2000,16(2):150-15l.
    [81] Cheng G., An F., Zou M.J., Sun J., Hao X.H., He Y.X., Time-and pH-dependentcolon-specific drug delivery for orally administered diclofenac sodium and5-aminosalicylic acid[J]. World Journal of Gastroenterology.2004,10(12):1769-1774.
    [82] Krishnamachari Y., Madan P., Lin S. Development of pH-and time-dependent oralmicroparticles to optimize budesonide delivery to ileum and colon [J]. InternationalJournal of Pharmaceutics.2007,338(1-2):238-247.
    [83] Mastiholimath V.S., Dandagi P.M., Samata J. S., Gadad A.P., Kulkarni A.R.. Time andpH dependent colon specific, pulsatile delivery of theophylline for nocturnal asthma [J].International Journal of Pharmaceutics.2007,328(1):49-56.
    [84] Krishnamachari Y., Madan P., Lin S. Development of pH-and time-dependent oralmicroparticles to optimize budesonide delivery to ileum and colon [J]. InternationalJournal of Pharmaceutics.2007,338(1-2):238-247.
    [85] Sinha V.R., Kumria R.Microbially triggered drug delivery to the colon [J]. EuropeanJournal of Pharmaceutical Sciences.2003,l8(1):3-18.
    [86] Fetih G., Lindberg S., Itoh K., el al. Improvement of absorption enhancing effects ofn-dodecyl-beta-D-maltopyranoside by its colon-specific delivery using chitosan capsules[J]. International Journal of Pharmaceutics.2005,293(1-2):127-135.
    [87] Basit A.W. Advances in colonic drug delivery [J].Drugs.2005,65(14):1991-2007.
    [88] Asghar L.F.A., Chandran S.Multiparticulate formulation approach to colon specific drugdelivery: current perspectives [J]. Journal of pharmacy and pharmaceutical sciences.2006,9(3):327-338.
    [89] Mura P., Maestrelli F.,Cirri M., Luisa González Rodríguezet M., Rabasco Alvarez A.M.Development of enteric-coated pectin-based matrix tablets for colonic delivery oftheophylline[J].Journal Drug Target.2003,11(6):365-371.
    [90] Vekama K., Minami K., Hirayanaa F. In Vitro evaluation of biphenylylacetic acid-β-,and-γ-cyclodextrin conjugates as colon-targeting prodrugs:drug release behavior in ratbiological media[J]. Journal of Pharmacy&Pharmaceutical Sciences.1996,48(3):27-31.
    [91] Fukui E.,Miyanmura N.,Kobayashi M.,et al.An in vitro investigation of the suitability ofpress-coated tablets with hydroxypropyimethycellulose acetate succinate(HPMCAS)andhydrophobic additives in the outer shell for colon targeting[J].Journal ControlledRelease.2001,8(7):70-97.
    [92] Roddy S. M., Sinha V. R., Reddy D. S. Oral colon-specific drug delivery for bee venompeptide:evelopment of a coated calcium alginate gel beads-entrappedliposome[J].Journal of Controlled Release.2003,93(3):293-300.
    [93] Pauling L.A theory of the structure and proeess of formation of antibodies [J]. Journal ofthe American Chemical Society.1940,62(10):2643-2657.
    [94] Diekey F.H.The preparation of specific adsorbents [J]. Proceedings of the NationalAcademy of Sciences.1949,35(5):227-229.
    [95] Wuff G., Sarhan A.The use of polymers with enzyme-analogous structure for therecognition of racemates [J]. Angewandte Chemie International Edition.1972,11(4):341-348.
    [96] Vlatakis G., Andersson L.I., Muller R., Mosbach K.Drug assay using antibody mimicsmade by molecular imprinting [J].Nature.1993,361:645-647.
    [97] Byun H. S., Youn Y. N., Yun Y. H., Yoon, S. D. Selective separation of aspirin usingmolecularly imprinted polymers [J]. Separation and Purification Technology.2010,74(1)144-153.
    [98] zkara S., Anda M., Karako V., Say R., Denizli A. Ion-imprinted PHEMA basedmonolith for the removal of Fe3+ions from aqueous solutions[J]. Journal of AppliedPolymer Science.2011,120(3):1829–1836
    [99] Yuan Y., Wang Y.Z., Huang M.D.,Xu R., Zeng H., Nie C., Kong J.H. Development andcharacterization of molecularly imprinted polymers for the selective enrichment ofpodophyllotoxin from traditional Chinese medicines[J]. Analytica Chemica Acta.2011,695(1-2):63-72.
    [100]谭学才,王琳,李鹏飞,龚琦,刘力,赵丹丹,雷福厚,黄在银.以马来松香丙烯酸乙二醇酯为交联剂的茶碱分子印迹膜电化学传感器的研究[J].化学学报,2012,70(9):1088-1094.
    [101] Abdouss M., Asadi E., Azodi-Deilami S., Beik-mohammadi N., Aslanzadeh S. A.Development and characterization of molecularly imprinted polymers for controlledrelease of citalopram[J]. Journal of Materials Science: Materials in Medicine.2011,22(10):2273-2281.
    [102]郭洪声.分子印迹聚合物的合成,识别机理及分析应用研究[D].南开大学.天津,2001,28.
    [103] Wang C.Y., Javadi A., Ghaffari M., Gong S.Q. A pH-sensitive molecularly imprintednanospheres/hydrogel composite as a coating for implantable biosensors [J].Biomaterials.2010,31(18):4944–4951.
    [104] David C., Kirby A., Alexander C. Molecularly imprinted drug delivery systems [J].Advanced Drug Delivery Reviews.2005,57(12):1836–1853.
    [105] Chien Y.W., Lin S.Review Optimisation of treatment by applying programmablerate-controlled drug delivery technology[J]. Clinical Pharmacokinetics.2002,41(15):1267-1299.
    [106] Allender C.J., Brain K.R., Heard C.M. In: Progress in Medical Chemistry [M]. TheNetherlands. Amsterdam. Elsevier Science.1999,235.
    [107] Tong K., Xiao S., Li S., Wang J. Molecular recognition and catalysis by molecularlyimprinted polymer catalysts: Thermodynamic and kinetic surveys on the specificbehaviors[J]. Journal of Inorganic and Organometallic Polymers.2008,18(3):426–433.
    [108] Norell M.C., Andersson H.S. NichoU.I. Theophylline molecularly imprinted polymerdissociation kinetics: a novel sustained release drug dosage mechanism[J].Journal ofMolecular Recognition.1998,11(1-6):98-102.
    [109] Allender C.J., Richardson C., Woodhouse B., Heard C.M., Brain K.R. Pharmaceuticalapplications for molecularly imprinted polymers[J]. International Journalof Pharmaceutics.2000,195(1-2):39-43.
    [110] Azodi-Deilami S. Abdouss M., Javanbakht M. The Syntheses and Characterization ofMolecularly Imprinted Polymers for the Controlled Release of Bromhexine [J].Applied Biochemistry and Biotechnology.2011,164(2):133-147.
    [111] Sreenivasan K. Surface-imprinted polyurethane having affinity sites for ampicillin[J].Macromolecular Bioscience.2005,5(3):187-191.
    [112] Brain K.R.,Ginestet M.,Walters K.A.,Williams B.E.Perspectives in PercutaneousPenetration[J]. Journal of Pharmacy and Pharmacology.2010,62(6):786-807.
    [113] Suedee R., Srichana T., Rattananont T. Enantioselective release of controlled deliverygranules based on molecularly imprinted polymers[J].Drug Delivery.2002,9(1):19-30.
    [114] Sreenivasan K. On the application of molecularly imprinted poly(HEMA) as a templateresponsive release system[J]. Journal of Applied Polymer Science.1999,71(11):1819-1821.
    [115] Cornelus F., Nostrum V. Molecular imprinting: A new tool for drug innovation [J]. Drugdiscovery Today: Technologies.2005,2(1):119-124.
    [116] Alvarez-Lorenzo C., Concheiro A. Molecularly imprinted polymers for drug delivery[J]. Journal of Chromatography B.2004,804(1)231-245.
    [117] Singh B., Chauhan N.Preliminary evaluation of molecular imprinting of5-fluorouracilwithin hydrogels for use as drug delivery systems [J]. Acta Biomaterialia.2008,4(5):1244-1254.
    [118] Puoci F., Iemma F., Muzzalupo R., Spizzirri U.G., Trombino S., Cassano R., Picci N.Spherical molecularly imprinted polymers (SMIPs) via a novel precipitation polymeriza-tion in the controlled delivery of sulfasalazine [J]. Macromolecular Bioscience.2004,214(1):22-26.
    [119] Huval C.C., Chen X., Holmes-Farley S.R., Mandeville W.H., Polomoscanik S.C.,Sacchiero R.J., Dhal P.K. Molecularly imprinted bile acid sequestrants: Synthesis andbiological studies[C]. Molecularly Imprinted Materials. Cambridge2003,787:G6.3.
    [120] Hoshino Y., Koide H., Urakami T., Kanazawa H., Kodama T., Oku N., Shea K.J.Recognition, neutralization, and clearance of target peptides in the bloodstream ofliving mice by molecularly imprinted polymer nanoparticles: A plastic antibody[J]. J.Am. Chem. Soc.2010,132(19):6644–6645.
    [121] Ye L., Mosbach K. Molecularly imprinted microspheres as antibody binding mimics [J].Reactive and Functional Polymers.2001,48(1-3):149-157.
    [122] Byrne M.E., Oral E., Hilt J.Z., Peppas N.A. Networks for recognition of biomolecules:Molecular imprinting and micropatterning poly(ethylene glycol)-containing films[J].Polymers for Advanced Technologies.2002,13(10-12):798-816.
    [123]仰云峰,车爱馥,吴健,徐志康.表面分子印迹研究进展[J].化学通报.2007,70(5):324-330.
    [124] Tan C.J., Tong Y.W. Molecularly imprinted beads by surface imprinting[J]. Analyticaland Bioanalytical Chemistry.2007,389(2):369-376.
    [125]高学超,高保娇,牛庆媛,赵婧.采用新型离子表面印迹材料在皮米尺度上对相邻稀土离子进行识别分离的研究[J].化学学报.2010,68(11):1109-1118.
    [126] Gao B.J., Liu S.Y.,Li Y.B. Preparation and recognition performance of uric acid-imprinted material prepared with novel surface imprinting technique[J]. Journal ofChromatography A.2010,1217(15):2226-2236.
    [127] Gao B.J., Wang J.An F.Q. Liu Q. Molecular imprinted material prepared by novelsurface imprinting technique for selective adsorption of pirimicarb[J]. Polymer.2008,49(5):1230-1238.
    [128] Gao B.J.,Chen Y.X., Men J.Y. Constructing chiral caves and efficiently separatingenantiomers of glutamic acid with novel surface-imprinting technique[J]. Journal ofChromatography A.2011,1218(32):5441-5448.
    [1]刘苏宇,高保娇,付红艳.接枝聚合-大分子反应法在交联聚乙烯醇微球表面接枝聚偕胺肟的研究[J].高分子学报.2010,6:727-733.
    [2]高保娇,吴念,李延斌,徐立.水溶性高分子链中磺酸盐基团含量的电导滴定测定法[J].高分子学报,2004,(4):605-608.
    [3] Arslan H., Hazer B. Ceric ion initiation of methyl methacrylate using polytetrahydrofurandiol and polycaprolactone diol [J]. European Polymer Journal,1999,35(8):1451-1455.
    [4] Yagci C., Yildiz U. Redox polymerization of methyl methacrylate with allyl alcohol1,2-butoxylate-block-ethoxylate initiated by Ce(IV)/HNO3redox system[J]. EuropeanPolymer Journal,2005,41(1):177-184.
    [5] Bialk M., Prucker O., Rühe J. Grafting of polymers to solid surfaces by usingimmobilized methacrylates [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects.2002,198-200(1):543-549.
    [6] Tsubokawa N., Hayashi S., Nishimura J. Grafting of hyperbranched polymers onto ultra-fine silica: Postgraft polymerization of vinyl monomers initiated by pendant azo groups ofgrafted polymer chains on the surface[J]. Progress in Organic Coatings,2002,44(1):69-74.
    [7]陈迎鑫,高保娇.功能接枝微粒PDMAEMA/SiO2的制备及其吸附特性研究[J].化学通报.2010,73(11):995-1000.
    [8] Gao B.J., Wang R.X., Jiu H.F., et al. A comparative study on effects of two kinds ofpolymerization methods on grafting of polymer onto silica surface[J]. Journal of AppliedPolymer Science,2006,102(6):5808-5817.
    [9] Srijita B., Sumit M., Gautam S. Ceric ion initiated synthesis of polyacrylamide graftedoatmeal: Its application as flocculant for wastewater treatment [J].Carbohydrate Polymers,2013,93(2):528-536.
    [10] Kaur I., Kumar R., Sharma N. A comparative study on the graft copolymerization ofacrylic acid onto rayon fibre by a ceric ion redox system and a γ-radiation method[J].Carbohydrate Research.2010,345(15):2164-2173.
    [11]卢金华,高保娇,张国海. Ce(Ⅳ)盐引发丙烯酰胺在聚乙烯醇微球表面接枝聚合的研究[J].高分子学报.2009,6:540-545.
    [1] Weitz J., Koch M., Debus J. et a1.Colorectal cancer[J].Lancet.2005,365(9454):153-165.
    [2] Meta-Analysis Group in Cancer. Toxicity of fluorouracil in patients with advancedcolorectal cancer: effect of administration schedule and prognostic factors.[J]. Journal ofClinical Oncology.1998,16(11):3537-3541.
    [3] Malet-Martino M., Jolimaitre P., Martino R. The prodrugs of5-fluorouracil [J]. CurrentMedicinal Chemistry-Anti-Cancer Agents.2002,2(2):267-310.
    [4] Rakesh K.D., Vikas B., Kamla P. Novel microbially triggered colon specific deliverysystem of5-Fluorouracil: Statistical optimization, in vitro, in vivo, cytotoxic and stabilityassessment[J]. International Journal of Pharmaceutics.2011,411(1-2):142-151.
    [5] Li J., Hou N., Faried A., Tsutsumi S., Kuwano H..Inhibition of autophagy augments5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model [J].European Journal of Cancer.2010,46(10):1900-1909.
    [1] Cirillo G., Iemma F., puoci F., Parisi O. I., Curcio M., Spizzirri U. G., Picci N. Imprintedhydrophilic nanospheres as drug delivery systems for5-fluorouracil sustained release[J].Journal of Drug Targeting, January2009;17(1):72–77
    [2] Arslan,H.;Hazer,B. Ceric ion initiation of methyl methacrylate using polytetrahydrofurandiol and polycaprolactone diol[J]. European Polymer Journal.1999,35(8):1451-1455.
    [3] Yagci C. Yildiz U. Redox polymerization of methyl methacrylate with allyl alcohol1,2-butoxylate-block-ethoxylate initiated by Ce(IV)/HNO3redox system[J]. EuropeanPolymer Journal.2005,41(1):177-184.
    [4]刘苏宇,高保娇,付红艳.接枝聚合-大分子反应法在交联聚乙烯醇微球表面接枝聚偕胺肟的研究[J].高分子学报,2010,6:727-733.
    [5]门吉英,高保娇,陈志萍.接枝微球CPVA-g-PSSS的制备及其对5-氟尿嘧啶载药及体外结肠定位释药特性研究[J].高分子学报,2012,9:943-951.
    [6] David C. Kirby A. Alexander C. Molecularly imprinted drug delivery systems[J].Adv.Drug Deliver.Rev.2005,57(12):1836-1853.
    [7] Azodi-Deilami S., Abdouss M. Javanbakht, M. The syntheses and characterization ofmolecularly imprinted polymers for the controlled release of bromhexine [J]. Appl.Biochem.Biotech.2011,164:133-147.
    [8] Hiorth, M.; Sk ien,T.; Sande, S. A. Immersion coating of pellet cores consisting ofchitosan and calcium intended for colon drug delivery[J].Eur. J. Pharm. Biopharm.2010,75(2):245-253.
    [9] Muzzalupo, R.; Tavano, L.; Cassano, R.; Trombino, C. S.; Picci, A. N. Colon-specificdevices based on methacrylic functionalized Tween monomer networks: Swelling studiesand in vitro drug release[J]. Eur. Polym. J.2010,46(2):209-216.
    [1]吐尔洪·买买提,阿不都克热木·卡地尔,哈丽丹·买买提,尼鲁帕尔·阿不都克尤木.替代模板法制备甲硝唑分子印迹聚合物及其在血清样品固相萃取中的应用[J].分析化学.2011,39(12):1841-1845.
    [2] Herculano R. D., de Queiroz A. A. A., Kinoshita A., Oliveira Jr O. N., Graeff C.F.O. Onthe release of metronidazole from natural rubber latex membranes[J]. Materials Scienceand Engineering.C.2011,31(2):272–275.
    [3] Krishnaiah Y. S. R., Reddy P. R. B., Satyanarayana V., Karthikeyan R. S. Studies on thedevelopment of oral colon targeted drug delivery systems for metronidazole in thetreatment of amoebiasis[J]. International Journal of Pharmaceutics.2002,236(1-2):43–55.
    [4] Mura C., Valenti D., Floris C., Sanna R., Luca M. A. D., Fadda A. M., Loy G.Metronidazole prodrugs: Synthesis, physicochemical properties, stability,and ex vivo release studies[J]. European Journal of Medicinal Chemistry.2011,46(9):4142–4150.
    [5] zyaz c M., G k e E. H., Ertan G.. Release and diffusional modeling of metronidazolelipid matrices[J]. European Journal of Pharmaceutics and Biopharmaceutics.2006,63(3):331–339.
    [6] Brandt M., Abels C., May T., Lohmann K., Schmidts-Winkler I., Hoyme U.B.Intravaginally applied metronidazole is as effective as orally applied in the treatment ofbacterial vaginosis, but exhibits significantly less side effects[J]. European Journal ofObstetrics&Gynecology and Reproductive Biology.2008,141(2):158–162.
    [1] Cirillo G., Iemma F., puoci F., Parisi O. I., Curcio M., Spizzirri U. G., Picci N.. Imprintedhydrophilic nanospheres as drug delivery systems for5-fluorouracil sustained release [J].Journal of Drug Targeting.2009,17(1):72–77
    [2]刘苏宇,高保娇,付红艳.接枝聚合-大分子反应法在交联聚乙烯醇微球表面接枝聚偕胺肟的研究[J].高分子学报.2010,6:727–733
    [3] David C., Kirby A., Alexander C. Molecularly imprinted drug delivery systems [J]. Adva-nced Drug Delivery Reviews.2005,57(12):1836-1853.
    [4] Azodi-Deilami S., Abdouss M., Javanbakht M. The Syntheses and Characterization ofMolecularly Imprinted Polymers for the Controlled Release of Bromhexine [J].AppliedBiochemistry and Biotechnology.2011,164(2):133-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700