用户名: 密码: 验证码:
龙门山中段前山构造变形特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大陆动力学是当今地球科学研究的前沿课题,造山带是研究大陆构造的一个重要的构造单元,因此新的大陆构造科学理论必须建立在造山带的深入研究基础之上。龙门山造山带属青藏高原东缘的陆内造山带,是中国大陆的主要造山带之一,其北与昆仑—秦岭东西向造山带斜向相接,南与康滇南北向构造带相连,东邻包括四川盆地在内的扬子地台,西面为松潘-甘孜褶皱带。因其所处的构造位置而成为解决青藏高原隆升和周边造山带造山过程的关键地区。
     龙门山造山带作为研究陆内造山带的热点地区,国内外地质学者对其进行了深入的研究,但目前看来,对于龙门山构造带小构造的几何学,运动学及动力学,尤其是变形期次的研究较为薄弱。本文通过对龙门山中段都江堰剖面、白水河-白鹿剖面、白水河-关口等三条剖面进行野外实测,运用小构造解析的方法,对龙门山中段前山构造的几何学,运动学,动力学做了描述。根据野外构造现象的复合关系,结合显微构造分析、测年分析、流体包裹体及碳氧同位素测温等方法,综合得出该区域的变形期次,变形期次的确定主要遵循以下原则:塑性变形早于脆性变形;块状岩石中劈理等密集破裂早于节理等稀疏破裂;弯曲、填充有矿脉的破裂面早于平直、光滑、无矿脉填充的;所充填矿脉发生变形的破裂面早于无变形的;平面X型节理早于剖面X型节理;各变形要素的切割以及限制关系等。
     本文得出龙门山中段前山的变形期次至少有9期:第一期表现为印支中晚期中央断裂NW-SE向的韧性逆冲,反映了初期推覆作用;第二期NE-SW向,可能形成须家河地层中早期平面X节理以及飞来峰内部变形;第三期S-N向挤压力,主要反映在中央断裂的左旋运动;第四期NW-SE向挤压,造成了中央断裂的右旋走滑以及前山断裂二王庙断层的逆冲运动;第五期铅直挤压力反映在中央断裂与前山断裂的正断运动;第六期NE-SW向挤压力,在中央断裂与前山断裂均有表现;第七期S-N向应力,表现在燕山早中期中央断裂的左旋运动以及龙溪飞来峰内部的变形;第八期NW-SE向应力反映了燕山晚期-喜马拉雅早期龙门山的逆冲活动;第九期铅直应力,反映了喜马拉雅期龙门山推覆体的滑覆作用。
     龙门山逆冲推覆构造带的形成并非一蹴而就,而是经过多次受力,逐渐发展而成。推覆体和滑覆体的形成在空间上,时间上,受力方式上,都存在差异,是多期次作用的结果。飞来峰是在印支晚期-早燕山期与母体一起被推覆抬升,在燕山期由于重力作用产生滑覆。本文研究结果显示,龙门山构造带的变形从北西向南东发展,表现在:①中央断裂较前山断裂变形强烈,发展历史较长,中央断裂的运动期次多达7次,但前山断裂的运动期次只有5次。②中央断裂两盘构造特征存在差异,北西盘变形特征从韧性到脆性过渡,南东盘以脆性变形特征为主,且北西盘形变早于南东盘。③飞来峰后缘的变形期次明显多于前缘.④飞来峰后原地系统中变形期次多于前原地系统。
Continental dynamics is the leading edge of the research of earth science recently. Continental orogenic belt is one of the important tectonic structural units, so the new continent tectonic scientific theory must be based on the study of the orogenic belts.Longmen thrust belt is one of the main orogenic belt in China continent, belongs to the intracontinental orogenic belt of eastern margin of the Qinghai-Tibet plateau. Its internal structure is complex and has unique features. The NE-trending Longmen Mountains lie between Songpan-Ganzi fold belt and Sichuan Basin,the northern edge of which is Kunlun-Qinling orogenic belt and southern edge of which connect the Kangdian north-south tectonic zone. Longmen thrust belt becomes a key areas of a solution of qinghai-tibet plateau uplift and peripheral orogenic belt of orogenic process because of its structural position.
     As a hotspots of researching intracontinental orogenic belt, Geological scholars did a further research about Longmen Mountains. But it is weak in the small structural’s geometry, kinematics and dynamics of Longmen Mountains.This paper discusses the characters of tectonic deformation about the three sections in the middle Longmen Orogen: Dujiangyan Section, Baishuihe-Guankou Section, and Baishuihe-Bailu Section. Using the method of small structural analytical, described the geometry, kinematics and dynamics of the fore-mountain belt of the middle Longmen Mountains. Then get the sequences of deformation and stress of this area depend on the relationships about the structural phenomena, associated with microstructure analysis,age-dating analysis, fluid inclusion thermometry and C-O isotopic element thermometry.Then get the deformation sequence of this area.It must be followed some principles to confirm the deformation sequence: Plastic deformation is earlier than brittle deformation; dense joint is earlier than sparse joint in massive rocks; The failure surface which bending and filling with veins is earlier than the one whith straightly and on veins; The failure surface filling with deformation veins is earlier than the one filling with no deformation veins; Planar X- joint is earlier than profile X- joint;The crosscutting relationship and confining relationship between deformation factors is also important.
     There are more than 9 times of structural deformation in the middle Longmen Mountains. The first deformation sequence was NW-SE, reflected the thrusting of the central fault during Indo-Chinese epoch, it was the initial thrust nappe function. The second deformation sequence was NE-SW,mainly formed the early formation of planar X joints and the deformation of the klippens. The third deformation sequence was S-N, it reflected the left-lateral movement of central fault. The fourth deformation sequence was NW-SE, it reflected the right-lateral strike-slip of central fault and the thrust-motion of front fault. The fifth deformation sequence was vertical stress, it formed the normal faulting of both central fault and front fault. The sixth deformation sequence was NE-SW,it was existed in both central fault and front fault. The seventh deformation sequence was S-N, it reflected the left-lateral movement of central fault and the deformation of longxi nappe during Early-Middle Yanshan epoch. The eighth deformation sequence was NW-SE, it reflected the thrust-motion of Longmen Mountains between Late Yanshan epoch to Early Himalayan epoch. The ninth deformation sequence was vertical stress, it reflected the slumped overthrust movement of Longmen Mountains.
     Longmen mountain nappe tectonic belt experienced several stress times. Klippens of middle Longmen Mountains were uplifted in Indo-Chinese epoch and slipped during yanshan period because of the gravity, and the formation time of the Klippens were different. The results of this paper show that the stress times of trailing edge of the klippens are obviously more than the leading edge.The deformation of Longmen mountains developed from NW to SE, explained by①The times of structural deformation in the central fault of Longmen Mountains is more than the front fault, and the formation time is earlier than the front fault. There are more than 7 times of structural deformation in the central fault and 4 times of the front fault.②The structural deformation is different of both sides of central fault, west of which is mainly ductile deformation but the east is brittle deformation.③T he stress times of trailing edge of the klippens are more than the leading edge.
引文
[1]罗志立,赵锡奎,刘树根等.龙门山造山带的崛起和四川盆地的形成与演化[M].成都:成都科技大学出版社,1994:317-329.
    [2]林茂炳,苟宗海,吴山.龙门山地质考察指南[M].成都:成都科技大学出版社1997:8(9).
    [3]林茂炳.龙门山中段地质[M].成都科技大学出版社,1996.
    [4]朱志澄,宋鸿林.构造地质学[M].武汉:中国地质大学出版社,1990.
    [5]四川省地矿局.四川省区域地质志[M].北京:地质出版社,1991.
    [6]邓广军.龙门山造山带构造样式及演化过程[M].成都:成都理工大学,2003.
    [7]骆耀南,俞如龙,侯立玮,等.龙门山-锦屏山陆内造山带[M].成都:四川科学技术出版社,1998.
    [8]刘树根.龙门山冲断带与川西前陆盆地的形成演化[M].成都:成都科技大学出版社,1993.
    [9]四川省地矿局.四川省岩石地层[M].武汉:中国地质大学出版社,1997.
    [10]刘朝基,刁志忠等.川西藏东特提斯地质[M].成都:西南交通大学出版社,1996.
    [11]高瑞淇,赵政璋.中国油气新区勘探—南方海相油气地质及勘探前景[M].北京:石油工业出版社,2001.
    [12]刘肇昌,李伟,李凡友等.扬子地台西缘构造演化与成矿[M].成都:电子科技大学出版社,1996.
    [13]许志琴,候立玮,王宗秀.中国松潘—甘孜造山带的造山过程[M].北京:地质出版社,1992.73-102.
    [14]朱志澄.逆冲推覆构造[M].北京:中国地质大学出版社,1989.80-82.
    [15]林茂炳,苟宗海,王国芝.四川龙门山造山带造山模式研究[M].成都:成都科技学出版社,1996.
    [1]宋春彦.龙门山南段构造变形与演化[D].成都:成都理工大学地球科学学院,2009.
    [2]郭兵.龙门山中段构造特征及油气前景探讨[D].成都:成都理工大学能源学院,2009.
    [3]郭斌.龙门山造山带构造特征及演化过程研究[D].北京:中国地质大学,2006.
    [1]郝晓琳,刘顺.龙门山中段前山构造变形期次及应力场研究[J].四川地质学报,2009(4): 388-392.
    [2]刘树根等.龙门山冲断带的隆升和川西前陆盆地的沉降[J].地质学报,1995,69(3).
    [3]马永旺,杨尽.龙门山中段推覆构造的变形特征[J].成都理工学院学报,2001,7.
    [4]韩克猷.龙门山逆掩断裂带成因与油气远景.天然气工业[J],1984,4(8):1-8.
    [5]李坤,赵锡奎,王国芝.龙门山中段前山带构造特征及含油气性研究[J].地质找矿论丛,2006,21(4):282-287.
    [6]罗志立,刘树根,刘顺.四川盆地勘探天然气有利地区和新领域探讨[J ] .天然气工业,2000,20(5):428.
    [7]石和,苟宗海.彭县九甸坪上古生界地层剖面及岩石地层单位的划分[J].成都理工学院学报,1994,21(3):63-69.
    [8]石绍清.彭县地区飞来峰的特征及演化[J].成都理工学院学报,1994,21(3),8-13.
    [9]王东.论彭灌飞来峰群形成方式和时代及根带等问题[J].四川师范大学学报,1994,17(5),98-104.
    [10]韩同林,劳熊,陈尚平等.四川彭灌葛仙山巨型冰川漂砾的发现及意义[J].中国区域地质,1999,18(1):59-67.
    [11]周自隆.龙门山彭州-什邡地区的巨型冰川漂砾[J].四川地质学报,2001,21(2),122-128.
    [12]马永旺,刘顺.龙门山彭灌地区大鱼洞-九甸坪-龙溪滑覆体的变形特征及形成[J].成都理工大学学报(自然科学版),2003,30(5):462-467.
    [13]周绪伦.龙门山塘坝子葛仙山碳酸盐岩外来体的岩溶形态特征和成因[J].四川地质学报,2007,27(2):87-91.
    [14]李勇,黄润秋,周荣军等.龙门山地震带的地质背景与汶川地震的地表破裂[J].工程地质学报,2009,17(1):3-18.
    [15]陶晓风.四川芦山中林地区飞来峰的特征及形成演化[J].成都理工学院学报,1996,23(2),69-73
    [16]吴山.龙门山南段大型飞来峰[J].矿物岩石,1998,18(增),61-66.
    [17]吴山,赵兵,胡新伟.再论龙门山飞来峰[J].成都理工学院学报,1999,26(3):221-224.
    [18]赵兵,苟宗海,吴山.四川龙门山中段早埃姆斯期生态地层及古环境新认识[J].岩相古地理,1999年12月,19(6):29-36.
    [19]李坤,赵锡奎等.龙门山中段前山带构造特征及含油气性研究[J].地质找矿论丛,2006,21(4).
    [20]赵兵.龙门山中南段白石-苟家飞来峰龙潭组及二叠系层序地层特征[J],2001,28(3):241-245.
    [21]刘树根等.龙门山造山带-川西前陆盆地系统构造事件研究.成都理工学院学报[J].2001,28(3):221~230.
    [22]刘树根,王国芝,徐国盛,等.龙门山造山带盆山转换时期的流体及流体迁移特征[J].成都理工大学学报, 2003,30(1):19-24.
    [23]李忠权,应丹琳,郭小玉等.龙门山汶川地震特征及运动学初析[J].成都理工大学学报(自然科学版),2008,35(4):426-430.
    [24]杨季凯.1991.龙门山地区地质发展史.四川地质学报[J],11(3):181-187.
    [25]王金琪.龙门山构造演化与山前油气关系[J].地球学报,1994,3(4).
    [26]唐文清,刘宇平.龙门山断裂构造带GPS研究[J].大地测量与地球动力学,2004,24(3).
    [27]宋鸿彪.龙门山造山带地质和地球物理资料综合解释[J].成都理工学院学报,1994,21(2).
    [28]王金琪.龙门山印支运动主幕辨析-再论安县运动[J].四川地质学报,2003,23(2).
    [29]边兆祥,朱夔玉,金以钟,贾疏源.1980.四川龙门山印支期构造发展特征[J].四川地质学报,1:1-11.
    [30]罗志立.1991.龙门山造山带岩石圈演化的动力学模式[J].成都地质学院学报,18(1):1-7.
    [31]崔秉荃,龙学明,李元林.1991.川西拗陷的沉降与龙门山的崛起[J].成都地质学院学报.18(1):39-45.
    [32]刘如琦,马文念. 1983.区域变质杂岩的构造序列规律探讨[J].地质科学,10-21.
    [33]胡新伟,吴山,邓江红.2000.龙门山中南段泰安寺-干沟-苍坪断裂构造特征及其地质意义[J].成都理工学院学报,27(1):45-49.
    [34]罗啸泉等,论龙门山中段前缘油气成藏条件[J].岩相古地理,第19卷,第2期,1999年4月
    [35]刘顺,刘树根,宋春彦,李智武,邓宾,郭宾,田小彬,郝晓琳.2008.龙门山中央断裂运动学研究[J].成都理工大学学报(自然科学版),35(4):463-469.
    [36]陶晓风.l999.龙门山南段推覆构造与前陆盆地演化[J].成都理工学院学报,26(l):73-77.
    [37]吴山,赵兵,苟宗海,邓明森,邓江红,胡新伟.1999.龙门山中南段构造格局及其形成演化[J].矿物岩石,19(3):82-85.
    [38]刘和甫.川西龙门山冲断系构造样式与前陆盆地演化[J].地质学报,1994,68(2).
    [39]王道永,龙门山中段中生代前陆盆地的构造演化史[J].成都理工学院学报,1994,21(3):20~28.
    [40]刘树根,罗志立等.川西前陆盆地的“四川运动”及与油气的关系[J].石油与天然气地质,1996,17(4).
    [41]葛肖虹.华北板内造山带的形成史[J].地质评论,1989,35(3).
    [42]赵宗溥.试论陆内型造山作用[J].地质科学,1995,30,(1).
    [43]林茂炳.初论陆内造山带的造山模式-以龙门山为例[J].四川地质学报,1996,16(3).
    [44]王金琪.龙门山构造演化与山前油气关系[J].地球学报,1994,第3-4期..
    [45]唐文清,刘宇平.龙门山断裂构造带GPS研究[J].大地测量与地球动力学,2004,24(3).
    [46]罗志立,龙学明.龙门山造山带的崛起和川西前陆盆地的沉降[J].四川地质学报,1992,12(1)
    [47]马永旺,林茂柄.彭灌断裂带的构造特征[J].成都理工学院学报,1994,21(3).
    [48]林茂炳,俞广.茂汶韧性断裂带(耿达—汶川段)的基本特征[J].成都理工学院学报,1997,24(2).
    [49]吴山,赵兵.再论龙门山飞来峰[J].成都理工学院学报,1999,26(3).
    [50]王东.论彭灌飞来峰群形成方式和时代及根等问题[J].四川师范大学学报(自然科学版),1994,17(5).
    [51]曹伟,张金熔.龙门中段前缘构造浅析[J].实验石油地质,1994,16(1).
    [52]刘树根,王国芝等.龙门山造山带盆山转换时期的流体及流体迁移特征[J].成都理工大学学报(自然科学版),2003,30(1).
    [53]宋鸿彪.龙门山造山带地质和地球物理资料综合解释[J].成都理工学院学报,1994,21(2).
    [54]胡新伟.映秀断裂带构造岩、显微构造及组构特征及形成机制讨论[J].成都理工学院学报,1995,22(4).
    [55]贾东,陈竹新等.龙门山前陆褶皱冲断带构造解析与川西前陆盆地的发育[J].高校地质学报,2003,9(3).
    [56]蔡国立等.四川前陆褶皱-冲断带构造样式与特征[J].石油实验地质,1997,19(2)
    [57]罗志立.峨眉地裂运动的厘定及其意义[J].四川地质学报,1989,9(1).
    [58]李勇,曾允孚.龙门山逆冲推覆作用的地层标识[J].成都理工学院学报,1995,22(2).
    [59]王金琪.龙门山印支运动主幕辨析-再论安县运动[J].四川地质学报,2003,23(2).
    [60]. Ketcham R A Donelick R A, Donelick M B. A program for multi-kinetic modeling of apatite fission-track data [J]. Geological Materials Research, 2000,2(1):1-32.
    [61] Kirby E, Reiners P W, Krol M A etal. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inference from 40Ar/39Ar and (U-TH)/He thermochronology[J]. Tectonics,2002,21(1):1-20.
    [62] Hendrix M S,Dum Itru T A,Graham S A.Late Oligocene-early Miocene unroofing in the Chinese TianShan:an early effect of the India– Asian collision[J].Geology , 1994 ,22:487-490.1996,18(4):413-430.
    [63] Harrowfield M J,Wilson C J L.Indosinian deformation of the Songpan Garze? Fold Belt,northeast Tibetan Plateau[J].Journal of Structural Geology,2005,27:101-117.
    [64] Anthony J. Reid、Christopher J.L. Wilson、Shun Liu. Structural evidence for the Permo-Triassic tectonic evolution of the YidunArc, eastern Tibetan Plateau[J].Journal of Structural Geology,2005,27:119-137.
    [65] Arne D, Worley B, Wilson C, et al. Differential exhumation in response to episodic thrusting along the eastern margin of the Tibetan Plateau.Tectonophysics[J], 1997 , 280(3-4):239-256.
    [66] Harrowfield M J, Wilson C J L. Indosinian deformation of the Songpan GarzêFold Belt,northeast Tibetan Plateau. Journal of Structural Geology[J],2005,27(1):101-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700