用户名: 密码: 验证码:
江汉平原区海相地层烃源对比及油气藏的形成与演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对江汉平原区生、储、盖成藏基本条件的研究,在纵向上将海相地层划分出五个主要的油气成藏组合。通过生物标志化合物的地球化学特征确定了海相地层中充填有机质或沥青的来源。利用Easy%Ro动力学模拟方法,恢复了江汉平原区海相地层典型构造主要烃源岩的热史和生烃演化史。然后结合构造演化史,剖析了江汉平原区海相地层典型构造油气藏的形成与演化过程。最后总结出油气成藏的主控因素,指出油气聚集的有利地带。论文的主要成果如下:
     (1)根据震旦系-侏罗系生、储、盖层发育情况,在纵向上划分出五个主要的油气成藏组合,分别命名为I、II、III、IV、V组合。即上震旦统陡山沱组-下寒武统天河板组成藏组合(Z2ds-∈1t)、下寒武统水井沱组-中寒武统覃家庙组成藏组合(∈1t-∈2q)、中寒武统覃家庙组-下志留统龙马溪组成藏组合(∈2q–S1lO)、上奥陶统五峰组-下二叠统栖霞组成藏组合(O2w-P1q)、下二叠统栖霞组-侏罗系成藏组合(P1q-J)。
     (2)江汉平原区二叠系、三叠系油苗或储层中充填的有机质来源于二叠系烃源岩;石炭系与泥盆系储层中充填的有机质来源于志留系和二叠系烃源岩;志留系储层沥青来源于志留系和寒武系烃源岩;奥陶系沥青来源于本身烃源岩。侏罗系粗砂岩中的油苗可能来自于其下伏侏罗系或下伏其它地层,至少不应该来自于二叠系或其以下地层。
     (3)江汉平原区海相地层油气藏的形成与演化主要经历了以下几个阶段:①晚印支期,区内地层发生小规模的褶皱,油气在古隆起区聚集。②早燕山期,挤压隆升区海相地层埋深明显变浅乃至出露。甚至有些地区下古生界也不同程度暴露地表,海相地层油气藏遭受了严重的破坏。而在中三叠统至侏罗系区域盖层剥蚀厚度较小的地区,海相地层保存条件依然很好。③晚燕山期-早喜山期,受区域伸展拉张应力影响的地区,断层处于开启状态,烃源岩生成的油气及古油气藏中的油气沿断层向地表散逸,海相地层古油气藏遭到致命破坏;④晚喜山期至今,无大的构造运动和断裂活动发生,海相地层封存性能逐渐改善,但各烃源层生油气高峰早已过去,无二次生烃的能力。
     (4)油气成藏主控因素:①构造隆升剥蚀作用,主要指燕山期强烈的褶皱、隆起、剥蚀作用。挤压隆升区海相地层埋深明显变浅乃至出露,甚至有些地区下古生界也不同程度暴露地表,使海相地层油气藏遭到破坏;②断裂活动,印支期断裂对油气的破坏作用相对较小。燕山期断裂使部分地区的地层大幅度冲出地表而遭受剥蚀和大气水的淋滤。晚燕山期-早喜山期断裂以张性断裂为主,断裂呈开启状态,大量的正断层发育,对古油气藏造成致命性破坏;③油气成藏时空配置不匹配,主要指石炭系-下三叠统油气系统。主力烃源岩志留系和二叠系在晚燕山-早喜山期处于生气、生油高峰阶段,而此时江汉平原区整体却处于张性环境内,断裂呈开启状态,油气保存条件差,烃源岩生成的油气无法聚集在有效圈闭内,只能沿断层向地表逸散。
     (5)宜昌稳定带处于北部大洪山弧形构造带、南部八面山-大磨山弧形构造带及西部黄陵隆起所共同围限的一个构造三角带,由于受到三方围限,该区受对冲挤压作用较弱,构造稳定,褶皱宽缓,断裂不发育,印支期以来以整体升降运动为主,是江汉平原区海相地层有利的勘探区块。
The marine strata were divided into five main hydrocarbon plays based on the analysis of hydrocarbon accumulation basic conditions.Through the characteristics of biological maker of organic material and bitumen in reseroivs,oil source could be identified.The thermal evolution history of the source rock of typical structures is recovered using the Easy % Ro(vitrinite reflectance) chemical kinetics model.Combined with the structural evolution history, the formation and evolution process of oil and gas accumulation of typical structures was analysed.Finally the thesis summarizes the key controlling factors of oil and gas accumulation,points out the favor accumulation areas.The main achievement of this thesis is as follows:
     (1)According to the characteristics of hydrocarbon source rocks、reservoirs and cap rocks from Sinian to Jurassic,five main hydrocarbon plays , named I、II、III、IV、V hydrocarbon play respectively which include Doushantuo Formation of Upper Sinian to Tianheban Formation of Lower Cambrian(Z2ds-∈1t),Shuijingtuo Formation of Lower Cambrian to Qinjiamiao Formation of Middle Cambrian(∈1t-∈2q), Qinjiamiao Formation of Middle Cambrian to Longmaxi Formation of Lower Silurian(∈2q–S1lO),Wufeng Formation of Upper Ordovician to Qixia Formation of Lower Permian(O2w–P1q)、Qixia Formation of Lower Permian to Jurassic could be divided respectively.
     (2)Oil seepage or organic material in Permian or Triassic reservoirs came from Permian source rocks.Organic material in Carboniferous or Devonian came from Permian and Silurian source rocks.Bitumen in Silurian reservoirs came from Lower Cambrian and Silurian source rocks; Bitumen in Ordovician reservoirs came from Ordovician source rocks.Oil seepage in Jurassic gritrock reservoirs possibly came from the underlying Jurassic or the underlying others strara.It impossibly came from the Permian or its underlying strara
     (3) The formation and evolution process of oil and gas accumulation in Jianghan plain maily experienced some stages as follow:①The late Indosinian.Indosinian movement caused some small scale folds.Oil and gas accumulated in the palaeohigh area;②The Early Yanshanian.Burial depth of marine strata in folded doming-up areas became obviously shallow,or the marine strara exposed to the surface.The Lower Paleozoic exposed to the surface in varying degrees in some areas.The paleo-reserviors in marine strata has been a large degree of damage.However,the preservation conditions were still well of marine strata in the areas where the denudation thickness of Middle Triassic-Jurassic was small.③The late Yanshanian-The Early Himalayan.The faults unsealed in those areas where were affected by regional extensional stress.Oil and gas escaped along faults toward the earth surface substantially.The paleo-reserviors in marine strata were destroyed fatally;④The late Himalayan-Nowadays.No violent tectonic and breaking movements have occurred in this stage.The sealing property of all marine strara was relatively superior today.However, all source rocks had lost capacity of secondary hydrocarbon generation owing to the past of oil/gas generation fastigium.
     (4) Key controlling factors of oil and gas accumulation:①the effect of uplift and denudation,it mainly refers to the effect of violent fold, uplift, denudation in yanshanian.Burial depth of marine strata in folded doming-up region became obviously shallow and the marine strara exposed to the surface,even in some areas the lower Paleozoic was exposed to the surface in varying degrees;②The movement of fracture. The damaging effects on oil and gas reservoirs are relatively slight.The strara of some areas substantially breached the earth surface caused by faults in Yanshanian,and then they suffered intense denudation and leached by atmospheric water.Under the tectonic background of regional extension,faults remained opening in late Yansahnian-early Himalayan,and a large number of normal faults developed.The preservation conditions of marine strara where those faults well developed were destroied.③The space-time configuration of oil and gas accumulation did not match,mainly refers to the carboniferous-Lower Triassic petroleum system.The hydrocarbon source rocks in silurian and Permian is at the stage of hydrocarbon generation fastigium in late Yanshanian-early Himalayan.Under the tectonic background of regional extension,faults remained opening. Accordingly,oil and gas both in paleo-reservoir and generated by source rocks escaped along fault toward the earth surface substantially.Though the preservation conditions has been improved between late Himalayan to nowadays,all source rocks had lost capacity of secondary hydrocarbon generation owing to the past of oil/gas generation fastigium.
     (5) Yichuang inactive belt was a tectonic triangle belt,which was confined with Dahong mountain arc tectonic belt in the north,Bamian mountain-Damo mountain arc tectonic belt in the south,and Huangling lift in the west.Under the three directions confinements,the compression that was affected by the hedge to this area was weak. And in this area, the structure was stable,the fold was rolling and the fracture was not developed.Since Indosinian, the main structure in this area is overall elevating movement.So Yichuang inactive belt is the favor exploration area in Jianghan Plain.
引文
[1]金之钧.中国海相碳酸盐岩层系油气勘探特殊性问题[J].地学前缘,2005,12(3);15-21.
    [2]徐国盛,刘树根等.四川盆地天然气成藏动力学[M].2005,北京:地质版社.
    [3]付孝悦,肖朝晖,陈光俊等.晚印支期以来中国南方大陆的构造演化与油气分布[J].海相油气地质,2002,7(3);37-43.
    [4]郭战峰,杨振武,刘新民.江汉平原古生界构造结构特征及油气勘探方向[J].海相油气地质, 2006, 11(2);9-16.
    [5]肖开华,陈红,沃玉进等.江汉平原区构造演化对中、古生界油气系统的影响[J].石油与天然气地质, 2005, 26(5);688-693.
    [6]李昌鸿,刘新民,付宜兴等.江汉平原区中、古生界构造特征及演化[J].地质科技情报,2008,27(2),34-38.
    [7]付宜兴,张萍,李志祥等.中扬子区构造特征及勘探方向建议[J].大地构造与成矿学,2007,31(3):308-314.
    [8]胡晓凤,王韶华等.中扬子区海相地层水化学特征与油气保存[J].石油天然气学报,2007,29(2);32-37.
    [9]严金泉,胡晓风.江汉盆地下三叠统石炭系水文地质条件及对油气保存条件的影响[J].石油天然气学报,2006,28(2);42-44.
    [10]曹国喜,罗小平.中扬子区海相油气保存条件初析[J] .石油与天然气地质,1996,17(1):44-47.
    [11]王韶华,胡晓凤等.江汉平原海相油气成藏潜力与勘探方向[J].资源环境与工程, 2008,22(3):316-319.
    [12]陈安定,黄金明等.地层水资料在油气保存条件评价中的应用[J].南方油气,2003,16(2):1-7.
    [13]刘春平,王拥军,林娟华等.江汉盆地印支-喜马拉雅期构造演化与海相地层油气成藏模式及勘探方向[J].中国石油勘探,2006,11(2):24-29.
    [14]刘新民,郭战峰,付宜兴.中扬子区东南缘下组合天然气勘探潜力分析[J].华南地质与矿产,2007,1:59-64.
    [15]郭彤楼,李国雄,曾庆立.江汉盆地当阳复向斜当深3井热史恢复及其油气勘探意义[J].地质科学,2005,40(4):570-578.
    [16]王海鹏,郭战峰.江汉平原海相含油气系统特征与勘探目标[J].江汉石油职工大学学报,2004,17(4):15-18.
    [17]湖北省地质矿产局.湖北省区域地质志[M].地质出版社,1990:5-187.
    [18]粱兴,叶舟,吴少华等.赋予含油气系统内涵的南方海相含油气保存单元及其类型[J],海相油气地质,2003,8(3):81-88.
    [19]卢庆治,马永生,郭彤楼等.鄂西-渝东地区热史恢复及烃源岩成烃史[J].地质科学,2007,42(1):189-198.
    [20]马力,陈焕疆,甘克文等.中国南方大地构造和海相油气地质[M].北京:地质出版,2004.
    [21]王韶华,宋明雁,李国雄等.江汉盆地南部二叠系烃源岩热演化特征[J].油气地质与采收率,2002,9(3):31-33.
    [22]王正元,严金泉,王韶华等.中扬子区海相油气成藏条件研究(中国石化江汉油田分公司勘探开发研究院内部报告),2004.
    [23]陈洪德,庞林,倪新锋等.中上扬子地区海相油气勘探前景[J].石油实验地质,2007,29(1):13-18.
    [24]中国石化江汉油田分公司勘探开发研究院.中扬子区海相油气成藏条件研究[R].内部报告,2004.
    [25]王韶华,李国雄,有效保存单元评价对沉湖地区海相油气勘探的启示[J].江汉石油职工大学学报,2002,15(2):22-23.
    [26]黄思静.上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J].地质学报,1997,71(1):45-53.
    [27]黄思静,吴素娟,孙治雷等中新生代海水锶同位素演化和古海洋事件.地学前缘,2005,12(2):133-141.
    [28]邱楠生.中国地区沉积盆地热演化和成烃史分析[J].石油勘探与开发,2002,29(1):6-9.
    [29]王兰生,苟学敏,刘国瑜,王琳,汪维明,王密云.四川盆地天然气的有机地球化学特征及其成因[J].沉积学报,1997,15(2):49-53.
    [30]蔡勋育,朱扬明,黄仁.普光气田沥青地球化学特征及成因[J].石油与天然气地质,2006, 27(3):340-347.
    [31]陈世加,王廷栋,黄清德等.C29甾烷成熟度指标“倒转”及其地质意义[J].天然气地科学,1997,8(1):28-30.
    [32]胡守志,付晓文,王廷栋.利用储集层沥青特征识别高演化地区的气层[J].新疆石油地质,2006,27(4):429-431.
    [33]梁狄刚,陈建平.中国南方高、过成熟区海相油源对比问题[J].石油勘探与开发, 2005,32(2):8-12.
    [34]罗晓容,陈荷力等.江汉盆地地层埋藏史研究[J].石油实验地质,1989,11(4):369-378.
    [35]盛贤才,王韶华,等.鄂西渝东地区石柱古隆起构造沉积演化[J].海相油气地质,2004,9(1-2):43-52.
    [36]郭战峰,陈红,等.江汉平原构造演化与中、古生界成藏模式探讨[J].资源环境与工程,2005,19(4):265-272.
    [37]中国石化江汉油田分公司勘探开发研究院.中扬子地区海相地层生油岩地球化学特征、生烃潜力及油气源对比研究[R].内部报告,1990.
    [38]刘宝泉,贾蓉芬.中上元古界生油岩中正异构烷烃热演化的特征及热模拟实验[J].地球化学,1990,3:242-248.
    [39]石和,黄思静,沈立成等.重庆秀山寒武纪海相碳酸盐的锶同位素组成及其地层学意义[J].地层学杂志,2003,27(1):71-76.
    [40]卢焕章,李秉伦等.包裹体地球化学[M].地质出版社,1990.
    [41]覃建雄等.江汉盆地海相地层油气勘探前景的包裹体证据[J] .地球学报,1999,20(1):55-62.
    [42]Sweeney J J,Burnham A K.Evaluation of a sample method of vitrinite reflectance based on chemical kinetics[J].AAPG Bulletin,1990,74(4):1559~1570.
    [43]Powley D E.Pressures and hydrogeology in petroleum basins [J].Earth Science Reviews,1990,79:215~226.
    [44]Barker C E and Elders W A. Vitrinite reflectance geothermometry and apprant heating duration in the Cerro Prieto geothermal field. Geothermics, 1981,10:207-223
    [45]Bredehoeft J D, J.B.Wesley, T.D.Fouch.Simulations of the Origin of Fluid Pressure, Fracture Generation, and the Movement of Fluids in the Uinta Basin, Utah . AAPG Bulletin,1994,78(11):1729-1747.
    [46]DuanYi,Wu Baoxiang,Zhanghui,et al. Geochemistry and genesis of crude oils of the Xifeng oil field in the ordos Basin. Acta Geologica Sinica, 2006,80(2):301-310.
    [47]Dow W.G., Application of oil correlation and source rock data to exploration in Williston basin(abs)[J].AAPG Bulletin,1972,56:615.
    [48]George S C,Llorca, S M,Hamilton P J. An intergrated analytical approach for determining the origin of solid bitumens in the McArthur Basin, Northerm Australia. Organic Geochemistry, 1993,21:235-248.
    [49]George,S C,Herbert Volk,Manzur Ahmed,Walter PickleTony Allan. Biomarker evidence for two sources for solid bitumens in the Subu wells:Implications for the petroleum prospectivity of East Papuan Basin, Organic Geochemistry, 2007,38:609-642.
    [50]Hwang R S,Teerman S,Carlson R. Geochemical comparison of reservoir solid bitumens with diverse origins.Organic Geochemistry, 1998,29:505-518.
    [51]Losh S, L Walter, P Meulbroek,et al.Reservoir fluids and their migration into the South Eugene Island Block 330 reservoirs, offshore Louisiana.AAPG Bulletin,2002,86(8):1463-1488.
    [52]Veizer J, Ala D, Azmy K,et al.87Sr/86Sr,δ13C andδ18O evolution of Phanerozoic seawater[J].Chemical Geology, 1999, 161(1-3): 59-88.
    [53]Magoon L.B., and Dow W.G., The petroleum system: from source rock to trap[A].AAPG Memoir 60, 1994.
    [54]Allegre C.J. , Gaillardet J. , Meynadier L. .The evolution of sea water strontium isotope in the last hundred million years: reinterpretation and consequence for erosion and climatemodels[J]. Eos, Transactions, American Geophysical Union, 1996,77(46, Suppl.) :325
    [55]Azmy K., Veizer J., Wenzel B. et al.. Silurian strontium isotope stratigraphy[J].GSA Bull, 1999,111(4): 475-483
    [56]Bailey T. R., Rosenthal Y., McArthur J. M. et al., Paleoceanographic changes of the Late Pliensbachian-Early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event. Earth Planet. Sci. Lett., 2003,212: 307-320
    [57]Allan U S. Model for hydrocarbon migration and entrapment within faulted structure. AAPG Bulletin, 1989,73: 803-811.
    [58]Bailey T.R., McArthur J.M., Prince H. et al., Dissolution methods for strontium isotope stratigraphy: whole rock analysis. Chem. Geol., 2000,167:313-319
    [59]Bertram C.I.,Elderfield H.,Aldridge R.J. et al.,87Sr/86Sr, 143Nd/144Nd and REEs in Silurian phosphatic fossils, Earth Planet. Sci. Lett., 1992, 113:239-249
    [60]Reinhardt E G, Blenkinsop J and Patrerson R T. Assessment of a Sr isotope (87Sr/86Sr) vital effect in marine taxa from Lee Stocking Island, Bahamas.Geo.Marine Letters,1998,18(3):241~246
    [61]Bralower T.J.,Fullagar P. D., Paull C. K. et al.,Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections. GSA Bull., 1997,109:1421-1442
    [62]Burke W.H.,Denison R.E.,Hetherington E.A. et al.,Variation of 87Sr/86Sr throughout Phanerozoic time.Geology, 1982,10:516-519
    [63]Barker C E and Elders W A. Vitrinite reflectance geothermometry and apprant heating duration in the Cerro Prieto geothermal field. Geothermics, 1981,10:207-223
    [64]Bredehoeft J D, J.B.Wesley, T.D.Fouch.Simulations of the Origin of Fluid Pressure, Fracture Generation, and the Movement of Fluids in the Uinta Basin, Utah.AAPG Bulletin,1994,78(11):1729-1747.
    [65]Christoph K.,Kozur H.W.,Bruckschen P. et al., Strontium isotope evolution of Late Permian and Triassic seawater. Geochimica et Cosmochimica Acta, 2003, 67 (1):47~62
    [66]Curiale,J A.Origin of solid bitumens,with emphasis on biological marker esults.Organic Geochemistry, 1986, 10:559-580.
    [67]Dahl B,Speers G C. Geochemical characterization of a tarmat in the Oseberg Field Norwegian Sector, North Sea. Organic geochemistry, 1986,10:547-558.
    [68]McArthur J M. Recent~ends in strontium isotope stratigraphy.Terra Nova,1994,6:331-358. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700