用户名: 密码: 验证码:
不同日粮模式对泌乳奶牛乳腺乳蛋白合成影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛乳中乳蛋白含量较低是中国乳品行业所面临的重要问题,立足于中国的饲料资源,通过日粮调控的途径提高乳蛋白含量与产量将有现实意义。本研究比较了中国奶牛养殖模式中三种具有代表性的日粮模式对泌乳奶牛乳腺乳蛋白合成的影响,找出了可能影响乳蛋白合成的关键因素,为提高奶业生产水平,推动奶业发展提供科学数据。
     试验1不同氨基酸模式对奶牛乳腺上皮细胞酪蛋白合成的影响及机理研究
     本论文首先在体外研究了不同氨基酸模式对奶牛乳腺上皮细胞酪蛋白合成的影响,目的是确定氨基酸模式是否会影响乳腺上皮细胞酪蛋白的分泌,并对其机理进行初步研究。试验采用完全随机试验设计,氨基酸模式分别为:低蛋白日粮条件下血液氨基酸组成模式组(LPBP)、全乳蛋白氨基酸组成模式组(MP)、酪蛋白氨基酸组成模式组(CP)、80%酪蛋白+20%乳清蛋白氨基酸组成模式组(CLP),每个处理3个重复,试验重复3遍(n=12)。用RT-qPCR检测CSN1S1、CSN3、GLUT1、PRLR、STAT5和mTOR基因表达量,用Elisa法检测αS-酪蛋白合成量,用CCK-8检测细胞增殖活性。试验结果显示:氨基酸模式的不同影响奶牛乳腺上皮细胞酪蛋白的合成,全乳蛋白模式可能是种较为理想的氨基酸模式。氨基酸模式通过调节mTOR、STAT5、PRLR和GLUT1基因的表达影响酪蛋白的合成。此外,研究发现在体外培养条件下,乳腺上皮细胞增殖活性与乳蛋白基因表达的趋势并不致。
     试验2不同日粮模式对泌乳奶牛乳产量与乳成分的影响
     论文的第二部分通过动物试验明确了不同日粮模式对泌乳奶牛乳产量与乳成分的影响程度,为进步阐述不同日粮模式对乳腺内乳蛋白合成的影响提供数据。采用完全随机区组试验设计,30头牛分为3组,每组10头。分别饲喂三种日粮:1)代表规模化养殖场日粮模式的混合粗饲料组(Mixed forage MF);2)代表奶牛养殖小区养殖模式的高精料秸秆组(Corn straw A);3)代表散户养殖模式的低精料秸秆组(Corn straw B)。试验期12周,预饲期3周,正式试验期9周,每3周为个试验周期,在每个试验周期的15~18d采集饲料样、乳样,并记录产奶量。试验结果显示:MF组日粮的整体生产水平最佳,CSA组虽然在乳蛋白含量与产量上与MF组没有显著性差异,但是泌乳效率显著低于MF组,CSB组除乳脂率外,其他乳成分指标均低于CSA组与MF组。以上结果提示:营养水平满足需要时,平衡日粮的营养素利用效率更高;CSB组日粮营养水平满足不了泌乳需要。
     试验3不同日粮模式下泌乳奶牛动静脉血中乳蛋白合成相关代谢物分析
     在试验2的基础上,对泌乳奶牛阴部外动脉与乳静脉血中乳蛋白合成相关代谢物含量进行分析,以期找出影响乳蛋白合成的关键因素。试验结果显示:不同日粮模式对泌乳奶牛阴外动脉血液中PRL、GH、INR、IGF-1、和葡萄糖的含量没有显著影响(P>0.05),CSA组阴外动脉血中血浆尿素氮(BUN)及瘦素含量显著高于CSB组与MF组(P <0.05),提示高精料秸秆组氮的利用效率较低,瘦素可能影响了CSA组乳脂的合成。CSA组和CSB组乳静脉静脉血中谷草转氨酶(AST)含量显著高于MF组(P <0.05),提示秸秆组日粮可能会影响肝脏的健康。不同日粮模式下泌乳奶牛阴外动脉血浆中大部分氨基酸浓度与比例没有显著差异,但是Asp、Arg、Thr、His、Gly和Leu的比例有显著差异或有差异显著的趋势。
     试验4不同日粮模式下泌乳奶牛乳腺对氨基酸的摄取与利用
     在试验2的基础上,分析了不同日粮模式下乳腺对氨基酸的摄取与利用的差异。结果显示:限制CSB组乳腺对氨基酸利用的因素是阴外动脉血所提供EAA的绝对量少,其原因是CSB组日粮营养水平低,血流量小,所提供营养物质的绝对量不能完全满足乳腺泌乳的需要。CSA组与MF组乳腺对氨基酸的吸收与利用方面没有显著的差别。
     试验5不同日粮模式下泌乳奶牛乳腺组织中泌乳相关基因表达
     在试验2的基础上,采集了不同日粮模式下泌乳奶牛的乳腺组织用于RNA提取,并用RT-qPCR检测CSN1S1、CSN1S2、CSN3、INSR、PRLR、GHR、JAK2、STAT5和mTOR基因表达量。研究结果显示:日粮模式的不同能够影响泌乳奶牛乳腺组织内乳蛋白基因的表达,日粮营养水平与平衡性会通过影响乳腺组织内PRLR、GHR、INSR、及mTOR基因的表达,进而影响乳蛋白的合成。在营养水平相同的情况下,平衡的日粮更能促进乳蛋白基因的表达。
     总体试验结果显示:氨基酸供给量与在乳腺内利用效率的差异是影响不同日粮模式下乳蛋白含量与产量的重要原因,通过检测乳腺组织中泌乳相关基因的表达量可以反映出不同日粮模式下泌乳奶牛乳腺内乳蛋白的合成效率;氨基酸模式的不同能够影响奶牛乳腺上皮细胞酪蛋白的合成,全乳蛋白模式可能是种较为理想的氨基酸模式。
Low milk protein content is the issue for producers in China, so based on the feedresources of China, formulate diets is of practical significance as a means to improvemilk protein production.This study was to evaluate the effects of three diets on the milkprotein synthesis in mammary gand of dairy cows, and those diets is very representativeof feeding for dairy cows in China. Identify key factors that may affect the milk proteinsynthesis, and to provide scientific data in order to increase the level of milk production,promote the development of dairy industry.
     Experiment1: Study on the effects of Different Amino Acid Pattern on caseinsynthesis in Primary Cultured Bovine Mammary Epithelial Cells
     A completely random design was used. Four AA patterns reatments are as follows:blood AA pattern in low protein diet (LPBP); milk protein AA pattern (MP);80%caseinplus20%lactoalbumin AA pattern (CLP); casein AA pattern (CP). Each treatment hasthree replicates, and all experiments were repeated three times. The expression ofCSN1S1, CSN3, GLUT1, PRLR, STAT5, mTOR genes and the content of αS-casein weredetermined by RT-QPCR method and αS-casein ELISA Kit, respectively.Cellproliferation was determined by CCK-8method.The results showed that: The milkprotein AA pattern might increase major milk protein genes expression. Perhaps, anappropriate AA pattern can promote mTOR STAT5PRLR GLUT1genes expression, andresult in increased milk protein synthesis. In addition, the level of geng expression trendwas different from the proliferation in mammary gland epithelial cell.
     Experiment2:The effects of Different diets on milk production and milkcomposition of dairy cows
     The second part was mainly conducted to study the effects of three diets on milkproduction and milk composition of dairy cows, and provide the data to the research ofmilk protein synthesis in the mammany gland. Thirty multiparous Holstein cows wereassigned to a single factor block design and cows were divided into three groups.Threediets were:1)Mixed forage represent Large-scale dairy farming.2) High-concentrate andcorn stover represent dairy farming.3) Low-concentrate and corn stover represent retaildairy farming.The exprement period were12weeks, and pre-feeding period were3weeks, every3weeks for a test cycle.Feed and milk sample were collected at15~18d ineach cycle.The results showed that: The MF group had a best performance, there was no difference between CSA and MF in milk protein yield and milk proten content, however,the Lactation efficiency was higher in MF vs.CSA. Compared to the CSA and MF, CSBhad lower level of all indicators of milk composition except milk fat. The results suggestthat, blance diets more efficient in nutrients metabolism, the energy level of CSB can notmaintain the lactating.
     Experiment3: The effects of Different diets on metabolin content related to milkprotein synthesis in artery/vein blood of dairy cows
     Based on experiment2, the objective of this part was to evaluate the metabolincontent related to milk protein synthesis in artery/vein blood of dairy cows and found outthe key factor that affect milk protein synthesis.The results showed that:PRL,GH,INR,IGF-1and glouse content in artery/vein blood have no difference indifferent diets(P>0.05), the level of BUN and leptin in EPA were higher in CSAvs.CSB and MF significantly, compare to the MF, CSA and CSB were significant higherin AST. Most of the amino acids have no difference in different diets, but, the ratio ofAsp, Arg, Thr, His, Gly and Leu have significant difference or difference in the trend.The results suggest that, CSA and CSB have low efficiency of nitrogen utilization. Leptinmay affect the synthesis of milk fat in the CSA group. The health of the liver wasaffented by CSA and CSB, perhaps.
     Experiment4: The effects of Different diets on AA uptake and utilization inmamany gland of dairy cows
     Based on experiment2, the objective of this part was to evaluate the difference ofAA uptake and utilization in mammary gland.The results showed that: the AA utilizationof mammary gland of CSB was restricted by the level of EAA in EPA, the reason was thelow level of nutrition and blood flow. There was no difference in AA uptake andutilization between CSA and MF.
     Experiment5: Effects of different diets on the Gene Expression Related to MilkProtein Synthesis in the Mammary Gland of dairy cows
     Based on experiment2, Mammary gland tissue (ca.500mg/animal) for RNAextraction were randomly performed for half numbers of cows in each group aftermilking on the last day of experiment. The expression of CSN1S1, CSN1S2,CSN3,INSR,PRLR, GHR1A, JAK2,STAT5and mTOR genes were determined by RT-QPCR method.The results showed that: Different diets affected the efficiency of milk protein synthesisin lactating Holstein cows. The balance dites can promote PRLR GHR1A and mTORgenes expression, resulting in increased milk protein synthesis.
     The final results showed that: AA supply and utilization efficiency in mammarygland result in different milk protein and yield, milk protein synthesis efficiency wasevaluated by the gene expression related to milk protein synthesis in the mammary glandtissue. The milk protein AA pattern might increase major milk protein genes expression.Perhaps, the milk protein pattern can promote milk protein synthesis in mammary glandepithelial cell better.
引文
1于震. CNCPS在奶牛日粮评价和生产预测上的应用[D].哈尔滨:东北农业大学,2005
    2甄玉国,卢德勋,马宁等.反刍动物氨基酸营养研究进展[J].饲料工业,2002,22(7):16-212
    3王洪荣.反刍动物氨基酸营养平衡理论及其应用[J].动物营养学报,2013,25(4):1-8
    4Brock F M, Forsberg C W, Buchanan-Smith J G. Proteolytic activity of rumenmicroorganisms and effects of proteinase inhibitors [J].Appl.Environ.Microbiol,1982,44:561-569
    5Craig W M, Broderick G A, Ricker D B.Quantification of microorganisms associated withthe particulate phase of ruminal ingesta [J]. J. Nutr,1985,117:56-62
    6Prins R A, Van Rheenen D L, Van Klooster A T.Characterization of microbial proteolyticenzymes in the rumen [J]. A. van Leeuwenhoek,1983,49:585–595
    7Wallace R J, Onodera R, Cotta M A.Metabolism of nitrogen-containing compounds [C].Hobson P N, Stewart C. S.Chapman&Hall, London, UK. In the Rumen MicrobialEcosystem.2nd ed.,1997,283-328
    8Tamminga S. Protein degradation in the forestomachs of ruminants [J].J. Anim. Sci.,1979,49:1615-1630
    9Nuget J H, Mangan J L.Characteristics of the rumen proteolysis of Fraction1(18S) leafprotein from lucerne [J].Br. J. Nutr.,1981,46:39–58
    10Broderick G A, Wallace R J. Control of rate and extent of protein degradation[C]. TsudaT, Sasaki Y, Kawashima R. Academic Press, In Physiological Aspects of Digestion andMetabolism in Ruminants New York,1991,541-594
    11Van soest P J. In Nutritional Ecology of the Ruminant [D].Cornell University Press,Ithaca,NY.1994
    12Onodera R, Nakagawa Y, Kandatsu M. Ureolytic activity of the washed suspension ofrumen ciliated protozoa[J].Agric. Biol.Chem.,1977,41:2177-2182
    13Dijkstra J.Simulation of the dynamics of protozoa in the rumen [J]. Br. J. Nutr.,1994,72:679-699
    14Clark J H, Klusmeyer T H, Cameron M R.Microbial protein synthesis and flows ofnitrogen fractions to the duodenum of dairy cows[J].J. Dairy Sci.,1992,75:2304-2323
    15Satter L D. Proteins PuPlyrfomun degraded dietary Protein [J].J Daiyr Sci.,1986,69:2734-2749
    16Aldrich J M, Muller L D, Varga G A.Effect of somatotropin administration and duodenalinfusion of methionine and lysine on lactational performance and nutrient flow to thesmall intestine[J]. Br J Nutr.,1993,69:49-58
    17Crooker B A, Clark J. H, Shanks R. D. Rare earth elements as markers for rate ofpassage measurements of individual feedstuff's through the digestive tract ofruminants[J]. J Nutr.,1982,112:1353-1361
    18Erasmus L J, Botha P M, Cruywagen C W, Meissner H H. Amino acid profile andintestinal digestibility in dairy cows of rumen-undegradable protein from variousfeedstuffs [J]. J Dairy Sci.,1994,77:541-551
    19Rulquin H, Guinard J, Verite R. Variation of amino acid content in the small intestinedigests of cattle: Development of a prediction model[J].Livestock ProductionScience,1998,53:1-13
    20Tamminga S, Schulze H, VanBruchem J, Huisman J. Nutritional significance ofendogenous no-losses along the gastrointestinal-tract of farm-animals [J]. Arch. Anim.Nutr.,1995,48:9-22
    21Lobley G E, Weijis P J M, Connell A.The fate of absorbed and exogenous ammonia asinfluenced by forage or forage-concentrate diets in growing sheep[J].British Journal ofNutrition,1996,76:231-248
    22Lindsay D B.Amino acids as energy sources [J]. Proceedings of the Nutrition Society,1980,39:53
    23Bergman E N, Heitmann R N.Metabolism of amino acids by the gut,liver,kidneys andperipheral tissues[J].Fed Proc.,1978,37:1228
    24Reynolds C K, Harmon D L, Prior R L, Tymell H F. Effects of mesemteric vem L-alanineinfusion on liver metabolism of organic acids by beef heifers fed diets differing ratio[J].Journal of Animal Science,1994,72:3196-3206
    25Bequette B J, Hanigan M D, Calder A G, Reynolds C.K.Amino acid exchange by themammary gland of lactating goats when histidine limits milk production [J].J Dairy Sci.,2000,83(4):765-775
    26Hanigan M D, Crompton L A, Reynolds C K, et.al. An integrative model of amino acidmetabolism in the liver of the lactating dairy cow [J].Journal of Theoretical Biology2004,228(2):271-289
    27O’Grady L, Doherty M L, Mulligan F J.Subacte ruminal acidosis (SARA) in grazing Irshdairy cows [J].Vet J.,2008,176(1):44-49
    28Nagaraja T G, Titgemeyer E C.Ruminal acidosis in beef cattle:the current microbiologicaland nutritional outlook [J].J Dairy Sci.,2007,90Suppl1:E17-38
    29Davis S R, Mepham T B. Metabolism of L-(U-14C) valine, L-(U-14C) leucine, L-(U-14C)histidine and L-(U-14C) phenylalanine by the isolated perfused lactating guinea-pigmammary gland [J]. Biochemical Journal,1976,156(3):553–560
    30Backwell F R., Bequette B J, Wilson D, Metcalf J A. Evidence for the utilization ofpeptides for milk protein synthesis in the lactating dairy goat in vivo. American Journal ofPhysiology [J].1996,271(4):955-960
    31Baumrucker C R.Amino acid transport systems in bovine mammary tissue. Journal ofDairy Science [J].1985,68(9):2436-2451
    32Mepham T B, Gaye P,Martin P, Mercier J C. Biosynthesis of milk Proteins. In: AdvancedDairy Chemistry [M].Vol.l: Proteins.1992,491-543
    33Bach A, Huntington G. B, Calsamiglia S. Stern M D.Nitrogen Metabolism of EarlyLactation Cows Fed Diets with Two Different Levels of Protein and Different Amino AcidProfiles [J]. Journal of Dairy Science,,2000,83(11):2585-2595
    34Cant J P, DePeters E J, Baldwin R L. Mammary amino acid utilization in dairy cows fedfat and its relationship to milk protein depression [J].J.Dairy. Sci.,1993,76:762-774
    35Hanigan M D, Calvert C C, DePeters E J, Reis B L.Kinetics of amino acid extraction bylactating mammary glands in control and sometribove-treated Holstein cows [J]. J.Dairy.Sci.,1992,75:161-173
    36Armentano L E. Impact of metabolism by extra gastrointestinal tissues on secretory rateof milk proteins [J].J.Dairy Sci.,1994,77:2809-2820
    37Bequette B J, Backwell F R C, Crompton L A. Current Concepts of Amino Acid andProtein Metabolism in the Mammary Gland of the Lactating Ruminant[J].J Dairy Sci.,1998,(81):2540-2559
    38Metcalf J A, Crompton L A, Wray-Cahen D, et,al.Responses in Milk Constituents toIntravascular Administration of Two Mixtures of Amino Acids to Dairy Cows [J]. Journalof Dairy Science,1996b,79(8):1425-1429
    39Deves R, Boyd C A. Transporters for Cationic Amino Acids inAnimal Cells: Discovery,Structure, and Function [J].Physiol Rev.,1998,78(2):487-545
    40Gabriela Aleman,Adriana Lopez,Guillermo Ordaz.Chang in messenger RNA abundanceof amino acid transporters in rat mammary gland during pregancy, lactation and weaning.Metabolism Clinical and Experimental,2009,58:594-601
    41Mepham T B.Amino Acid Utilization by Lactating Mammary Gland [J]. Journal of DairyScience,1982,65(2):287-298
    42武书庚,程宗佳.奶牛必须氨基酸平衡日粮[J].中国畜牧杂志,2010,46(24):46-50
    43Davis S R, Collier R J. Mammary blood flow and regulation of substrate supply for milksynthesis [J].J Dairy Sci.,1985,68:1041-1058
    44Prosser C G, Davis S R, Farr V C, Lacasse P.Regulation of blood flow in the mammarymicrovasculature [J].J. Dairy Sci.,1996,79:1184-1197
    45姚军虎,徐明,杜莎.反刍动物碳水化合物的营养调控[C].动物营养研究进展—中国畜牧兽医学会,动物营养学分会第八届全国代表大学暨第十届学术研讨会论文集.2008
    46卢德勋.反刍动物营养学导论[M].北京:中国农业出版社,2005.32
    47Macleod G K,Grieve D G,McMillan.Effect of varying protein and energy densities incomplete rations fed to cows in first lactation[J].J.Dairy. Sci.,1984,67:1421-1429
    48Broster W H.Protein-energy interrelationships in growth and lactation of cattle and sheep[J].Proc Nutr Soc.,1973,32:115-122
    49Friggens N, Emmans G C, Robertson S, Chamberlain D G.The lactational responses ofdairy cows to amount of feed and to the source of carbohydrate energy [J]. J. DairySci.,1995,78:1734-1744
    50Reynolds C K, Cammell S B, Humphries D J, et,al. Effects of postrumen starch infusionon milk production and energy metabolism in dairy cows [J]. J DairySci.,2001,84(10):2250-2259
    51Phipps R H,Sutton J D,Hunphires D J,et al.A comparison of the effects of cracked wheatand sodium hydroxide-treated wheat on food intake,milk production and rumen digestionin dairy cows given maize silage diets[J].Animal Science,2001,72:585-594
    52Kebreab E,Castillo A R,Beever D E,et al.Effects of manangement practices prior to andduring ensiling and concentrate type on nitrogen utilization in dairycows[J].J.Dairy.Sci.,2000,83(6):1274-1285
    53Berthiaume R,Benchaar C,Chaves A V,et al.Effects of non-structural carbohydrateconcentration in alfalfa on fermentation and microbial prot ein synthesis in continuousculture [J].J.Dairy.Sci.,2010,93:693-700
    54Rius A G, Appuhamy J A D R N, Cyriac J, et al.Regulation of protein synthesis inmammary glands of lactating dairy cows by starch and amino acids [J].J.Dairy.Sci.,2010,93:3114-3127
    55Zhao F Q.Keating A F.Expression and Regulation of Glucose Transporters in the BovineMammary Gland [J].J. Dairy. Sci.,2007,90(E. Suppl.):E76–E86
    56Krohn C C, Andersen P E. Different energy and protein levels for dairy cows in the earlyweeks of lactation [J].Livest. Prod.,Sci.1980,7:555-568
    57Cowan R T, Reid G, Greenhalgh J, Tait C. Effects of feeding level in late pregnancy anddietary protein concentration during early lactation on food intake, milk yield, live weightchange and nitrogen balance of cows [J]. J. Dairy. Res.,1981,48:201-212
    58Coulon J B, Remond B. Variations in milk output and milk protein-content in response tothe level of energy supply to the dairy cow-A review [J].Livest. Prod. Sci.,1991,29:31-47
    59Broderick G A.Effects of varying dietary protein and energy levels on the production oflactating dairy cows [J].J.Dairy.Sci.,2003,86:1370-1381
    60Clark J H, Klusmeyer T H, Cameron M R.Microbial protein synthesis and flows ofnitrogen fractions to the duodenum of dairy cows [J].J.Dairy.Sci.1992,75:2304-2323
    61Castillo A R, Kabreab E, Beever D E,Barbi J H, et al.The effect of proteinsupplementation on nitrogen utilization in lactating dairy cows fed grass silage diets[J].J.Anim. Sci.,2001,79:247-253
    62Olmos Colmenero J J, Broderick G A. Effect of Dietary Crude Protein Concentration onRuminal Nitrogen Metabolism in Lactating Dairy Cows [J]. J.Dairy.Sci.,2006,89:1694-1703
    63Broderick G A, Mertens D R,Simons R.Efficacy of carbohydrate sources for milkproduction by cows fed diets based on alfalfa silage[J].J.Dairy.Sci.,2002,85:1767-1776
    64Cunningham K D, Cecava M J, Johnson T R.Influence of source and amount of dietaryprotein on milk yield by cows in early lactation [J].J.Dairy.Sci.,1996,79:620-630
    65Rotz C A, Satter L D, Mertens D R,Muck D E.Feeding strategy, nitrogen cycling, andprofitability of dairy farms [J].J. Dairy. Sci.,1999,82:2841-2855
    66Cadorniga C P, Satter L D.Protein versus energy supple-mentation of high alfalfa silagediets for early lactation cows [J]. J.Dairy Sci.,1993,76:1972-1980
    67Varel V H, Nienaber J A, Freetly H C.Conservation of nitrogen in cattle feedlot waste withurease inhibitors [J].J. Anim.Sci.,1999,77:1162–1168
    68Weimer P J. Cellulose degradation by ruminal microorgan-isms [J].Crit. Rev.Biotechnol,1992,12:189-223.
    69Oliveira J S, Huber J T, Ben-Ghedalia D, Swingle R S, et al.Influence of sorghum grainprocessing on performance of lactating dairy cows [J].J.Dairy Sci.,1993,76:575-581
    70Ekinci C, Broderick G A.Effect of processing high mois-ture ear corn on ruminalfermentation and milk yield [J].J. Dairy Sci.,1997,80:3298-3307
    71Macleod G K, Grieve D G, McMillan I, Smith G C. Effect of varying protein and energydensities in complete rations fed to cows in first lactation [J].J. Dairy Sci.,1984,67:1421-1429
    72Friggens N, Emmans G C, Robertson S, Chamberlain D G, et al.The lactationalresponses of dairy cows to amount of feed and to the source of carbohydrate energy[J].J. Dairy Sci.,1995,78:1734-1744
    73Broderick G A.Effects of varying dietary protein and energy levels on the production oflactating dairy cows [J].J. Dairy Sci.,2003,86:1370-1381
    74Cowan R T, Reid G, Greenhalgh J,Tait C.Effects of feeding level in late pregnancy anddietary protein concentration during early lactation on food intake, milk yield, liveweightchange and nitrogen balance of cows [J].J. Dairy Res.,1981,48:201-212
    75Rulquin H. Effects of ruminal infusion of volatile fatty acids and duodenal infusion ofcaseinate on digestion and metabolism in the dairy cow [C].1. Production anddigestion.Reprod. Nutr. Dev.,1982,22:905-921
    76Mitchell H H, Block R J.Some relationships between the amino acid contents of proteinand their nutrition values for the rat [J].Journal of Biolgical Chemistry,1964,163:599-620
    77Cho J, Overton T R, Schwab C G, Tauer L W. Determining the amount ofrumen-protected methionine supplement that corresponds to the optimal levels ofmethionine in metabolizable protein for maximizing milk protein production and profit ondairy farms [J].J. Dairy Sci.,2007,90:4908-4916
    78Haque M N, Rulquin H, Andrade A, Faverdin P,et al.Milk protein synthesis in responseto the provision of an “ideal” amino acid profile at2levels of metabolizable proteinsupply in dairy cows [J].J. Dairy Sci.,2012,95:5876-5887
    79Wright T C, Moscardini S, Luimes P H, Susmel P,Mcbride B W.Effects ofRumen-Undegradable Protein and Feed Intake on Nitrogen Balance and Milk ProteinProduction in Dairy Cows [J].J.Dairy Sci.,1998,81:784-793
    80秦义德,邹思湘.乳蛋白的主要组分及其研究现状[J].生物学杂志.2003.20(2):5-7
    81Trottier N L. Nutritional control of amino acid supply to the mammary gland duringlactation in the pig [J].The Proceedings of the Nutrition Society,1997,56:581-591
    82Christensen H N, Riggs T R, Fischer H, Palative I M. Amino acid concentration by a freecell neoplasm: Relations among amino acids [J].J. Biol.Chem.,1952,198:1
    83Christensen H N. Interorgan amino acid nutrition. Physiol. Rev.,1982,62:1193
    84Christensen H N. Role of amino acid transport and counter transport in nutrition andMetabolism [J].Physiol Rev.,1990,70:43-77
    85Deves R,Boyd C A. Transporters for Cationic Amino Acids in Animal Cells: Discovery,Structure and Function [J].Physiol Rev.,1998,78(2):487-545
    86Gabriela A, Adriana L,Guillermo O. Chang in messenger RNA abundance of amino acidtransporters in rat mammary gland during pregancy, lactation and weaning [J].Metabolism Clinical and Experimental,2009,58:594-601
    87Davis S R, Mepham T B.Metabolism of L-(U-14C) valine, L-(U-14C) leucine, L-(U-14C)histidine and L-(U-14C) phenylalanine by the isolated perfused lactating guinea-pigmammary gland [J]. Biochemical Journal,1976,156(3):553-560
    88Backwell F R, Bequette B J, Wilson D, Metcalf J A, Franklin M F, et al.Evidence for theutilization of peptides for milk protein synthesis in the lactating dairy goat in vivo[J].American Journal of Physiology,1996,271(4):955-960
    89Metcalf J A, Sutton J D, Cockburn J E, et al. The Influence of Insulin and Amino AcidSupply on Amino Acid Uptake by the Lactating Bovine Mammary Gland [J].J. DairySci.,1991,74:3412-3420
    90Bequette B J, Backwell F R C, Crompton L A. Current Concepts of Amino Acid andProtein Metabolism in the Mammary Glandof the Lactating Ruminant[J].J Dairy Sci.,1998,81:2540-2559
    91Prosser C G,Davis S R,Farr V C, Lacasse P.Regulation of blood flow in the mammarymicrovasculature [J].J. Dairy Sci.,1996,79:1184-1197
    92Cho J, Overton T R, Schwab C G, Tauer L W. Determining the amount ofrumen-protected methionine supplement that corresponds to the optimal levels ofmethionine in metabolizable protein for maximizing milk protein production and profit ondairy farms [J].J.Dairy Sci.,2007,90:4908-4916
    93Schwab C G, Satter L D, Clay B. Response to lactating dairy cows to abomasal infusionof amino acids [J].J. Dairy Sci.,1976,59:1254-1270
    94Jorgensen G N, Larson B L. Conversion of phenylalanine to tyrosine in the bovinemammary secretory cell [J].Biochim. Biophys. Acta.,1968,165:121-126
    95Bequette B J, Metcalf J A, Wray-Cahen D, Backwell F R C, et al.Leucine and proteinmetabolism in the lactating dairy cow mammary gland:responses to supplemental dietarycrude protein intake [J]. J. Dairy Res.,1996,63:209–222
    96Pan Y, Bender P K, Akers R M, et al. Methionine-containing peptides can be used asmethionine sources for protein accretion in cultured C2C12and MAC-T cells [J].J.Nutr.,1996,126:232–241
    97Bequette B J, Hanigan M D, Calder A G, Reynolds C K,et al.Amino acid exchange bythe mammary gland of lactating goats when histidine limits milk production. J. DairySci.,2000,83:765-775
    98Bickerstaffe R, Annison E F.The metabolism of glucose, acetate, lipids and amino acidsin lactating dairy cows [J].J. Agric. Sci.,1974,82:71-85
    99Mepham T B, Gaye P,Martin P, Mercier J C. Biosynthesis of milk Proteins. In: AdvancedDairy Chemistry [M].Oxford: Elsevier Vol.l: Proteins.1992,491-543
    100Xiao C T, Cant J P. Relationship Between Glucose Transport and Metabolism in IsolatedBovine Mammary Epithelial Cells [J].J. Dairy Sci.,2005,88:2794–2805
    101Frobish R A,Davis C L. Effects of abomasal infusions of glucose and propionate on milkyield and composition [J].Journal of Dairy Science,1997,60:204-209
    102Clark J H,Spires H R,Derrig R G,et al.Milk production,nitrogen utilization and glucosesynthesis in lactating cows infused postruminally with sodium caseinate and glucose[J].Journal of Nutrition,1997,107:631-644
    103Lemosquet S,Rideau N,Rulquin H,et al.Effects of a duodenal glucose infusion on therelationship between plasma concentrations of glucose and insulin in dairy cows[J].Journal of Dairy Science,1997,80:2854-2865
    104Hurtaud C,Rulquin H,Verite R. Effects of graded duodenal infusions of glucose on yieldand composition of milk from dairy cows:Diets based on corn silage [J].Journal of DairyScience,1998,81:3237-3247
    105Rook J A F, Balch C C.The effects of intraruminal infusions of acetic, propionic andbutyric acids on the yield and composition of the milk of the cows [J]. Br. J. Nutr.,1961,15:361-369
    106Lough D S, Prigge E C, Hoover W H, Varga G A.Utilization of ruminally infused acetateor propionate and abomasally infused casein by lactating goats [J]. J. Dairy Sci.,1983,66:756–762
    107Linzell J L.The effect of infusions of glucose, acetate and amino acids on hourly milkyield in fed, fasted and insulin-treated goats [J].J.Physiol.,1967,190:347-357
    108Purdie N G, Trout D R, Poppi D P,Cant J P.Milk Synthetic Response of the BovineMammary Gland to an Increase in the Local Concentration of Amino Acids and Acetate[J].J. Dairy Sci.,2008,91:218-228
    109潘龙,卜登攀,孙鹏等.生长激素轴的组成及其对奶牛泌乳的调控[J].中国畜牧兽医.2013(40)1:125-130
    110Akers R M. Major advances associated with hormone and growth factor regulation ofmammary growth and lactation in dairy cows [J].J Dairy Sci.,2006,89:1222-34
    111Bauman D E.Bovine somatotropin and lactation: from basic science to commercialapplication [J]. Domest Anim Endocrinol,1999,17:101-16
    112Hayashi A A, Nones K, Roy N C, et al.Initiation and elongation steps of mRNA translationare involved in the increase in milk protein yield caused by growth hormoneadministration during lactation [J].J Dairy Sci.,2009,92:1889-99
    113Forsyth I A.Organ culture techniques and the study of hormone effects on the mammarygland [J].J.Dairy Res.,1961,38:419-444
    114Kasuga M, Oberghen E. V, Nissley S P, Rechler M M. Demonstration of insulin-likegrowth factor receptors by affinity cross-linking [J].J.Biol.Chem.,1981,256:5305-5308
    115Koprowski J A, Tucker H. A.Bovine serum growth hormone, corticoids and insulin duringlactation [J]. Endocrinology,1973,92:645–651
    116Hennighausen L, Robinson G W. Think globally, act locally: the making of a mousemammary gland [J]. Genes Dev.,1998,12:449-455
    117Shaar C J, Clemens J A.Inhibition of lactation And prolactin secretion in rats by ergotalkaloids [J].Endocrinology,1972,90:285–288
    118Cowie A T. Variations in the yield and composition of the milk during lactation in therabbit and the galactopoietics effect of prolactin[J].J.Endocrinol.,1969,44:437–450
    119Kumaresan P, Anderson R. R, Turner C W. Effect of graded levels of lactogenichormone upon mammary gland growth and lactation [J]. Proc. Soc. Exp. Biol. Med.,1966,123:581–584
    120Koprowski, J. A., and H. A. Tucker.Serum prolactin during various physiological statesand its relationship to milk production in the bovine[J].Endocrinology,197392:1480-1487
    121Plaut K, Bauman D E, Agergaard N, Akers R M. Effect of exogenous prolactin onlactational performance of dairy cows[J].Domest. Anim. Endocrinol.,1987,4:279–290
    122Erhardt G A.New α S1-casein allel in bovine milk and its occurrence in differentbreeds[J].Asnimal Genetics,1993,24:65-66
    123Boettcher P J, Caroli A, Stella A, Chessa S, et al.Effects of casein haplotypes on milkproduction traits in Italian Holstein and Brown Swiss cattle [J]. J. Dairy Sci.,2004,87:4311–4317
    124Eenennaam A, Medrano J F. Milk protein polymorphisms in California dairy cattle[J]. J.Dairy Sci.,1991,74:1730–1742
    125Jann O, Ceriotti G, Caroli A, Erhardt G.A new variant in exon VII of bovine beta-caseingene (CSN2) and its distribution among European cattle breeds [J]. J.Anim.Breed.Genet,2002,119:65–68
    126Zwierzchowski L. Cattle genomics-functional polymorphism in milk protein genes andother genes related to milk and meat production[C].In: Workshop on Genomics andBioinformatics in Animal Biotechnology, Jastrzebiec, Poland.2005,31:1-42
    127Na-Kwai-Hang K F. Genetic polymorphism of milk proteins: Relationships withproduction traits, milk composition and technological properties [J]. Can.J. Anim.Sci.,1998,78:131-147
    128Alexander L J, Stewart A.F, MacKinlay A G, Kapelinskaya T V, et al. Isolation andcharacterization of the bovine kappa-casein gene [J]. Eur.J. Biochem.,1988,178:395-401
    129Boettcher P J, Caroli A, Stella A, Chessa S, Budelli E, et al. Effects of casein haplotypeson milk production traits in Italian Holstein and Brown Swiss cattle[J]. J. DairySci.,2004,87:4311–4317
    130Caroli A, Chessa S, Bolla P, Budelli E, Gandini G C. Genetic structure of milk proteinpolymorphism and effects on milk production traits in a local dairy cattle [J].J. Anim.Breed. Genet.,2004,121:119–127
    131Eggen A, Fries R. An integrated cytogenic and meiotic map of the bovine genome [J].Anim. Genet.,1995,26:216–236
    132Priby J. A way of using markers for farm animal selection [J].Czech J. Anim. Sci.,1995,40:375–382
    133Watson C J, Gordon K E, Robertson M, Clark A J. Interaction of DNAbinding proteinswith a milk protein gene promoter in vitro: identification of a mammary gland-specificfactor [J]. Nucleic Acids Res.,1991,19:6603–6610
    134Erratum. Mammary gland factor (MGF) is a novel member of the cytokine regulatedtranscriptionfactor gene family and confers the prolactin response [J]. EMBO J.,1995,13:2182–91
    135Hou J, Schindler U, Henzel W J, Wong S C, McKnight S L. Identification and purificationof human Stat proteins activated in response to interleukin-2[J]. Immunity.,1995,2:321–329
    136Kazansky AV, Raught B, Lindsey S M,Wang Y F, Rosen J M.Regulation of mammarygland factor/Stat5a during mammary gland development [J].Mol.Endocrinol,1995,9:1598–609
    137Lin J X, Mietz J, Modi W S, John S,Leonard W J. Cloning of human Stat5B.Reconstitution of interleukin-2-induced Stat5A and Stat5B DNA binding activity in COS-7cells [J].J. Biol. Chem.,1996,271:10738–44
    138Liu X, Robinson G W, Gouilleux F, Groner B, Hennighausen L. Cloning and expressionof Stat5and an additional homologue (Stat5b) involved in prolactin signal transduction inmouse mammary tissue [J].Proc. Natl. Acad. Sci.,1995,92:8831–35
    139Wakao H, Gouilleux F, Groner B. Mammary gland factor (MGF) is a novel member of thecytokine regulated transcription factor gene family and confers the prolactin response[J].EMBO J.,1995,13:2182-91
    140Wood T J, Sliva D, Lobie P E, Pircher T J, Gouilleux F, et al. Mediation of growthhormone-dependent transcriptional activation by mammary gland factor/Stat5[J]. J. Biol.Chem.,1995,270:9448–53
    141Ruff-Jamison S, Chen K,Cohen S. Epidermal growth factor induces the tyrosinephosphorylation and nuclear translocation of Stat5in mouse liver [J]. Proc. Natl. Acad.Sci.,1995,92:4215–18
    142Pallard C, Gouilleux F, Benit L, Cocault L, Souyri M, et al.Thrombopoietin activates aSTAT5-like factor in hematopoietic cells [J].EMBO J.,1995,14:2847–56
    143Johnston JA, Bacon CM, Finbloom DS,Rees RC, Kaplan D, et al.Tyrosinephosphorylation and activation of STAT5,STAT3, and Janus kinases byinterleukins2and15[J]. Proc. Natl. Acad. Sci.,1995,92:8705–8709
    144Hou J, Schindler U, Henzel W J, Wong SC, McKnight S L. Identification and purificationof human Stat proteins activated in response to interleukin-2[J]. Immunity.,1995,2:321–29
    145Gouilleux F, Pallard C, Dusanter-Fourt I, Wakao H, Haldosen L A, et al. Prolactin, growthhormone, erythropoietin and granulocyte-macrophage colony stimulating factor induceMGF-Stat5DNA binding activity [J]. EMBOJ.,1995
    146Fujii H, NakagawaY, Schindler U, Kawahara A, Mori H, et al. Activation of Stat5byinterleukin2requires a carboxylterminal region of the interleukin2receptor-chain but isnot essential for the proliferative signal transmission [J]. Proc. Natl.Acad. Sci.,1995,92:5482–86
    147Barahmand-Pour F, Meinke A, Eilers A, Gouilleux F, Groner B, Decker T.Colony-stimulating factors andinterferon-activate a protein related to MGF-Stat5tocause formation of the differentiation-induced factor in myeloid cells [J]. FEBSLett.,1995,360:29–33
    148Azam M, Erdjument-Bromage H, Kreider B L, Xia M, Quelle F, et al. Interleukin-3signalsthrough multiple isoforms of Stat5[J]. EMBO J.,1995,14:1402–11
    149Jolivet G, L’Hotte C, Pierre S, Tourkine N, Houdebine L M. A MGF/STAT5binding site isnecessary in the distal enhancer for high prolactin induction of transfected rabbit αs1-casein-CAT gene transcription [J]. FEBS Lett.,1996,389:257–62
    150Pierre S, Jolivet G, Devinoy E, Houdebine LM.A combination of distal and proximalregions is required for efficient prolactin regulation of transfected rabbit αs1-caseinchloramphenicol Acety ltransferase constructs [J].Mol. Endocrinol,1994,8:1720–30
    151Schmitt-Ney M, Doppler W, Ball R K, Groner B.β-casein gene promoter activity isregulated by the hormonemediated relief of transcriptional repression and amammary-gland-specific nuclear factor [J]. Mol. Cell. Biol.,1991,11:3745–55
    152Lin F T, MacDougald O A, Diehl A M, Lane M D.A30-kDa alternative translation productof the CCAAT/enhancer binding protein-message: transcriptional activator lackingantimitotic activity [J].Proc. Natl. Acad. Sci.,1993,90:9606-10
    153Ossipow V, Descombes P, Schibler U. CCAAT/enhancer-binding protein mRNA istranslated into multiple proteinswith different transcription activation potentials [J]. Proc.Natl. Acad. Sci.,1993,90:8219–23
    154Descombes P, Schibler U. A liverenriched transcriptional activator protein, LAP, and atranscriptional inhibitory protein, LIP, are translated from the same mRNA[J].Cell,1991,67:569–79
    155Nagata K, Guggenheimer R A, Enomoto T, Lichy J H, Hurwitz J. Adenovirus DNAreplication in vitro: identification of a host factor that stimulates synthesis of thepreterminal protein-dCMP complex[J]. Proc. Natl. Acad.,1982,79:6438–42
    156Osada S, Daimon S, Ikeda T, Nishihara T, Yano K, et al. Nuclear factor1family proteinsbind to the silencer element in the rat glutathione transferase P gene[J].J.Biochem.,1997,121:355–63
    157Osada S, Ikeda T, Xu M, Nishihara T, Imagawa M. Identification of the transcriptionalrepression domain of nuclear factor1-A[J].Biochem. Biophys.,1997,238:744–47
    158Crawford D R, Leahy P, Hu C Y, Chaudhry A, Gronostajski R, et al. Nuclear factor Iregulates expression of the gene for phosphoenolpyruvate carboxykinase (GTP)[J].J.Biol.Chem.,1998,273:13387–90
    159Li S, Rosen J M. Distal regulatory elements required for rat whey acidic protein geneexpression in transgenic mice [J].J. Biol. Chem.,1994,269:14235–43
    160Li S, Rosen J M.Glucocorticoid regulation of rat whey acidic protein gene expressioninvolves hormone-induced alterations of chromatin structure in the distal promoter region[J].Mol.Endocrinol.1994,8:1328–35
    161Lidmer A S, Kannius M, Lundberg L,Bjursell G, Nilsson J.Molecular cloning andcharacterization of the mouse carboxyl ester lipase gene and evidence for expression inthe lactating mammary gland [J].Genomics,1995,29:115–22
    162Rajput B, Shaper N L, Shaper J H.Transcriptional regulation of murine β-1,4-galactosyltransferase in somatic cells.Analysis of a gene that serves both ahousekeeping and a mammary gland-specific function [J].J. Biol.Chem.,1996,271:5131–42
    163Watson C J, Gordon K E, Robertson M, Clark A J. Interaction of DNA binding proteinswith a milk protein gene promoter in vitro:identification of a mammary gland-specificfactor [J].Nucleic Acids Res.,1991,19:6603–10
    164Furlong E E M, Keon N K, Thornton F D, Rein T, Martin F. Expression of a74-kDanuclear factor1(NF1) protein is induced in mouse mammary gland involution.Involution-enhanced occupation of a twin NF1binding element in thetestosterone-repressed prostate message-2/clusterin promoter [J].J. Biol.Chem.,1996,271:29688–97
    165Matysiak M, Makosa B, Walczak A, Selmaj K. Patients with multiple sclerosis resisted toglucocorticoid therapy: Abnormal expression of heat-shock protein90in glucocorticoidreceptor complex [J]. Mult Scler.,2008,14(7):919-26
    166Shi Y, Lee J-S, Galvin K M. Every thing you have ever wanted to know about Yin Yang1[J]. Biochim. Biophys.,1997.1332:F49–66
    167Raught B, Khursheed B, Kazansky A, Rosen J.YY1represses β-casein gene expressionby preventing the formation of a lactation-associated complex [J].Mol. Cell. Biol.,1994,14:1752–63
    168Meier VS, Groner B.The nuclear factor YY1participates in repression of the β-caseingene promoter in mammary epithelial cells and is counteracted by mammary gland factorduring lactogenic hormone induction [J].Mol. Cell.Biol.,1994,14:128–137
    169Wu G Y,Meininger C J.Arginine nutrition and cardiovascular function [J].Journal ofnutrition,2000,130:2626-2669
    170Wu GY.Amino acids:metabolism,functions,and nutrition[J].Amino Acids,2009,37:1-17
    171Jobgen W S,Fried S K,Fu W J,et al.Regulatory role for the arginine-nitric oxide pathwayin metabolism of energy substrates[J].The Journal of NutritionalBiochemistry,2006,17(9):571-588
    172Wang T C, Fuller M F.The optiumum dietary amino acid pattern for growing pigs1.Experiments by amino acid deletion [J].Brtish Journal of Nutrition,1989,62:77-89
    173Mack S,Bercovici D,Groote D E,et al.Ideal amino acid profile and dietary lysinespecification for broiler chickens of20to40days of age [J].Brtish Journal ofNutrition,1999,40:257-265
    174王洪荣.生长绵羊限制性氨基酸和理想氨基酸模式的研究[D].博士学位论文.呼和浩特:内蒙古农业大学,1998.
    175甄玉国.内蒙古白绒山羊氨基酸利用和蛋白质周转规律的研究[D].博士学位论文.呼和浩特:内蒙古农业大学,2002
    176Sealcj,Pakerds.Effect of intraruminal propionicacid infusion on metabolism of mesentericand portal-drained viscera in growing steers fed a forage diet: ⅡAmmonia,urea,aminoacids,andpeptides[J].journalof animal science,1996,74:245-256
    177Weekes T L, Luimes P H,Cant J P. Responses to Amino Acid Imbalances andDeficiencies in Lactating Dairy Cows [J].Journal of Dairy Science,2006,89:2177-2787
    178Csapo J, Salamon S E, Loki K, Composition of mare's colostrums and milkⅡ, Proteincontent, amino acid composition and contents of macro-and micro-elements[J].Alimentaria,2009,2:133-148
    179Martin B, Williamson. The amino acid composition of human milk proteins [J].The Journalof Biological chemistry,1944,48-52
    180Miranda S G, Wang Y J,Purdie N G, et al. Selenomethionine stimulates expression ofglutathione peroxidase1and3and growth of bovine mammary epithelial cells in primaryculture[J].Journal of Dairy Science,2009,92:2670-2683
    181来金良.必需氨基酸浓度对奶牛乳腺酪蛋白基因表达的影响[D].硕士学位论文.杭州:浙江大学,2006.
    182徐柏林.精氨酸对乳腺上皮细胞中酪蛋白合成的影响及其调控机制[D].硕士学位论文.扬州:扬州大学,2012.
    183李喜艳.奶牛乳腺上皮细胞中赖氨酸蛋氨酸配比模式对酪蛋白合成的影响及机理研究[D].硕士学位论文.北京:中国农业科学院,2011
    184Cho J,Oveton T R,Schwab C G,et al.Determining the amount of rumen-protectedmethionine supplement that corresponds to the optimal levels of methionine inmetabolizable protein for maximizing milk protein production and profit on dairyfarms[J].Journal of Dairy Science,2007,90:4908-4916
    185Bach A, Huntington G B, Calsamiglis S. Nitrogen Metabolism of Early Lactation CowsFed Diets with Two Different Levels of Protein and Different Amino Acid Profiles [J].Journal of Dairy Science,2000,83:2585-2595
    186Ehmann V L, Peterson W D. To grow mouse mammary epithelial cell in culture [J]. J.Cellboil.,1984,98(3):1026-1032
    187Kim SW. Mammary gland growth and nutrient mobilization in lactating sows: a dynamicmodel to describe nutrient flow. PhD Thesis, University of Illinois at Urbana,Champaign.1999
    188Brockman J L, Schroeder M D, Schuler L A. PRL activates the cyclinD1promoter via theJak2/Stat pathway [J].Mol Endocrinol,2002,16(14):774-784
    189Friedrichsen B N, Richter H E, Hansen J A, et al. Signal transducer and activator oftranscription5activation is sufficient to drive transcriptional induction of cyclinD1geneand proliferation of rat pancreatic beta-cells [J].Mol Endocrinol,2003,17(5):945-958
    190Buser A C, Gass-Handel E K, Wyszomierski S L, et al. Progesterone ReceptorRepression of Prolactin/Signal Transducer and Activator of Transcription5-MediatedTranscription of the β-Casein Gene in Mammary Epithelial Cells[J].Mol Endocrinol,2007,21(1):106-125
    191Zhao F Q, Moseley M W, Tucker H A, et al. Regulation of glucose transporter geneexpression in mammary gland, muscle and fat of lactating cows by administration ofbovine growth hormone and bovine growth hormone-releasing factor[J].Journal ofAnimal Science,1996,74:183-189
    192Mass J A,Trout D R,Cant J P,et.,al.Method for close arterial infusion of the lactatingmammary gland[J].Canadian Journal of Animal Science,1995,345-348
    193安鹏鹏.不同日粮类型对泌乳奶牛乳蛋白前体物代谢的影[D].硕士学位论文,兰州:甘肃农业大学,2012
    194Mjoun K, Kalscheur K F, Hippen A R, Schingoe D J.The Performance and amino acidutilization of early lactation dairy cows fed regular or reduced-fat dried distillers grainswith soluble [J].J. Dairy Sci.,2010,93:3176–3191
    195Rius A G, Appuhamy J A D R N, Cyriac J.Regulation of protein synthesis inmammary glands of lactating dairy cows by starch and amino acids [J]. J. Dairy Sci.,201093:3114-3127
    196王星凌,刘春林,赵红波.饲粮粗蛋白质水平对中国荷斯坦奶牛产奶性能、氮利用及血液激素的影响[J].动物营养学报,2012,24(4):668-680
    197李树聪.不同精粗比日粮奶牛氮素代谢及限制性氨基酸的研究[J].博士学位论文,北京:中国农科院,2005
    198Mepham T B. Amino acid utilization by lactating mammary gland [J].J.Dairy Sci.,1982,65:287-298
    199Cant J P,DePeters E J,Baldwin R L.Mammary amino acid utilization in dairy cows fed fatand its relationship to milk protein depression.J.Dairy Sci.,1993,76:762–774
    200Christie G R, Ford D, Howard A, et al. Glycine supply to human enterocytes mediated byhigh-affinity basolateral GLYT1[J].Gastroenterology,2001,120,439–448
    201Lee M A, McCauley R D, Kong S E. Influence of glycine on intestinalischemia-reperfusion injury [J].JPEN J Parenter Enteral Nutr.,2002,26,130–135
    202Patel H, Pietro E D, MacKenzie R E. Mammalian fibroblasts lacking mitochondrialNAD+-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase are glycineauxotrophs [J].J Biol Chem.,2003;278:19436
    203Sreekumar A, et al.Metabolomic profiles delineate potential role for sarcosine in prostatecancer progression [J].Nature,2009;457:910
    204Wang J, et al. Dependence of mouse embryonic stem cells on threonine catabolism[J].Science,2009,325:435
    205Howard A, Tahir I, Javed S, et al. Glycine transporter GLYT1is essential forglycine-mediated protection of human intestinal epithelial cells against oxidative damage[J].J Physiol.,2010,588:995–1009
    206Locasale J W, et al. Phosphoglycerate dehydrogenase diverts glycolytic flux andcontributes to oncogenesis [J].Nat Genet,2011,43:869
    207Zhang W C, et al. Glycine decarboxylase activity drives non-small cell lung cancerumor-initiating cells and tumorigenesis [J].Cell,2012,48:259
    208Wheeler M,Thurman R G. Production of superoxide and TNF-alpha from alveolarmacrophages is blunted by glycine [J].Am J Physiol.,1999,277:L952-L959
    209Wu H W et al. Effects of glycine on phagocytosis and secretion by Kupffer cells invitro[J].World J Gastroenterol,2012,18(20):2576-2581
    210Froh M, Thurman R G, Wheeler M D. Molecular evidence for a glycine-gated chloridechannel in macrophages and leukocytes [J].Am J Physiol Gastrointest Liver Physiol,2002,283: G856-G863
    211Qi R B. Glycine receptors contribute to cytoprotection of glycine in myocardial cells [J].Chinese Medical Journal,2007,120(10):915-921
    212Mohit Jain et al. Metabolite Profiling Identifies a Key Role for Glycine in Rapid CancerCell Proliferation [J].Science,2012,336(6084):1040–1044
    213陈红菊,屈艺,母得志.mTOR信号通路生物学功能[J].生命的化学,2010,30(4):555-560
    214Pierre S, Jolivet G, Devinoy E, HoudebineLM. A combination of distal and proximalregions is required for efficient prolactin regulation of transfected rabbit αs1-caseinchloramphenicol acetyltransferase constructs [J].Mol.Endocrinol,1994,8:1720–30
    215Shillingford J M, Hennighausen L.Experimental mouse genetics-answering fundam-entalquestions about mammary gland biology [J].Trends EndocrinlMetab.,2001,12(9):402-408
    216Bauman, D E, Currie W B. Partitioning of nutrientsduring pregnancy and lactation: Areview of mechanisms involving homeostasis and homeorhesis [J].J. Dairy Sci.,1980,63:1514–1529
    217Etherton T D, Bauman D E.Biology of somatotropin in growth and lactation of domesticanimals [J].Physiol. Rev.,1998.78:745-761
    218Lamote I, Meyer E.Sex sterodis and growth factors in the regulation of mammary glandprolife ration, differentiation, and involution[J].Sterodis,2004,6(3):145-156
    219Laarveld B, Chaplin R K, Brockman R. P. Effects of insulin on the metabolism of acetate,β-hydroxybutyrate and triglycerides by the bovine mammary gland. Comp [J].Biochem.Physiol.,1985,82B:265–267
    220AKERS R M. Major advances associated with hormone and growth factor regulation ofmammary growth and lactation in dairy cows[J].Journal of Dairy Science,2006,89:1222-1234.
    221ROSA S C,RUFINO A T,JUDAS F,et al. Mendes xpression and function of the insulinreceptor in normal and osteoarthritic human chondrocytes: modulation of anabolic geneexpression,glucose transport and GLUT-1content by insulin[J]. Osteoarthritis andCartilage,2011,19(6):719-727
    222Raggio G, Lemosquet S,Lobley G E,et,al.Effect of Casein and Propionate Supply on
    Mammary Protein Metabolism in Lactating Dairy Cows[J].J.Dairy Sci.,
    2006,89:4340-4351

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700