用户名: 密码: 验证码:
城市污水脱氮除磷系统PHB和OUR动态监测及应用实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要以小试规模的城市污水脱氮除磷处理系统(A/A/O工艺)为研究对象,进行了耗氧呼吸速率(Oxygen Uptake Rate,简称OUR)和聚羟基丁酸(poly-hydrOxybutyrate,简称PHB)含量的动态监测及监测方法优化研究,建立OUR和PHB含量动态变化与A~2/O系统运行机制的耦合关系;同时,对OUR和PHB两个生化指标与新型脱氮除磷EGSB/A/O工艺的运行进行了初步分析,为城市污水处理厂预警系统的构建奠定基础,对于废水生物处理系统运行状况的科学评价、异常预警及受损修复具有十分重要的意义,可以为城市污水处理厂的长期运行管理提供借鉴与参考。具体内容如下:
     A~2/O系统中,温度对PHB的影响是有限的。在17℃-29℃范围内,厌氧池PHB含量随温度的升高而增加,最高温度比最低温度下的活性污泥中PHB的含量约增加4.8mg/gMLSS,大约占其总量的19%左右,表明温度的升高可以促进聚磷菌代谢速率,从而促进PHB的合成。但是,当温度大于30℃时,厌氧池PHB含量下降,污泥发生大量解絮凝现象,系统的运行开始恶化。厌氧池PHB含量随系统F/M的增加而呈上升趋势,PHB的合成量随厌氧释磷量的增加而增加,且二者的变化趋势趋于一致。厌氧池中释磷量的大小与微生物体内PHB的合成存在密切联系。当进水负荷从0.413gBOD_5/gMLSS·d降低为0.176g BOD_5/gMLSS·d时,厌氧池中PHB浓度平均减少约3.8mg/gMLSS,减幅约为16.7%,此时的负荷率已基本能够满足微生物生成PHB的碳源要求。在冲击阶段,聚磷菌活性大大降低,其氧化体内储存的多聚磷酸盐后再储存PHB功能明显减弱,导致进入曝气池中的聚磷菌过量吸磷的能力显著下降。在修复期,高F/M可以促进聚磷菌的增殖,短SRT可以提高聚磷菌的活性,增大负荷和减小SRT的方法对于修复受损的A~2/O系统中聚磷菌的代谢功能上有促进作用,但对有机污染物去除效率造成一定的影响。
     A~2/O系统常规OUR的值为7.1-13.3mg(O_2)/gMLSS·h,硝化OUR0.88-2.95mg(O_2)/gMLSS·h。温度对提高活性污泥的OUR有明显作用,硝化OUR的高效区为25℃-33℃,NO_3~--N为9.2-11.0mg/L,提高F/M对OUR有促进作用。在低C/N比冲击下,A~2/O系统中NH_3-N的去除与活性污泥中硝酸细菌及与亚硝酸细菌的氧化作用相关性强。在修复期间,增加曝气池中污泥的浓度才能提高NH_3-N的去除率,通过降低SRT并增加F/M的修复方法可以加快硝化细菌的代谢活性,对提高系统的硝化和亚硝化功能效果明显。
     在EAO系统中,EGSB反应池中的PHB含量在8.0mg-9.5mg之间,其COD_(Cr),的去除率平均值在42.1%,反应池中PHB含量与COD_(Cr)的去除率存在负相关性。厌氧池中的PHB含量在8.3mg-9.7mg之间,其COD_(Cr),的去除率平均值在48.6%,亚硝化OUR为1.5-3.1 mg(O_2)/gMLSS·h,硝化OUR为0.2-4.8 mg(O_2)/gMLSS·h,EGSB反应池中硝化OUR为0.2-4.5mg(O_2)/gMLSS·h,亚硝化OUR为0.18-9.6mg(O_2)/gMLSS·h。亚硝化OUR和NO_2~--N显著正相关,亚硝化OUR随NO_2~--N的增加而增加。
     通过研究得出PHB和OUR的临界值,厌氧池中PHB的生成量在12.5mg/L-27.8mg/L,硝化OUR在0.8-1.85mg(O_2)/gMLSS·h,亚硝化OUR在1.4-2.3mg(O_2)/gMLSS·h之间,此时系统中COD_(Cr),的去除率和NH_3-N去除率处于最佳状态。通过将系统中的即时PHB和OUR监测值比对临界值,即可以及时的判断系统中COD_(Cr)的去除率与NH_3-N去除率的高低,由此可以快速的判断出系统是否存在异常状况,以便及时的对系统进行合理调控,起到预警指示的作用,具有广泛的应用价值与实际意义。
The paper investigated the dynamical monitoring of OUR and PHB mainly based on the bench-scale urban sewage nitrogen and phosphorus removal treatment system (A/A/O process).The determination of the above two index was optimized. The coupling relationship between the profiles of OUR and PHB and A~2/O system operation mechanism was established. Additionally, the variations of OUR and PHB with the operation of EGSB/A/O process was preliminarily discussed. This study laid the foundation for the construction of the forewarning system of urban sewage plants and was of great significance for scientific assessment, abnormal prediction and damage restoration of the sewage biological treatment system,which could provide some reerence for long-term operation of municipal wastewater treatment plant. Details are as following:
     In A~2/O system, the influence of temperature on the PHB was limited. With temperature increasing from 17℃to 29℃,the content of PHB in the anaerobic pond increased and its content in activated sludge in the highest temperature increases about 4.8mg/gMLSS (about 19% of total) more than the one in the lowest temperature. This showed that the increase of temperature can promote the metabolism rate of PAOs, and thus promote the synthesis of PHB. However, when temperature exceeded 30℃,its content in the anaerobic pond decreased and can find the solution and flocculation of a large number of sludge. The operation of the system began to deteriorate.
     The content of PHB in anaerobic pool increased with the increase of F/M in system, and the synthesis' number of PHB increased with the increase of the amount of phosphorus releasing by anaerobic pool. And the change of this two tended to be coherent. It has close relationship between the amount of phosphorus releasing by anaerobic pool and the synthesis' number of PHB in micro-organisms. When the load decreased from 0.413 gBOD_5/gMLSS·d to 0.176 gBOD_5/gMLSS·d,the concentration of PHB in anaerobic pool reduced by 3.8 mg/gMLSS in average, rage fading about 16.7%. And this load's rate is basically able to offer the carbon to meet the needs of the micro-organisms to synthesize PHB. In the impact stage, PAO in the aeration tank are less active, which lose the function of storing PHB after oxygenating poly-phosphate in their bodies and thus greatly weaken their ability to absorb phosphorus excessively.In the restoration stage, the high F/M can promote the multiplication of PAO, and short SRT can make them more active, and improve their function of degradation. So the method of increasing the load or reducing SRT can help to accelerate the metabolism of PAO in the damage A~2/O system.
     The normal value of OUR was between 7.1 mg(O_2)/gMLSS·h to 13.3 mg(O_2)/gMLSS·h, nitrification OUR was in the range of 0.88-2.95 mg(O_2)/gMLSS·h. The temperature had clear effect on accelerating the activated sludge's OUR. When the efficient temperature for nitrification OUR ranged from 25℃to 33℃and the concentration of NO_3~--N ranged from 9.2 mg /L to 11.0mg/L, increasing F/M promoted OUR. Under the low C/N ratio, the removal of NH_3-N in A~2/O system had strong relationship with the oxygenation function of nitrobacteria and nitrosomas in the activated sludge. In the restoration stage, increasing the concentration of the sludge in aerator tank can promote the removal rate of NH_3-N, and the method of decreasing SRT and increasing the restoration of F/M at the same time can accelerate the metabolism of nitrobacteria which effectively improve the system's function of nitration and nitrosation.
     In EAO system, the content of PHB in EGSB reactor was between 8.0mg and 9.5mg and the average value of removal rate of COD_(Cr) was 42.1%. And this two had the negative correlation. When the content of PHB in anaerobic pool was in the range of 8.3mg-9.7mg, the average removal rate of COD_(Cr) was 48.6%, OUR of nitrosation was between 1.5 mg(O_2)/gMLSS·h to 3.1 mg(O_2)/gMLSS·h,nitrification OUR was between 0.2 mg(O_2)/gMLSS·h to 4.8 mg(O_2)/gMLSS·h,and nitration OUR in EGSB was between 0.2 mg(O_2)/gMLSS ? h to 4.5 mg(O_2)/gMLSS·h,nitrosation OUR was between 0.18 mg(O_2)/gMLSS·h to 9.6 mg(O_2)/gMLSS·h, nitrosation OUR had extremely positive correlation with NO_2~--N and nitrosation OUR increases with the increase of NO_2~--N.
     PHB and OUR critical value in details: PHB formation in the anaerobic pool was between 12.5-27.8mg/L,nitrification OUR was between 0.8-1.85mg(O_2)/gMLSS·h, nitrosation OUR was between 1.4-2.3mg(O_2)/gMLSS·h ,meantime ,the system COD_(Cr) and NH_3-N removal efficiency was best. By monitoring of PHB and OUR immediate values than the critical value, that is, the system can determine the COD_(Cr) and NH_3-N removal rate is high or low, so can determine quickly whether system was in abnormal conditions,in order to timely and reasonable regulation and control of the system, play a direct role in forewarning, had a great application value and practical significance.
引文
[1]马有方,田村学.生物净化环境技术[M].北京:化学工业出版社,1990.
    [2]程树培.环境生物技术[M].南京:南京大学出版社,1994.
    [3]高廷耀.城市污水生物脱氮除磷机理研究进展[J].上海环境科学,1999,18(1):16-18.
    [4]丁岩.城市污水处理工艺调研报告[J].环境保护,2005,2,45-49.
    [5]胡纪萃.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2002
    [6]李广,李晶,任飞等.EGSB工艺的研究进展及应用[J].辽宁化工,2008,37(4),262-265
    [7]Singh K S.Municipal wastewater treatment by upflow anaerobic sludge blanket(UASB)reactors[D].Regina;National Library of Canada, 1999.
    [8]Aiyuk S,Forrez I,Lieven D K, et al.Anaerobic and complementary treatment of domestic sewage in regions with hot climates-A review[J].Bioresour Technol,2006,97(17):2225-2241.
    [9]Seghezzo L.Anaerobic treatment of domestic wastewater insubtropical regions[D].Wageningen:Wageningen University,2004.
    [10]Lettinga GSustainable integrated biological wastewater treatment[J].Wat.Sci.Tech.l996,33(3):85-98.
    [11]Lettinga G,Rebac S,Parshina S.HIish rate anaerobic treatment of wastewater at low temperatures[J].App.Environ. Microbiol,1999,65(4): 1696-1702.
    [12] Perenra M A,Roest K,Stams A J M,et al.Molecular monitoring of microbial diver in expanded granular sludge bed(EGSB)reactors treating oleic acid[J].FEMS Microsity Biology Ecology,2002,41(10):95-103.
    [13] Rebac S,Gerbens S,Lens P,et al.Kinetics offatty acid degradation by psychrophilically grow anaerobic gran ular sludge[J].Biosour.Technol,1999,69(6):241-248.
    [14]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998.
    [15] 李克勋,徐智华,张振家.水力作用对颗粒污泥形成的影响[J].中国沼气,2003,21(1):8-10.
    [16] Van Lier J B.New perspective in an aerobic digestion[J]. Wat.Sci&Tech,2001,43(1):118-121.
    [17] 左剑恶,王妍春,陈浩,等.EGSB反应器的启动运行研究[J].给水排水,2001,27(3):26-30.
    [18] ScuUy C,Collins G,OFlaherty V.Anaerobic biological treatment of phenol at 9.5-15℃ in an expanded granular sludge bed (EGSB)-based bioreactor[J].Water Res,2006,40(20):3737-374.
    [19] 吴昌敏.常温EGSB工艺在城市污水处理中的应用及其后续工艺的研究[D].天津:天津大学,2002:48-56.
    [20] 李光,王强,吴昌敏,等.EGSB的后续处理工艺选择[J].中国给水排水,21(10),2005:46-48.
    [21]Chung Y C,Neethling J,B.Microbial activity measurements for anaerobic sludge digestion[J].Journal WPCF,1989,61(3):343-349.
    [22]Brouwer H,Klapwijk A,Keesman K J.Identification of activated sludge and waste water chacracteristics using respirometric batch-experiment[J].Water Research,1998.32(4):1240-1254
    [23] 王暄,王景峰,季民,等.聚糖菌颗粒污泥的有机物吸收及胞内储存特性[J].中国环境科学,2005,25(5):597-601.
    [24]CechJ S,Hartman P.Competion between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphorus removal systems[J].Water Research,1993,27(7):1219-1225.
    [25]Caruuci A,Dionisi D,Majone M,et al.Aerobic storage by activated sludge on real wastewater[J].Water Research,2001,35(16):3833-3844.
    [26]陈元彩,詹怀宇,陈中豪,等.高效内循环反应器的污泥特性[J].中国环境科学,2003,23(1):81-84.
    [27]Watts J B,Garber W F.On line respirometry:A powerful tool for activated slundge plant operation and design[J].Water Science and Technology, 1993,28(11-12):389-399.
    [28]Klapwijk A,Brouwer H,Vrolijk E. et al.Control of intermittenely aerated nitrogen removal plants by detection end points of nitrification and dengitrification using respirometry only[J].Water Research, 1998,32(5):1700-1703.
    [29]戴兴春.城市污水A~2/O工艺调控监控体系优化与异常修复技术研究[D].华东师范大学博士论文.
    [30]王红武,马鲁铭,董美玉,等.PHB及糖原在废水生物处理好氧条件下的形成[J].精细化工,2000,17(9):519-525.
    [31]罗固源,张瑞雪,王丹云,等.SUFR系统进水COD_(Cr)浓度对反硝化除磷的影响[J].重庆大学学报,2005,28(1):121-125.
    [32]田淑嫒,王景峰,杨睿,等.厌氧下的PHB和聚磷酸盐及其生化机理研究[J].中国给水排水,2000,16(7):5-7.
    [33]刘燕,智强,银广琪.聚烃基烷酸转化对强化生物除磷影响研究[J].环境科学,2006,7(6):1103-1106.
    [34]Mino T.Liu W T,Kurisu F,et al.Modelling Glycogen Storage and Denitrification Capability of Microorganisms in EBPR Processes [J].Wat.Sci.Tech,1995,31(2):25-34.
    [35] Satoh H.Deterioration of EBPR by theDomination of Microorganisms without Polyphosphate A ccumulation[J].Wat. Sci. Tech.,1994,30(6):203-211.
    [36]王亚宜,王淑莹,彭永臻,等.污水有机碳源特征及温度对反硝化聚磷的影响[J].环境科学学报,2006,26(2):196-192.
    [37]吴光学,管运涛.SRT及碳源浓度对厌氧-好氧交替运行SBR工艺中PHB的影响[J].环境科学,2005,26(2):126-130.
    [38]卢少勇,宋英豪,申立贤,等.呼吸速率测定研究进展[J].环境污染治理技术与设备,2002,3(8):24-27.
    [39]徐亚同,史家梁,张明.污泥控制微生物工程[M].北京:化学工业出版社,1998.
    [40]杜龙弟,赵长海,王春娥,等.可生物降解性测定技术在工业污水处理中的应用[J].工业水处理,2004-07,24(7),17-21.
    [41]王建龙,吴立波,齐星,等.用氧吸收速率(OUR)表征活性污泥硝化活性的研究[J].环境科学学报,1999,19(3):225-229.
    [42]Gutierrez M,Etxebarria J,Fuentes L D L.Evaluation of wastewater toxicity: Comparative study between Microtox and activated sludge oxygen uptake inhibition[J].Water Research,2002,36:919-924.
    [43]孟雪征,赖震宏,龙腾锐.金属离子对好氧活性污泥活性的影响[J].安全与环境学报,2004,4(6):43-45.
    [44]Dalzell D J B,Alte S,Aspichueta E,et al.A comparison of five rapid direct toxicity assessment met hods to determine toxicity of pollutant s to active sludge[J]. Chemosphere,2002,47:535-545.
    [45]陈金声,史家樑,徐亚同.硝化细菌测定和硝化细菌计数考察脱氮效果的应用[J].上海环境科学,1996,15(3):18-20.
    [46]徐亚同,黄民生.废水生物处理的运行管理与异常对策[M].北京:化学工业出版社,2003.
    [47]沈同,王镜岩.生物化学(上册)[M].北京:高等教育出版社,1990,256-262.
    [48]任南琪,马放.污染控制微生物学[M].哈尔滨:哈尔滨工业大学出版社,2002,170-171
    [49]Orhon D, Okutman D. Respirometric assessment of residualorganic matter for domestic sewage[J]. Enzyme and MicrobialTechnology, 2003,32(7):560-566.
    [50] Dutka B J, Nyholm N, Petersen J. Comparison of severalmicrobiological toxicity screening tests[J]. Wat. Res., 1983,17(10): 1363-1368.
    [51]Broecker B, Zahn R. The performance of activated sludge plants compared with the results of various bacterial toxicity tests-astudy with 3,5-dichlorophenol [J]. Wat. Res., 1977,11(9): 524-528.
    [52]尹军,谭学军,王学峰,等.有机物降解和硝化过程中污泥摄氧速率的变化[J].中国环境科学,2007,27(4):19-22.
    [53]Vanronlleghem P,Verstraete W. Simultaneous biokinetic characterization of heterotrophic and nitrifying populations of activated sludge with an on line respirographic biosensor[J]. Wat. Sci.Tech.,1993 ,28:377-387.
    [54]Nowak O,Svardal K. Observations on the kinetics of nitrification under inhibiting conditions caused by industrial wastewater compounds[J].Wat. Sci. Technol.,1993 ,28:115-123.
    [55]Kroiss H. Nitrification inhibition a source identification method for combined municipal and/ or industrial treatment plants[J]. Wat. Sci. Tech.,1992 ,26 :1135-1146.
    [56]Hynes R K,Knowles R. Inhibition of chemoautotrophic nitrification by sodium chlorate and sodium chloride :a reexamination[J]. Appl.Environ. Microbiol.,1983,45:1179-1182.
    [57]Stensel H D.An automated biological nitrification toxicity test[J].Wat. Pollution Control Fed ,1976 ,48 :2343-2350.
    [58] De Bel M,Stokes l,Upton J,et al.Applicatiom of a respirometry based toxicity monitor[J].Water Science and Technology, 1996,289-296.
    [59] Brouwer H,Klapwijk A,Keesman K J.Modelling and control of activited sludge plants on the basis of respirometry [J]. Water Science and Technology,1994, 30(4):265-274.
    [60]羊寿生.上海在建的三座大型城市污水处理厂介绍(二)-上海白龙港污水处理厂[J].给水排水,2003,29(2):1-2.
    [61]羊寿生.上海三座大型城市污水处理厂试运行中的问题及对策[J].给水排水,2005,31(8):1-3.
    [62]陈银广,陈坚,堵国成,等.聚-β-羟基丁酸酯提取方法的比较[J].无锡轻工大学学报,1998,3(17):5-9.
    [63]Comeau Y.Biochemical Model for Enhanced Biological Phosphorus Removal[J].Wat. Res.,1986,20(12):1511-1521.
    [64] Liu Y H.Low sludge carbohydrate content:a prerequisite for enhanced biological phosphorus removal[J].Wat. Env. Res., 1997,69(7):1-7.
    [65]国家环境保护总局.《水和废水监测方法》(第四版)[M].北京.中国环境科学出版社.2002
    [66]朱勇.污水生物处理系统异常问题诊断与修复结题报告[R].华东师范大学,2009
    [67]Riis V,Mai W. Gas chromatographic determination of poly-β- hydroxybutyric acid microbial biomass after hydrochloric acid propanolysis[J]. Journal of Chromatography,1988,445:285-289.
    [68]Takabatake H,Satoh H,Mino T,et al.PHA(polyhydrox-yalkanoate)production potential of activated sludge treating wastewater[J].Wat. Sci. Tech., 2002, 45 (12):119-126.
    [69]林东恩.活性污泥好氧厌氧合成聚-3-羟基丁酸酯[J].华南理工大学学报,2002,30(9):100-104.
    [70]豆俊峰,罗固源,季铁军,等.SUFR脱氮除磷系统中反硝化聚磷菌的性能研究[J].水处理技术,2005,31(6),28-31.
    [71]Smolders G J F,Meij J van der,Loosdrecht van MCM,et al.Model of the aero bic metabolism of the biological phosphorus removal process;stoichiometric and pH influence[J].Biotechnol Bioengng,1994,(43):461-470.
    [72] Murnleitner E,Kuba T,Loosdrecht van MCM,et al.An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal[J].Environ Engng (ASCE),1997,56:876-883.
    [73]Brdjanovic D,Slamet A,Loosdrecht van MCM.Impact of excessive aeration on biolo gical phosphorus removal from wastewater[J].Wat .Res.,1998,32(1):200-208.
    [74]Tian Shu-yuan.The Effet of Short Chain Fatty Acid on Biological Phosphat Release and OHB Synthesis under Anaerobic Condition[J].Transaction of Tianjin University,1996,2(2):87-91.
    [75]田淑嫒,李征,王景峰.厌氧-好氧交替工艺生物除磷及活性污泥特殊染色[J].工业用水与废水,2001,1(32):13-16
    [76]杜英豪,黎耀,陶清,等.传统活性污泥法的脱氮除磷改造实践[J].给水排水,2000,9(26):9-11
    [77]豆俊峰,罗固源,刘翔,等.生物除磷过程厌氧释磷的代谢机理及其动力学分析[J].环境科学学报,2005,25(9):1164-1169.
    [78]王晓莲,王淑莹,马勇,等A~2/O工艺中反硝化除磷及过量曝气对生物除磷的影响[J].化工学报,2005,56(8),1566-1570.
    [79]徐亚同.废水的生物除磷[J].环境科学研究,1994,7(5):1-6.
    [80]田淑媛,王景峰,杨睿,等.厌氧下的PHB和聚磷酸盐及其生化机理研究[J].中国给水排水,2000,16(7):5-7.
    [81] Fuhs G W, Chen M. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater[J].Microbiol. Ecol.,1975, 2(6):119-138.
    [82] Digger GT, Grady C L P.The dynamics of microbial growth on soluble substrates[J].Water Res.,1982, 16(4):365-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700