以污泥水富集硝化菌为添加源强化城市污水生物脱氮系统功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市污水处理厂污泥处理过程中产生的污泥水(厌氧消化池上清液、浓缩池上清液和脱水滤液)中含有高浓度的氨氮,将其直接回流至污水处理系统进水口会导致系统氮负荷过高,影响出水水质。本文对污泥水的单独处理技术、污泥水富集硝化菌的效果、以污泥水富集硝化菌为添加源添加对同样采用SBR工艺的污水处理系统降解有机物以及硝化能力的促进作用、污泥水反应器内的好氧反硝化现象进行了研究。主要结论如下:
     (1)在进行高氨条件下硝化污泥驯化时,SBR反应器采用高氨启动,进水氨氮浓度为100mg/L,经过25~30d,成功地使适应高氨浓度的硝化菌得以富集,实现了反应器内生物相的选择。
     (2)污泥水单独处理试验过程中,高氨SBR反应器硝化性能良好,DO=2mg/L,pH维持在8~8.5左右时,氨氮和亚硝氮去除率均在95%以上。好氧段出现了明显的pH先下降后上升的现象,氮平衡的结果表明在好氧段硝化基本完成后,随即出现反硝化现象,TN去除率可达65-70%,而厌氧阶段反硝化现象并不明显。另外,在维持系统HRT、SRT和A/O不变(分别为30h、20d、1/3)的情况下,通过对SBR周期为12h、6h、4h时的研究表明,在满足系统硝化能力的前提下单纯改变SBR周期历时对系统的硝化能力并没有显著影响,TN去除率均保持在60%左右,且绝大多数TN的去除在好氧段完成。
     (3)在以污泥水为添加源、富集硝化细菌用的SBR反应器中,最大氨氧化速率为97.5 mgNH_4~+-N/L·h,最大比氨氧化速率为32.8 mgNH_4~+-N/gVSS·h;最大亚硝酸盐氧化速率为43.4 mgNO_2~--N/L·h,最大比亚硝酸盐氧化速率为14.6 mgNO_2~--N/gVSS·h。FISH技术测定的结果表明,氨氧化细菌(AOB)的优势菌属为Nitrosomonaseuropaea/Nitrosococcus mobilis,亚硝酸盐氧化细菌(NOB)的优势菌属为Nitrobacter spp.
     (4)通过连续添加,能明显的促进污水处理系统的有机物降解能力和硝化能力,且在添加停止后这种促进作用仍能保持较长时间。另外,这种添加使污水处理系统中原生动物数量和种类都大幅度增加。
     (5)针对高氨污泥水反应器中出现的好氧段TN的显著去除现象,利用微小电极装置测定了污泥絮体内部的DO分布情况,并研究了好氧条件下低浓度污泥的反硝化行为。结果表明,在高氨污泥水硝化污泥中存在的好氧反硝化现象,其原因是污泥絮体内部微环境DO传递不均匀所造成的厌氧反硝化和污泥内的好氧反硝化菌的共同作用所致。
The reject water comes from the sludge treatment process in the wastewater treatment plant is of high ammonia influent,it may lead the exorbitant ammonia loading of the whole wastewater treatment system and may influence the effluent quality if refluence to the infall. This study investigated the technology of independent treatment of the reject water and the effect of accumulated nitrifying bacteria,which were bred by the reject water in a sequencing batch reactor(SBR).The strategy of bioaugmentation using accumulated nitrifying bacteria to the wastewater treatment system to enhance the biodegradation of organic matters and nitrification performance was also performed.Then,a study on the phenomena of the aerobic denitrification in the reject water reactor was carried out.The main conclusions are as follows.
     (1)The SBR was started up using a high influent with ammonia concentration at 100mg/L when incubate the nitrifying active sludge which favors the high ammonia concentration.The nitrifying bacteria were successfully accumulated,and the preference flora was obtained after 25-30 days.
     (2)An effective nitrification performance was obtained in SBR at a high influent of ammonia when the reject water was treated independently.More than 95%of the average removal efficiency of ammonia and nitrite could be achieved at 2mg/L of DO and 8~8.5 of pH. An obvious phenomenon of pH went downward and upward was found.The result of nitrogen balance showed that the denitrification occurred immediately after the nitrification achieved in the aerobic condition,65-70%of TN was removed,but there was little denitrification in the anaerobic condition.A market effect on the nitrification in wastewater treatment system could not be found when the duration of SBR cycle was only changed as 12h,6h and 4h,in this time,the HRT,SRT and A/O ratio kept at 30h,20d and 1:3,respectively.About 60%of the average removal efficiency of TN could be achieved,the most of TN was removed in the aerobic stage.
     (3)In the SBR that was used to accumutated the of nitrifying bacteria by the addition of reject water,the maximum ammonia uptake rate(AUR) was 97.5 mgNH_4~+-N/L·h,the maximum specific AUR was 32.8 mgNH_4~+-N/gVSS·h,the maximum nitrite uptake rate (NUR) was 43.4 mgNO_2~--N/L·h and the maximum specific NUR was 14.6 mgNO_2~--N/gVSS·h.The result of fluorescence in situ hybridization(FISH) revealed that the dominant ammonia oxidizing bacteria was Nitrosomonas europaea and Nitrosococcus mobilis,the dominant nitrite oxidizing bacteria was Nitrobacter spp.
     (4) The ability of organism biodegradation and nitrification performance could be enhanced markedly by the bioaugmentation,and the enhancing effect may keep for some days after the bioaugment ceased,on the other hand,bioaugmentation may result in much increasing in the quantity and the diversity of protozoa.
     (5) The distribution of DO in the sludge flocs was determined by microelectrodes for oxygen,since a market removal of TN occurred in the aerobic stage of the reject water reactor. The behavior of denitrification of low concentration sludge in aerobic condition was also examed.The results showed that the phenomenon of the aerobic denitrification of nitrifying activated sludge bred by the reject water was due to both the asymmetry of DO transfer in flocs and the metabolism of aerobic denitrifying bacteria.
引文
[1]国家环境保护总局,国家质量监督检验检疫总局《城镇污水处理厂污染物排放标准》(GB18918-2002)[M].北京:中国环境出版社出版,2003.
    [2]Hagopian D S,Riley J G.A closer look at the bacteriology of nitrification[J].Aquac Eng,1998,18:223-244
    [3]Chouari R,Le Paslier D,Daegelen P,Weissenbach J,Sghir A.Molecular evidence for novel planctomycete diversity in a municipal wastewater treatment plant[J].Apple Environ Microbiol.69(12):7354-7363.
    [4]周群英等,环境工程微生物学[M],高等教育出版社,2004
    [5]USA EPA.Nitrogen control[M].Technomic Publishing Company,Inc.,Lancaster,Pennsylvania 17604,USA 1991
    [6]郑兴灿,李亚新著。污水除磷脱氮技术[M]。中国建筑工业出版社。1998.11。
    [7]郑平,徐向阳,胡宝兰编著。新型生物脱氮理论与技术[M]。北京:科学出版社,2004
    [8]张自杰等,排水工程(下册)[M],中国建筑工业出版社,2004
    [9]梁刘燕,汪萍.废水脱氮中好氧反硝化现象的研究[J].工业用水与废水.2004,35(2):33-35.
    [10]于莉芳,彭党聪。城市污水厂污泥水脱氮技术的应用及进展[J]。中国给水排水,2007,23(8):9-13
    [11]Ladiges G,Bertram N.Optimization of Hamburg's wastewater treatment plants-three years of experience with the new concept[J].Wat Sci Technol,2004,50(7):45-48
    [12]彭党聪.国家高技术研究发展计划(863计划)专题课题申请书
    [13]于莉芳,污泥水富集硝化菌添加强化污水处理系统硝化的试验研究[D]。西安建筑科技大学,2008
    [14]Janus H,van der Roest.Don't reject the idea of treating reject water[J].Wat Sci&Tech,1997,35(11):27-34.
    [15]Hellinga C,Schellen A A J C,Mulder J W,van Loosdrecht,M C M and Heijnen J J (1998).The SHARON-process;an innovative method for nitrogen removal from ammonium rich wastewater[J].Wat.Sci Tech,37(9),135-142.
    [16]Yuan Z,Bogaert H,Leten J et al.Reducing the size of a nitrogen removal activated sludge plant by shortening the retention time of inert solids via sludge storage[J].Wat Res,2000,34(2):539-549
    [17]张忠祥,钱易著,废水生物处理新技术[M],清华大学出版社。
    [18]ir.Nico Boon.Bio-augmentation of activated sludge reactors to enhance chloroaniline removal[D].Universiteit Gent.
    [19]全向春,刘佐才等.生物强化技术及其在废水治理中的应用[J].环境科学研究,12(3):1999
    [20]Kos P.Short SRT(solids retention time)nitrication process/flowsheet[J].Wat Sci Tech,1998,38(1):23-29
    [21]Salem S,Berends D,Heijnen J.Bio-augmentation by nitrification with return sludge[J].Wat Res,2003,37(8):1794-1804
    [22]Salem S,D.H.J.G.Berends,H F van der Roest,R J van der Kuij and M C M van Loosdrecht(2005).Full-scale application of the BABE(?)technology[J].Water Sci Tech,50(7),87-96.
    [23]赵义,郝晓地,朱景义.测流富集/主流强化硝化(BABE)升级工艺[J].中国给水排水,2006,22(2):5-8
    [24]Krhutkova O,Nova L k,Pachmanova L,Benakova A,Wannerand M.Kos J(2006).In situ bioaugmentation of nitrification in the regeneration zone:practical application and experiences at full-scale plants[J].Water Sci Tech,53(12),39-46.
    [25]Plaza E,Trela J and Hultman B(2000).Impact of seeding with nitrifying bacteria on nitrification process efficiency[J].Water Sci Tech,43(1),155-164.
    [26]Ros(?)n B and Huijbregsen C(2003).The ScanDeNi(?) process could turn an existing under-performing activated sludge plant into an asset[J].Water Sci Tech,47(11),31-36.
    [27]Department of environmental protection.The InNitri(?) Nitrification System:An Innovative Wastewater Treatment Process[M]
    [28]郝晓地,van Loosdrecht M C M.荷兰鹿特丹 DOKHAVEN 污水处理厂[J].给水排水,2003,29(10):19-25.
    [29]Salem S,Berends D,Heijnen J J,et al.Model-based evaluation of a new upgrading concept forN-removal[J].WatSciTechno,1 2002,45(6):169-176.
    [30]Berends D,Janssen P,Salem S,et al.Ready for business-look at a new method for combing sludge liquor treatment and the augmentation ofnitrifying organisms in themainstream[J].Water21,2003,(4):32-34.
    [31]Ros(?)n B and Huijbregsen C(2003).The ScanDeNi(?) process could turn an existing under-performing activated sludge plant into an asset[J].Water Sci Tech,47(11),31-36.
    [32]Salem S,Moussa M,van Loosdrecht M.Determination of the decay rate of nitrifying bacteria[J].Biotechnol Bioeng,2006,94(2):252-262
    [33]Naeem,S.& Li,S.B.1997 Biodiversity enhances ecosystem reliability[J].Nature 390(6659),507-509.
    [34]R.C.Smith,P.E.Saikaly,K.Zhang,S.Thomatos and D.B.Oerther.Ecological engineering of bioaugmentation from side-stream nitrification[J].Wat.Sci.Tech.,2008,12(57):1927-1933
    [35]Bouchez T,Patureau D,Dabert R Juretschko S,Dore J,Delgenes P,Moletta R and Wagner M(2000).Ecological study of a bio-augmentation failure[J].Environmental Microbiology,2(2),179-190.
    [36]Peng Dangcong et al(2000) Effects of oxygen supply models on the performance of SBR for high ammonium nitrification[J].Water Environment Research 72(2),195-200.
    [37]彭党聪,Bernet N.供养模式对序批式活性污泥反应器硝化性能的影响[J].环境工程,1999,17(6):10-14
    [38]高景峰,彭永臻,王淑莹.以 pH 作为 SBR 法硝化过程模糊控制参数的基础研究[J].应用与环境生物学报.2003,9(5):549-553
    [39]吕宏德,彭永臻等.A_O 短程硝化反应器处理高浓氨氮废水的SND[J].中国给水排水.2008,13(24):89-92.
    [40]李长太,张燕生.焦化废水生物脱氮研究进展[J].工业水处理.2008,2(28):12-15.
    [41]John M.Regan,Gregory W.Harrington,and Daniel R.Noguera.Ammonia- and Nitrite-Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System[J].Appl.Environ.Microbiol.,2001,11(67):2576-2585.
    [42]Daims H.,Nielsen J.L.,Nielsen P.H.et al.In situ characterization of Nitrospira-like nitrite oxidizing bacteria active in wastewater treatment plants[J].Appl.Environ.Microbiol.,2001,67(11):5273-5284.
    [43]Head M,Melanie A,Oleszldewicz J.Nitrifying bacteria addition into reactors operationg near washout conditions for nitrification[J].J.Environ.Eng.Sci.,2005,4(4):257-264.
    [44]J.Dosta,A.Gali.Operation and model description of a sequencing batch reactor treation regect water for biological nitrogen removal via nitrite.[J]Bio.Tech.2007,98:2065-2075
    [45]Wagner M,Noguera D R,Juretshko S,et al.Conbining fluorescent in situ hybridization(FISH) with cultivation and mathematical modeling to studypopulation structure and function of ammonia-oxidizing bacteria in activated sludge[J].Water Sci Technol,1998,37(4-5):441-449
    [46]Richard Blackburne,Vel M.Vadivelu,Zhiguo Yuan,et al.Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter[J].Wat.Res.2007,41(14):3033-3042
    [47]YOU S J,HSU C L,Chuang S H,et al.Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A_2O system[J].Water Research,2003,37:2281-2290.
    [48]李伦,汪宏渭.城镇高氨氮污水的吹脱除氮试验研究[J].中国给水排水,2006.9,22(17):92-95.
    [49]周毅,杨开等.污水生物处理过程中的同步硝化反硝化研究概况[J].环境科学与技术.2001,11.98:6-8.
    [50]王磊,杨永哲,韩芸,王志盈,佐藤久,福士宪一等.好氧微生物基团内的基质分布与 NH_4~+的硝化特点分析[J].西安建筑科技大学学报.2005,3,37(1):44-47.
    [51]尤勇军,沈娟,王艳萍.同步硝化反硝化生物脱氮技术研究[J].环境污染治理技术与设备.2006,4.7(4):128-131.
    [52]郑兴灿,李亚新。污水除磷脱氮技术[M]。中国建筑工业出版社。1998.11。
    [53]王欢,刘晶晶.好氧反硝化菌的异养硝化性能研究[J].环境科学与技术.2008,11,11(31):45-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700